
Table A.1: Datasets from PosteriorDB.

Name Dimensions

Dogs 5
Ark 7
Mesquite 8
Eight schools non centered 10
Eight schools centered 10
NES1996 11
Diamonds 26
Radon unpooled 90
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Figure B.1: Pareto k̂ estimated for different objectives and divergences estimation for a 0.5 correlated
Gaussian target and mean field Gaussian approximation and increasing dimensionality. Here we
compute the k̂ for all the f(w) after optimizing a particular variational objective.

A PosteriorDB datasets1

In Table A.1 we show the dimensionality of the datasets we use for our real experiments.2

B Additional results for the pre-asymptotic reliability case study3

In Fig. B.1 and Fig. B.2 we show additional results for the pre-asymptotic reliability case study4

for different objectives and mean field Gaussian approximation. The results from optimising χ2,5

1/2-divergence and tail adaptive f -divergence follow similar trends as those resulting from optimising6

exclusive and inclusive KL. Approximations obtained by optimising χ2 and 1/2-divergence are more7

unstable and end up diverging in similar ways as inclusive KL even for moderately low dimensional8

problems. We use a warm start procedure for χ2, 1/2-divergence and inclusive KL, starting at the9

solution of exclusive KL for a given problem. On the other hand, optimising tail adaptive f -divergence10

seems to be more robust and behave similarly to exclusive KL even in higher dimensions.11

C Additional experiments12

Isolating the effect of variational family. In this section, we perform a systematic comparison of13

inclusive-KL and exclusive KL divergences using mean-field Gaussian and mean-field Student-t14

approximation families for varying amount of correlation and dimensionality of the underlying15

parameter space. The dimension size is varied from 2 to 100. For Gaussian target with Gaussian16

approximation, we used BFGS as the optimiser removing any error due to stochastic optimisation. The17

plots in Fig. C.3 show how k̂ behaves with increasing dimension and increasing correlation in posterior18

for a mean field Gaussian approximation and optimising objectives for exclusive KL and inclusive-KL19
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Figure B.2: Divergences estimates for different objectives for a 0.5 correlated Gaussian target and
mean field Gaussian approximation and increasing dimensionality.

divergences respectively. We also plot a similar plot for planar-flow when optimising exclusive KL20

divergence. The plots indicate even when the approximation is heavy tailed and divergence measure21

is mass covering, the final variational mean field approximation becomes unreliable. The dimension22

at which this happens depends on the posterior geometry (correlation in this case). Since the target is23

Gaussian, when the approximation is Gaussian family, we can estimate exclusive and inclusive KL24

analytically at the optimisation end points for each of the divergences, for the other approximations,25

Student’s t and planar flow, we estimate these quantities by MC.26

Extensive experiments and results are shown in Fig. C.4, Fig. C.5, Fig. C.6 and Fig. C.7
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Figure C.1: Plots for the approximate posteriors obtained by optimizing exclusive KL(blue) and
inclusive KL(red).
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Figure C.2: Variational approximations (red) for robust regression posterior (black) with D = 2.
(a–c) Uses mean-field Gaussian family. (d,e) Uses exclusive KL divergence.
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(a) t7-Exclusive KL
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(b) GaussianMF-Inclusive KL
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(c) Planar Flow-Exclusive KL

Figure C.3: Plots of k̂ with Exclusive KL divergence minimisation, Inclusive KL divergence min-
imisation with mean-field Student-t density and with Planar Flows for increasing correlation and
dimensions.
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Figure C.4: Gaussian mean field solution for exclusive KL divergence. The top row shows solutions
obtained after minimizing the exclusive KL divergence where the target is a correlated Gaussian
density with varying amount of correlations, and the approximation is a mean field approximation.
The second row shows plots from the left to the right: the exclusive KL divergence, the inclusive KL
divergence and the Pareto k statistic computed at the solution returned by BFGS optimisation for
increasing dimensions and different amount of correlations when the target has a uniform covariance
structure, the bottom row shows the corresponding plots for banded covariance target.
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Figure C.5: Gaussian mean field solution for inclusive KL divergence. The top row shows solutions
obtained after minimizing the exclusive KL divergence where the target is a correlated Gaussian
density with varying amount of correlations, and the approximation is a mean field approximation.
The second row shows plots from the left to the right: the exclusive KL divergence, the inclusive KL
divergence and the Pareto k statistic computed at the solution returned by BFGS optimisation for
increasing dimensions and different amount of correlations when the target has a uniform covariance
structure, the bottom row shows the same corresponding plots for banded covariance target.
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Figure C.6: Solution for exclusive KL divergence where the family of approximation is a product of t-
densities. The top row shows solutions obtained after minimizing the exclusive KL divergence where
the target is a correlated Gaussian density with varying amount of correlations, and the approximation
is a mean field approximation. The second row shows plots from the left to the right: the exclusive KL
divergence, the inclusive KL divergence and the Pareto k statistic computed at the solution returned
by stochastic optimisation for increasing dimensions and different amount of correlations when the
target has a uniform covariance structure, the bottom row shows the same corresponding plots for
banded covariance target.
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Figure C.7: Solution for inclusive KL divergence where the family of approximation is a product of
t-densities. The top row shows solutions obtained after minimizing the inclusive KL divergence where
the target is a correlated Gaussian density with varying amount of correlations, and the approximation
is a mean field approximation. The second row shows plots from the left to the right: the exclusive KL
divergence, the inclusive KL divergence and the Pareto k statistic computed at the solution returned
by stochastic optimisation for increasing dimensions and different amount of correlations when the
target has a uniform covariance structure, the bottom row shows the same corresponding plots for
banded covariance target.
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(i) Planar Flow with two layers

Figure C.8: Approximation for Robust Regression with different divergences and approximation
families in 2 dimensions. This shows the properties of divergences and approximations in low
dimensions.

9



D Score function additional discussion28

The score function gradient for exclusive KL is given as:29

∇λL(λ) = ∇λEq[log p(Y, θ)− log q(θ)]

= Eqλ(θ)[log p(Y, θ)− log q(θ)] · ∇λ log q(θ)

≈ 1

S

S∑
s=1

[logws∇λ log qλ(θs)],

where we have defined ws = w(θs). If the entropy of the approximate distribution is known30

analytically, we get another unbiased gradient estimator, where we use the MC samples only to31

estimate the first part, removing any direct dependence of gradient wrt w(θs)32

∇λL̂(λ) =
1

S

S∑
s=1

[log p(Y, θs)∇λ log qλ(θs)] +∇λHq[qλ(θs)].

For inclusive KL divergence, the score function gradient is given as:33

∇λL(λ) = −
S∑
s=1

ws∑S
s=1 ws

∇λ log qλ(θs). (D.1)

where the gradient has been estimated by self-normalised importance sampling [4, 16? ].34

Similarly, the score gradient for χ2 and α divergences is given as35

∇λL(λ) =
−1

S

S∑
s=1

[wscore
s ]

α∇λ log q(θs;λ),

where α ≥ 236

It is apparent immediately that the gradients will have even higher variance than observed in the case37

of importance sampling. Importance sampling is known not to work well in higher dimensions, since38

the variance of the importance weights is likely to become very large or infinite.39

The variance of the score gradients for the divergences discussed above as a function of density ratios40

is given below:41

Vq(Gscore
CUBO) = O(w4),

Vq(Gscore
Inclusive KL) = O(w2),

Vq(Gscore
ExclusiveKL)) = O(log(w)2).

The higher the power on density ratio, the faster the variance of the gradients will grow. This means42

the density ratio should have finite higher moments for CLT to apply as discussed in Section 2.43

E Reparameterised gradients additional discussion44

For exclusive KL, the reparameterised gradient becomes45

∇λEq[log j(θ)] = Ep[∇λTλ(ε)∇θ log j(θ)]. (E.1)

In the case of χ2 divergence, the reparameterised gradient is46

∇λL̂(λ) =
2

S

∑
s=1

(
j(Tλ(εs))

q(Tλ(εs))

)2

∇λ log

(
j(Tλ(εs))

q(Tλ(εs))

)
,

which can be expressed in terms of density ratios as follows:47

∇λL̂(λ) =
2

S

S∑
s=1

(
wRP
s

)2∇λ log
(
wRP
s

)
, (E.2)

where the new weights wRP denote that they have been evaluated on samples obtained using the48

reparameterisation trick. In this case, the dependence of the gradient is not straightforward and also49

depends on the the product of the density ratio squared and its corresponding gradient.50
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F Covariance Structures51

In this work, we use two types of covariance matrices, uniform matrices denoted by U : Kij = 1.[i =52

j] + ρ[i 6= j] and the banded structure, denoted by B: Kij = 1.[i = j] + ρ|i−j|[i 6= j]53

G Gradient Variances for Score function gradient and RP gradient54

We want to see how the variance of the gradients for different divergence objectives varies by55

extending the analysis from [29] Let us consider the log joint density cost function i.e j(θ) =56

log p(Y, θ) = θ2 and q(θ) = N (µ, 1)57

Then for exclusive KL divergence, the RP gradient estimator is:58

GRP = ∇λEq[j(θ)] (G.1)

GRP = Eε[∆RP
µ ] = Eε[∇µT (ε;λ)∇θj(θ)] (G.2)

∆RP
µ (KL(q||p)) = 1.(2θ) = 2(µ+ ε) (G.3)

V(∆RP
µ (ε;λ)(µ))(KL(q||p)) = 4 (G.4)

Since the gradient wrt the location parameter is a r.v, we can compute the variance under the standard59

distribution N(0, 1). Similarly we can derive the variance of the score function gradient60

Gscore(λ) = ∇λEq[j(θ)] = Eq[j(θ)∇λ log q(θ;λ)] (G.5)
Gscore(λ) = Eq[∆score

µ ] (G.6)

∆score
µ (KL(q||p)) = θ2(θ − µ) (G.7)

Vq(∆score
µ (θ;λ)(µ))(KL(q||p)) = µ4 + 14µ2 + 15 (G.8)

Now consider the score gradient for Inclusive KL and α divergences:61

Gscore
α (λ) = E[

p(Y, θ)

q(θ)

α

∇λ log q(θs;λ)] (G.9)

Taking the target density, p(Y, θ) = −θ2/2, where the factor 1/2 helps in cancelling some terms. For62

the special case, q(θ) = N(µ, 1), when µ = 0, the two densities become equal and we are left only63

with Gscore
α (λ) = θ. Then , but for a general case this is given as:64

Gscore
α (λ) = E[

exp(−θ2/2)

exp(−(θ − µ)2/2)
∇λ log q(θs;λ)] (G.10)

= Eq[exp(µ2/2 + θµ)α∇λ log q(θs;λ)] (G.11)

For the special case when α→ 1, we get65

Gscore
α (λ) = exp(µ2/2)Eq[exp(θµ)(θ − µ)] (G.12)

V(∆score
µ ) = exp(µ4/4)Vq[exp(θµ)(θ − µ)] (G.13)

when µ = 0, meaning that the approximation is same as the target density, this reduces to66

Vq(∆score
µ (θ;λ)(µ)) = 1(a constant), equal to the variance of a standard normal distribution.67
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