Appendix

A Additional Evaluation Results on Kaggle Credit Dataset

In addition to AUROC, we also evaluate the AUPRC of the classification models trained on the
synthetic data produced by different generative models. Table presents the results. G-PATE has the
best performance among all the differentially private generative models.

| GAN | PATE-GAN DP-GAN G-PATE

Logistic Regression 0.4069 | 0.3907 0.3923 0.4476
AdaBoost 0.4530 | 0.4366 0.4234 0.4481
Bagging 0.3303 | 0.3221 0.3073 0.3503
Multi-Layer Perceptron | 0.4790 | 0.4693 0.4600 0.5109
Average | 0.4173 | 0.4046 0.3958 0.4392

Table 5: AUPRC on Kaggle Credit Dataset. The table presents AUPRC of classification models
trained on synthetic data and tested on real data. PATE-GAN, DP-GAN, and G-PATE all satisfy
(1,107°)-differential privacy. The best results among different DP generative models are bolded.

To understand the upper-bound of the classification models’ performance. We train the same
classification models on real data and test it on real data. The results are presented in Table@

| LR AdaBoost Bagging MLP

AUROC | 0.9330 0.9802 0.9699 0.9754
AUPRC | 0.6184 0.7103 0.6707 0.8223

Table 6: Performance of Classification Models Trained on Real Data. The table presents AUROC
and AUPRC of classification models trained and tested on real data. These results are the upper-
bounds for evaluation results on Kaggle Credit dataset.

B Synthetic Images Generated by G-PATE

Figure presents the synthetic images generated by G-PATE on MNIST and Fashion-MNIST. Images
in the same column share the same class label. Row 1 contain real images in the training dataset; row

2 contain images generated by G-PATE when ¢ = 10,5 = 10~°; and row 3 contain images generated
by G-PATE when ¢ = 1,6 = 1075,

C Performance Analysis on Nonprivate GPATE

To understand how the GPATE training framework influence the performance of a GAN, we train
a nonprivate GPATE with 10 teacher models. As shown in Table the GPATE structure has a
comparable performance to the vanilla GAN.

D Privacy Budget of Confident-GNMax

The Confident-GNMax aggregator was proposed by [29] to support differentially private aggregation
of the votes from multiple teacher models. For the completeness of this paper, in this section, we
include the algorithm for the Confident-GNMax aggregator and its data-dependent RDP guarantee.

D.1 The Confident-GNMax Aggregator



ol/lzIsldlslol7]o1a
olef2Zlylslblylels
K e B P2 2 N

AMOANERS DD

(AL L BN L BN [T

(b) Fashion-MNIST

Figure 3: Visualization of generated instances by G-PATE. Row 1 (real image), row 2 (¢ =
10,6 = 10~5) and row 3 (¢ = 1,8 = 10~5) each presents one image from each class.

Table 7: Performance Comparison between GAN and nonprivate GPATE on Kaggle Credit Dataset.
| GAN  Nonprivate GPATE

Logistic Regression 0.9430 0.9455
AdaBoost [11] 0.9416 0.9165
Bagging [4] 0.9379 0.9456
Multi-layer Perceptron | 0.9444 0.9219
Average | 0.9417 0.9324

Algorithm 3 Confident-GNMax Aggregator. The private aggregator used in the scalable PATE
framework [29].

Require: input x, threshold 7", noise parameters o1 and o5
if max;{n;(z)} + N(0,0%) > T then
Return: arg max{n;(z) + N'(0,03)}
else
Return: L
end if

A A

Algorithm 3]presents the Confident-GNMax aggregator proposed by [29]. The algorithm contains
two steps. First, it computes the noisy maximum vote

M, = miax{nj(x)} +N(0,07).

Then, if the noisy maximum vote is greater than a given threshold, it uses the GNMax mechanism to
select the output with most votes:

My = arg max{n;(z) + N(0,03)}.



Since each teacher model may cause the maximum number of vote to change at most by 1, M is
equivalent to a Gaussian mechanism with sensitivity 1. Therefore, following TheoremE] M, with
Gaussian noise of variance o7 guarantees (A, A/20%)-RDP for all A > 1.

M5 could be decomposed into post-processing a noisy histogram with Gaussian noise added to each
dimension. Since each teacher model may increase the count in one bin and decrease the count in
another, the mechanism has a sensitivity of 2. Therefore, M> with Gaussian noise of variance a%

guarantees (\, \/o3)-RDP [29].
The data-dependent privacy guarantee for the GNMax mechanism M5 has been analyzed by [29]:

Theorem 5. Let M be a randomized algorithm with (u1,e1)—RDP and (us,£2)—RDP guarantees
and suppose that there exists a likely outcome i* given a dataset D and a bound G < 1 such that

p:
G > Pr[M(D) # i*]. Additionally, suppose that \ < py and G < e(r2=1e2/ (ﬁ . #;‘jl) .

Then, for any neighboring dataset D’ of D, we have:

1
A—1

DA (M(D)IM(D) < = 1og (1= @) - A(@ize22) ' +3- B o)),

H2—1

where A (§, ji2,e2) = (1 —§)/ (1 — (qe®2) 2 ) and B (q, j11,€1) = eal/q“l%.

The parameters p; and po are optimized to get a data-dependent RDP guarantee for any order A. By
applying TheoremE] on M5, we obtain the data-dependent RDP budget for M.

For any A > 1, suppose ¢; is the RDP budget for M; and €5 is the data-dependent RDP budget for
M. Then, the RDP budget for the Confident-GNMax algorithm could be calculated as follows:

&1 if output is L,
€= .
€1+ €9 otherwise.

E Model Structures and Hyperparmeters

All of our experiments are running on one AWS GPU server (G4dn.metal) with 8 NVIDIA Tesla T4
GPUs.

G-PATE. For MNIST and Fashion-MNIST, the student generator consists of a fully connected
layer with 1024 units and a deconvolutional layer with 64 kernels of size 5 x 5 (strides 2 x 2). Each
teacher discriminator has a convolutional layer with 32 kernels of size 5 x 5 (strides 2 x 2) and a
fully connected layer with 256 units. All layers are concated with the one-hot encoded class label.
We apply batch normalization and Leaky ReLU on all layers. When € = 10, we train 2000 teacher
discriminators with batch size of 30 and set o1y = 600, 05 = 100. When € = 1, we train 4000 teacher
discriminators with batch size of 15 and set o3 = 3000, 02 = 1000. For Kaggle Credit dataset, we
train 2100 teacher discriminators with batch size of 32 and set o7y = 1500, o2 = 600. For all three
datasets, we use Adam optimizer [19] with learning rate of 10~ to train the models and clip the
adversarial perturbations between +-10~%. The consensus threshold 7" is set to 0.5.

GAN. The structure of GAN is the same as the structure of G-PATE with a single teacher discrimi-
nator. The hyper-parameters are also the same as G-PATE.

DP-GAN. We use DP-GAN method mentioned in [35] on both MNIST and FashionMNIST tasks.
For the generator, we use FC Net structure with [128, 256, 512, 784] neurons in each layer, and the
discriminator contains [784, 64, 64, 1] neurons in each layer. In each training epoch, the discriminator
trains 5 steps and the generator trains 1 step. For both networks, 0.5 x ReLU(-) activation layers
are used. Our batch size is 64 for each sampling, and sampling rate ¢ equals to %. We bound
the discriminator’s parameter weights to [—0.1, 0.1] and kept feature’s value between [—0.5, 0.5]
during the forward process. In order to generate specific digit data, we concat one-hot vector, which
represents digits categories, into each layer in both the disciminator and the generator.



Table 8: Quality evaluation of images generated by different differentially private data generative models
on Image Datasets: Inception Score (IS) and Frechet Inception Distance (FID) are calculated to measure the
visual quality of the generated data under different € (§ = 10™°).

(aye=1
Dataset | Metrics | Real data | DP-GAN PATE-GAN GS-WGAN G-PATE
MNIST ML | 104 | 41020 23s4 475 15338
FashionMNIST |l V50 |00 55t %731 21478
CelebA FII?)TL ;22 42155982 4;4].4517 4;'79(3)3 2;'31.;4
(b)e =10
Dataset | Metrics | Real data | DP-GAN PATE-GAN GS-WGAN  G-PATE
LA FII?)R ?:gg 3(13210.36 zé';gs 585.5797 1261.22
FashionMNIST | ol | V00 | % 250 s 1710
CelebA FII§)T¢ 522 4%150.21 4%211.20 4;20.28 3(1)53.;2

Other Baselines. We use the default open-source model architecture implementations and hyper-
parameters for baselines: GS—WGA and PATE—GA

Classification Models for MNIST, Fashion-MNIST, and CelebA. For each synthetic dataset, we
trian a CNN for the classification task. The model has two convolutional layers with 32 and 64
kernels respectively. We use ReLU as the activation function and applies dropout on all layers.

Classification Models for Kaggle Credit. We implement 4 predictive models in [37]] using sklearn:
Logistic Regression (LogisticRegression), Adaptive Boosting (AdaBoostClassifier), Boot-
strap Aggregating (BaggingClassifier) and Multi-layer Perceptron (MLPClassifier). We use
L1 penalty, Liblinear solver and (350:1) class weight in Logistic Regression. We use logistic
regression as classifier in Adaptive Boosting and Bootstrap Aggregating, setting L2 penalty, number
of models as 200 and 100. For Multi-layer Perceptron, we use tanh as the activation of 3 layers with
18 nodes and Adam as the optimizer.

F Visual Quality Evaluation

We evaluate both Inception Score and Frechet Inception Distance for G-PATE and baselines over
MNIST, Fashion-MNIST and CelebA. We present the evaluation results in Table

In our experiments, we follow GS-WGAN and use the implementatio for Inception Score calcula-
tion with pretrained classifiers trained on real datasets (with test accuracy equal to 99%, 93%, 97%
on MNIST, Fashion-MNIST, and CelebA-Gender).

Similarly, we follow GS-WGAN and use the implementatio for FID calculation. A lower FID
value indicates a smaller discrepancy between the real and generated samples, which corresponds to
a better sample quality and diversity.

Zhttps://github.com/DingfanChen/GS-WGAN
*https://bit.1y/3iZZbnx

‘https://github. com/ChunyuanLI/MNIST_Inception_Score
https://github.com/google/compare_gan



G Running Time Analysis on G-PATE

We record the running time of G-PATE on one Tesla T4 GPU under the best parameters (4000
teachers) on MNIST for ¢ = 1 for three runs. In one epoch, G-PATE takes on average 213.56 seconds
for generating fake samples (pre-processing of Phase I in algorithm1) and update parameters of each
teacher discriminator (update teacher discriminator in Phase II). Then G-PATE takes on average 43.18
seconds to perform gradient quantization and aggregation (algorithm 2) and update the generator
parameters. Overall, G-PATE requires around 256.74 seconds to run for one epoch on MNIST and
reaches the privacy budget of ¢ = 1 at epoch 232, in total 16.5 hours given one single Tesla T4 GPU.
In comparison, DP-GAN and PATE-GAN take around 26-34 hours to converge and GS-WGAN
requires hundreds of GPU hours to pretrain one thousand non-private GAN as the warm-up steps.

H Proofs

H.1 Proof of Lemmal[l]

Proof. Since Z € Z are random points independent of the training dataset D, generation of the
synthetic dataset X = G(Z) is post-processing process on the (g, )-differentially private data
generative model G. Therefore, X is (e, d)-differentially private based on the post-processing
theorem of differential privacy. O

H.2 Proof of Lemma|2]

Proof. According to the privacy guarantee of the Confident-GNMax aggregation method (The-
orem , for each dimension j in Algorithm [2| for any A > 1, there exists an £; > 0 so that
the Confident-GNMax aggregation method satisfies (A,e;)-RDP. Since Algorithm [2| performs
Confident-GNMax aggregation over k projected dimensions, the privacy guarantee of A gorithm
can be derived from by composing the RDP budget over the k& dimensions. Therefore, based on the

composition theorem of RDP (Theorem, Algorithmsatisﬁes ()\, do1<i<k 5j) -RDP. O

H.3 Proof of Lemma[3]

Proof. First, We apply Lemma to each training iteration in Algorithm For the convenience
of privacy analysis, we divide each training iteration into three phases: pre-processing, private
computation and aggregation, and post-processing. Based on Lemma the private computation
and aggregation phase is ()\, o< i<k €i,j )"RDP, where ¢; ; is the data-dependent Rényi differential
privacy for the Confident-GNMax aggregator in the i-th iteration on the j-th projected dimension.

Since the pre-processing and post-processing phases do not access the private training dataset, these
steps do not increase the RDP budget. Therefore, each training iteration in Algorithm satisfies

(/\, ek gi,j)-RDP.
Next, we compose the RDP budget over NN iterations. Based on the composition theorem of RDP
(Theorem, Algorithm satisfies ()\, D 1<i<N (Zl <<k Ei,j) ) -RDP. O



