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This appendix contains further discussion of the results, the remaining proofs, details of some
examples and additional numerical experiments.

A Discussion

Proposition 2 and 3 show that perfect refinement for sub-gaussian mixture-of-curves model can be
achieved when the number of clusters grows as Ln = O(

√
n log n). To the best of our knowledge,

this is the first such result in the literature, that is, an upper bound on the minimum number of clusters
needed to achieve a perfect refinement of the true clusters. What remains for future investigations to
determine is how tight this bound is. Empirically, we have found examples of the mixture-of-curves
model for which Ln � 1 seems to enough, but also an example where Ln �

√
n log n seems to be the

required scaling. Figure S1(a) shows a noisy circle-torus model (cf. Section D.1) with R = 10, r = 2
and σ = 1 that demonstrates the scaling Ln �

√
n log n. Here, we plot the average misclassification

rate over 32 repetitions vs Ln/
√
n log n for various n. The fact that these plots coincide with each

other for different n suggests that there is sharp threshold τn = C1

√
n log n such that with Ln > τn,

perfect refinement recovery is possible and with Ln < τn, impossible. Figure S1(b) shows an
example that exhibits Ln � 1 threshold: A line-circle model with parameters δ = 4, σ = 1 and line
standard deviation = 7.

The fact that, empirically, there are examples for which Ln has to grow as fast as
√
n log n for a

perfect refinement recovery, suggests that the result of Proposition 2 may be sharp up to constants,
over the class of mixture-of-curves distributions considered.

B Connection to distribution stability

The distribution stability for the K-means assumes the following [1]:

‖x− ξ∗k‖2 ≥ β ·
OPTK
nk

, for all x /∈ Ck,

where OPTK =
∑n
i=1 ‖xi − ξ∗zi‖

2 for the K-means optimal cluster labels {zi} ⊂ [K]n and optimal
centers {ξ∗k}. Here, Ck = {i : zi = k} and nk = |Ck|.
In our setting, we do not necessarily need to work with the optimal K-means clustering. So let us
generalize the notion as follows: The data {xi} is β-distributed with respect to cluster labels {zi}
and centers {ξ∗k} if

‖x− ξ∗k‖2 ≥ β ·
n∑
i=1

‖xi − ξ∗zi‖
2/nk, for all x /∈ Ck,
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(a) circle-torus model (b) line-circle model

Figure S1: Examples of mixture-of-curve models that exhibit (a) Ln �
√
n log n and (b) Ln = O(1)

refinement recovery threshold.

whereCk = {i : zi = k} and nk = |Ck|. Setting 1
n

∑n
i=1 ‖xi−ξ∗zi‖

2 = ε2 and recalling πk = nk/n,
the condition is equivalent to

‖x− ξ∗k‖ ≥
√
β · ε
√
πk

, for all x /∈ Ck. (S1)

Let us strengthen the condition slightly and consider the following notion instead

‖x− ξ∗k‖ ≥
√
β · ε
√
πmin

, for all x /∈ Ck, (S2)

where πmin = mink πk. (This is without loss of generality: We could have stated our results with
separate center separation parameters for each cluster, i.e., δk = min` 6=k ‖ξ∗k − ξ∗` ‖, in which case
we could directly compare with the original version (S1). We opted for the simpler global center
separation in the paper for simplicity.)

Now assume that the data is β-distributed and in addition:

(D1) For all distinct pairs (k, `), there is x ∈ C` such that ‖x− ξ∗k‖ ≤ ‖ξ∗` − ξ∗k‖.

That is, every cluster C` has points which are closer than ξ∗` to the centers of other clusters. Then, it
follows that

δ

ε
≥
√
β

√
πmin

(S3)

which is our separation condition. (Recall that δ = mink 6=` ‖ξ∗k − ξ∗` ‖).
In fact, in the presence of (D1), we can relax β-distribution stability as follows: Assume (D1) and for
the x in (D1) assume that the inequality in (S2) holds. Then, our separation condition (S3) follows.
Note that (D1) is quite mild and one expects it to hold almost always if there is some full-dimensional
randomness in the distribution of the points in a cluster.

Alternatively, our separation condition can be written equivalently as

‖x− ξ∗k‖ ≥
√
β · ε
√
πmin

, for all x ∈ {ξ∗` } 6̀=k (S4)
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Figure S2: The geometry of the dataset in Proposition 1

Comparing (S4) and (S2), the conditions are somewhat close, but different. Neither condition directly
follow from the other one in general.

Note also that although in the discussion above, we refer to ξ∗k as the center of Ck, in our general
setting ξ∗k need not be the optimal center 1

nk

∑
i∈Ck

xi.

C Proof of Proposition 1

For α ∈ [0, π/2), consider a constellation of points in R2 at locations a1 = (ε sinα − δ, ε cosα),
a2 = (−ε sinα− δ,−ε cosα), b1 = (−ε sinα, ε cosα) and b2 = (ε sinα,−ε cosα). Assume that
n/4 of the data points are on each of the points a1, a2, b1 and b2. Assume that data points in {a1, a2}
form cluster 1 and points in {b1, b2} form cluster 2. That is, this is the true cluster labels as specified
by an external source. The true cluster centers are then at locations ξ∗1 = (−δ, 0) and ξ∗2 = (0, 0). We
also have ( 1

n

∑
i ||xi − ξ∗zi ||

2)1/2 = ε for true cluster labels {zi}. Now take δ = ε sinα. Figure S2
shows the geometry of this construction.

To show the result, it is enough to use Theorem 2 with properly chosen (fake) centers on the
above dataset. In particular, we are going to show that a 2-factor k-means algorithm has a small
misclassification rate with respect to a new clustering that puts points {a1, b1} in one cluster and
{a2, b2} in another cluster. Consider “fake” centers ξ∗∗1 = (a1 + b1)/2 and ξ∗∗2 = (a2 + b2)/2. Then,
the new separation is δ∗ = 2ε cosα and the new deviation can be taken to be ε∗ = δ/2 + ε sinα =
(3/2)ε sinα guaranteeing that ( 1

n

∑
i ‖xi − ξ∗∗yi ‖

2)1/2 ≤ ε∗ where {yi} are labels relative to the new
clustering.

Applying Theorem 2 with κ = p = 2, c = 2.1 and πmin = 1/2, as long as δ∗/ε∗ ≥ 9 > 3
√

2c,
the misclassification rate to the new clustering is bounded above as Miss∗ ≤ 80(ε∗/δ∗)2. We have
ε∗/δ∗ = (3/4) tanα. Thus, for α ≤ tan−1(4/27) we have Miss∗ ≤ 45(tanα)2 w.r.t. to clustering
{{a1, b1}, {a2, b2}}. Hence, w.r.t. the original clustering, 1

2 ≥ Miss ≥ 1
2 − 45(tanα)2, which can

be made arbitrarily close to 1
2 by choosing α small enough.

To see the last step above, let q1, q2, q3, q4 be the fractions of misclassified nodes from each of the
four categories a1, a2, b1, b2, w.r.t. to the new clustering (i.e., {yi}). The above argument shows that
1
4 (q1 + q2 + q3 + q4) ≤ 45(tanα)2. The misclassification rate to the original clustering (i.e., {zi})
is then

Miss =
1

n

(n
4

(1− qi1) +
n

4
(1− qi2)

)
=

1

2
− 1

4
(qi1 + qi2) ≥ 1

2
− 45(tanα)2
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where {i1, i2} is a pair of distinct elements from {1, 2, 3, 4}. This proves the lower bound. The upper
bound Miss ≤ 1/2 always holds due to the minimization over permutations in the definition of the
misclassification rate.

Since for β ∈ (0, 1/2),
√
β/45 ≤ 4/27, we only need α ≤ tan−1(

√
β/45) to have 1

2 ≥ Miss ≥
1
2 − β. Recalling that δ/ε = sinα, this shows that one can take c2(β) = sin(tan−1(

√
β/45)) in the

statement of the lower bound.

For the claim regarding perfect recovery with L = 4 clusters, take ξ∗∗1 = a1, ξ∗∗2 = b1, ξ∗∗3 = a2 and
ξ∗∗4 = b2 and apply Theorem 1, noting that δ∗ = mini 6=j ‖ξ∗∗i − ξ∗∗j ‖ > 0 while we can take ε∗ = 0.

D Experiment details

The code for numerical experiments are executed in R [3] version 4.0.3 on a Linux system with 48
CPU cores. The code is provided as a ZIP file as part of the supplementary material. We use the
kmeans function in base R and go with the default algorithm of Hartigan and Wong [2]. We set
the number of random starts to nstart = 20 and the maximum number of iterations allowed to
iter.max = 200.

D.1 Circle-torus model

The circle-torus model is a mixture of two parts: (1) The uniform distribution on the circumference
of a circle in the xy-plane, at the origin, and (2) a torus built around this circle. Parametrically, these
two clusters can be defined via the following equations,

x1 = R cos(t)

y1 = R sin(t)

z1 = 0

and
x2 = (R+ r cos(mt)) cos(t)

y2 = (R+ r cos(mt)) sin(t)

z2 = r sin(mt).

(S5)

Here R is the radius of the circle on the plane and also the distance from the center of the tube
to the center of the torus. r is the radius of the tube and it is also the minimal distance between
two clusters. We also created a noisy version by adding N(0, σ2I3) to the model. Figure 3 shows
the geometry of the two clusters in the case R = 3, r = 1 and σ = 0. The other two panels in
Figure 3 show the average missclassification rate over 32 repetitions versus δ := r, for both the
noiseless and noisy (σ = 1) circle-torus model. In both cases, we let R = 3 and very r (i.e., δ),
from 0.1 to 10. In Figure S3, we include additional scatter plots of the circle-torus model for various
settings of the parameters (R, r, σ). Figure S3(a) is the noisy version of Figure 3(a) with noise level
σ = 0.1. Figure S3(b) shows that for sufficiently small r and high noise, the two clusters are nearly
indistinguishable. Figure S3(c) shows the scatter plot for R = 3 and r = 10; it is an example of how
the model looks like when R < r.

(a) R = 3, r = 1 and σ = 0.1. (b) R = 10, r = 1 and σ = 1. (c) R = 3, r = 10 and σ = 0.

Figure S3: Scatter plots for the circle-torus model. True clusters are distinguished by their color.

E Norm of a sub-gaussian vector

We first recall the definition of a sub-gaussian vector: A random vector X = (X1, . . . , Xd) ∈ Rd is
sub-gaussian if the one-dimensional marginals uTX are sub-gaussian random variables for all u ∈
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Rd [4, Definition 3.4.1]. The sub-gaussian norm of X is defined as ‖X‖ψ2 = supu∈Sd−1 ‖uTX‖ψ2 ,
where ‖ · ‖ψ2

denotes the sub-gaussian norm of a random variable and Sd−1 the unit sphere in Rd.
Alternatively, we can define a sub-gaussian vector with parameter σ, as a random vector satisfying
P(|uTX| ≥ t) ≤ 2 exp(− t2

2σ2 ) for all u ∈ Sd−1 and t ≥ 0. We will have σ � ‖X‖ψ2 . We also
use ‖ · ‖ψ1 for the sub-exponential norm of a random variable. For any random variable, we have
‖Y 2‖ψ1

= ‖Y ‖2ψ2
[4, Lemma 2.7.6]. Below we apply this fact with Y = ‖X‖ = (

∑d
i=1X

2
i )1/2,

leading to the following useful lemma.
Lemma S1. Assume that X ∈ Rd is a sub-gaussian random vector with parameter σ. Then, ‖X‖ is
sub-gaussian with parameter . σ

√
d. In fact, for some universal constant C > 0,

‖‖X‖‖ψ2
≤ Cσ

√
d, ‖‖X‖2‖ψ1

≤ C2σ2d.

Proof. We have ‖‖X‖2‖ψ1 ≤
∑d
i=1 ‖X2

i ‖ψ1 =
∑d
i=1 ‖Xi‖2ψ2

≤ dC2σ2, for some universal
constant C2 > 0. The first inequality is the triangle inequality for ‖ · ‖ψ1

and the second by the
equivalence of the sub-gaussian norm and sub-gaussian parameter. Next, we note that ‖‖X‖‖ψ2

=√
‖‖X‖2‖ψ1

and the result follows.

F Details of the sub-gaussian mixture example

By assumption, wi is a sub-gaussian vector with parameter σi. Then, by Lemma S1, ‖wi‖2/d is
sub-exponential with sub-exponential norm . σ2

i . By the Bernstein inequality for sub-exponential
variables [4, Corollary 2.8.3],

P
( 1

n

( n∑
i=1

‖wi‖2

d
− α2

i

)
> t
)
≤ exp

(
−cnmin

( t2

σ4
max

,
t

σ2
max

))
.

Let t = ᾱn, and recall that ᾱ2
n/σ

2
max ≤ C. Then, for a constant c1 > 0,

P
( 1

n

n∑
i=1

‖wi‖2

d
> 2ᾱ2

n

)
≤ exp

(
−c1n

ᾱ2
n

σ4
max

)
.

In the Gaussian case wi ∼ N(0,Σi), it is not hard to see that wi is a sub-guassian vector with
parameter ‖Σi‖op. Therefore, in Gaussian mixtures, we have σmax = maxi ‖Σi‖op and ᾱ2

n =∑n
i=1

1
n tr(Σi)/d.

G Extension of Proposition 3

For random vector x with distribution µC on some subset C ⊂ Rd, let NµC (ε) be the smallest
integer for which there is a high probability ε-cover of x, that is, a finite subset N ⊂ C such that
P(miny∈N ‖x− y‖ ≤ ε) ≥ 1− n−2. We refer to NµC (ε) as the stochastic covering number of µC .
We have the following extension of Proposition 3.
Proposition S1. Assume that {xi}ni=1 are independent draws from a K-mixture where the kth
component is a distribution µCk on a subset Ck ⊂ Rrk . Let zi be the label of xi so that xi | zi = k ∼
µCk . Assume that

min
x∈Ck, y∈Ck′

‖x− y‖ ≥ δ > 0, for all k 6= k′.

Let NµCk (ε) be the stochastic covering number of µCk . Then, there exist a constant C = C(K, δ, κ)

such that any ALG(p), satisfying Assumption 1, applied with Ln =
∑K
k=1NµCk (Cn−1/p) clusters,

recovers a perfect refinement of z = (zi) with probability ≥ 1− n−1.

Proof. Let Nk ⊂ Ck be the ε-net that realizes the stochastic ε-covering number of µCk and let
πk : Ck → Nk be the corresponding projection operator. Then, for any i ∈ [n] for which zi = k, we
have P(‖xi − πk(xi)‖ > ε) ≤ n−2. By union bound, we have ‖xi − πzi(xi)‖ ≤ ε for all i ∈ [n]

with probability at least 1− n−1. The collection of the fake centers {ξ̃`}Ln

`=1 can be taken to be the
union of the nets

⋃K
k=1Nk with cardinality Ln =

∑
kNµCk (ε). The rest of the proof follows those

of Propositions 2 and 3 with ε = (c1n
1/p)−1, c2 = 3(1 + κ)/δ and c1 = K1/pc2. (Note that there is

no condition ε < 1/ρ that needs to be satisfied in this case.)
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H Remaining proofs

Proof of Corollary 1. We first construct fake centers (ξ̃`) for (xi) as in the proof of Proposition 2
and treat them as the fake centers for yi. By the triangle inequality,( 1

n

n∑
i=1

‖yi − ξ̃z̃i‖2
)1/2

≤
( 1

n

n∑
i=1

‖xi − ξ̃z̃i‖2
)1/2

+
( 1

n

n∑
i=1

‖wi/
√
d‖2
)1/2

≤ ε+
√

2ᾱn

holds with probability at least 1− pn − n−1. The result follows by applying Theorem 3.

Proof of Proposition 3. The proof follows that of Proposition 2. We only highlight the differences.
When zi = k, by Lemma S1, ‖ti−mk‖ is sub-gaussian with parameter≤ c0σ

√
rk for some universal

constant c0 > 0. Thus, we have P(‖ti −mk‖ ≥ t) ≤ 2e−c0t
2/(rkσ

2). Let M =
√

3c0rσ2 log n. By
union bound, with probability at least 1−2n−2, we have ‖ti−mzi‖ ≤M for all i ∈ [n]. The ε-cover
has to be constructed for {u : ‖u‖ ≤M} in the `2 norm, which can be done with a net of size at most
L′ = (1 + 2M/ε)r. Take ε = (c1n

1/p)−1 and let c2 = 3ρ(1 + κ)/δ. As long as nπmin > (c2/c1)p,
the separation condition in (8) is satisfied and we have Miss(z, ẑ) ≤ K(c2/c1)p/n. Hence, as long
as c1 > K1/pc2, we will have Miss(z, ẑ) < 1/n which implies Miss(z, ẑ) = 0. We also need to
satisfy ε < 1/ρ that is c1 ≥ ρ/

√
n. Taking c1 = K1/pc2 + ρ satisfies all the required constraints on

c1. The required number of clusters is

Ln = KL′ = K(1 + 2M/ε)r = K(1 + 2c1
√

3c0rσ2n1/p
√

log n)r

≤ C(n1/p
√

log n)r

for C = K(2 + 2c1
√

3c0rσ2)r. Here, we have used 1 ≤ 2n1/p
√

log n for n ≥ 2. Note that since
c2/c1 < 1 and nπmin ≥ 1, the condition nπmin > (c2/c1)p is automatically satisfied. The proof is
complete.

I Proofs of the lemmas

Proof of Lemma 1. Recall that ξ̂ is the output of ALG for L clusters. Let ξ̂(K) be the output of the
ALG for K clusters. Then, since L ≥ K,

Q̂(ξ̂) ≤ Q̂(ξ̂(K)) ≤ κ Q̂(K)
min, where Q̂

(K)
min := min

ξ∈XK
Q̂(ξ).

The first inequality is by the monotonicity of ALG and the second by its constant-factor approximation
property. Since by assumption ξ∗ ∈ XK , we have

Q̂
(K)
min ≤ Q̂(ξ∗) ≤

( 1

n

n∑
i=1

‖xi − ξ∗zi‖
p
)1/p

≤ ε.

It follows that Q̂(ξ̂) ≤ κε. Recalling (9) and noting that Q̂(ξ̂) =
(
1
n

∑n
i=1 ‖xi − ξ̂ẑi‖p

)1/p
, we have

Q(ξ̂;µ∗) =
( 1

n

n∑
i=1

min
`∈[L]

‖ξ∗zi − ξ̂`‖
p
)1/p

≤
( 1

n

n∑
i=1

‖ξ∗zi − ξ̂ẑi‖
p
)1/p

≤
( 1

n

n∑
i=1

‖xi − ξ∗zi‖
p
)1/p

+
( 1

n

n∑
i=1

‖xi − ξ̂ẑi‖p
)1/p

≤ ε+ κε (S6)

where the second line is the triangle inequality in the aforementioned Lp(νn,X ) space. The proof is
complete.

Proof of Lemma 2. Consider the partition of the space by the Voronoi cells of ξ = (ξ`). Assume
first that there is a Voronoi cell that contains at least two distinct elements of ξ∗, e.g., ξ∗k1 and ξ∗k2 ,
with k1 6= k2, both belonging to the Voronoi cell of ξ`0 . That is, min` ‖ξ∗k − ξ`‖ = ‖ξ∗k − ξ∗`0‖ for
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k = k1, k2. As ‖ξ∗k1 − ξ
∗
k2
‖ ≤ ‖ξ∗k2 − ξ

∗
`0
‖ + ‖ξ∗k1 − ξ

∗
`0
‖, at least one of the k = k1, k2 satisfy

‖ξ∗k − ξ∗`0‖ ≥ ‖ξ
∗
k1
− ξ∗k2‖/2, and assume this is true for k = k1, we have

Q(ξ;µ∗) ≥ π1/p
min‖ξ

∗
k1 − ξ`0‖ ≥

π
1/p
min

2
‖ξ∗k1 − ξ

∗
k2‖ ≥

π
1/p
min

2
δ.

Otherwise, each Voronoi cell of ξ contains at most one element of ξ∗. On the other hand, each
element of ξ∗ belongs to at least one Voronoi cell of ξ, since the union of Voronoi cells is the whole
space. It follows that there are K distinct Voronoi cells of ξ, each of which contains exactly one
element of ξ∗. Thus, there is an injective map σ : [K]→ [L] such that ξ∗k belongs to Voronoi cell of
ξσ(k), that is, min` ‖ξ∗k − ξ`‖ = ‖ξ∗k − ξσ(k)‖. Then,

Q(ξ;µ∗) ≥ π1/p
min

( K∑
k=1

‖ξ∗k − ξσ(k)‖p
)1/p

≥ π1/p
min dp(ξ, ξ

∗).

The proof is complete.

Proof of Lemma 3. By assumption, there exists an injective map σ : [K]→ [L] such that

max
k∈K
‖ξ∗k − ξ̂σ(k)‖ ≤ γ.

Then, σ is invertible on Im(σ) := {σ(k) : k ∈ [K]}, with an inverse denoted as σ−1. We obtain

‖ξ∗σ−1(`) − ξ̂`‖ ≤ γ, ∀` ∈ Im(σ). (S7)

First assume that ẑi ∈ Im(σ). We prove that σ(zi) = ẑi by contradiction. Suppose that σ(zi) 6= ẑi.
Then, we show that ‖xi − ξ̂σ(zi)‖ < ‖xi − ξ̂ẑi‖ contradicting ẑi = argmin

`
‖xi − ξ̂`‖2. By the

triangle inequality

‖xi − ξ̂σ(zi)‖ ≤ ‖xi − ξ
∗
zi‖+ ‖ξ̂σ(zi) − ξ

∗
zi‖ ≤ η + γ. (S8)

Since ẑi ∈ Im(σ) and σ(zi) 6= ẑi, we have σ−1(ẑi) 6= zi. By (S7), ‖ξ̂ẑi − ξ∗σ−1(ẑi)
‖ ≤ γ. Therefore,

‖xi − ξ̂ẑi‖ ≥ ‖ξ̂ẑi − ξ∗zi‖ − ‖xi − ξ
∗
zi‖

≥ ‖ξ∗zi − ξ
∗
σ−1(ẑi)

‖ − ‖ξ̂ẑi − ξ∗σ−1(ẑi)
‖ − η

≥ δ − γ − η. (S9)

Since by assumption δ > 2γ + 2η, the claimed contradiction follows by combining (S8) and (S9).
Hence, we have σ(zi) = ẑi when ẑi ∈ Im(σ). Define ω(·) = σ−1(·) on Im(σ) ⊂ [L]. Then, ω
satisfies ω(ẑi) = zi whenever ẑi ∈ Im(σ). This finishes proof for the case L = K.

Next, we define ω for `0 /∈ Im(σ). Since ξ̂ is an efficient solution, there exists at least one i ∈ [n]
such that ẑi = `0. When there is only one such i, we can just let ω(`0) = ω(ẑi) = zi. When there
are at least two data points xi and xj such that ẑi = ẑj = `0, we are going to show, by contradiction,
that their true cluster labels must be the same, i.e., zi = zj . Suppose that zi 6= zj , then we will show
that ‖xi− ξ̂`0‖ > ‖xi− ξ̂σ(zi)‖ which contradicts xi being in the Voronoi cell of ξ̂`0 . Inequality (S8)
still holds in this case. Furthermore

‖xi − ξ̂`0‖ ≥ ‖ξ̂`0 − ξ∗zi‖ − ‖xi − ξ
∗
zi‖

≥ ‖xj − ξ∗zi‖ − ‖xj − ξ̂`0‖ − η

≥ ‖ξ∗zi − ξ
∗
zj‖ − ‖xj − ξ

∗
zj‖ − ‖xj − ξ̂`0‖ − η

≥ δ − 2η − ‖xj − ξ̂`0‖. (S10)

Since xj is in the Voronoi cell of ξ̂`0 and `0 /∈ Im(σ), we have `0 6= σ(zj). Therefore,

‖xj − ξ̂`0‖ ≤ ‖xj − ξ̂σ(zj)‖

≤ ‖xj − ξ∗zj‖+ ‖ξ̂σ(zj) − ξ
∗
zj‖

≤ η + γ. (S11)

7



Combining inequalities (S8), (S10) and (S11) and using the assumption δ > 2γ + 4η, we get

‖xi − ξ̂`0‖ ≥ δ − 3η − γ > η + γ ≥ ‖xi − ξ̂σ(zi)‖

which is the claimed contradiction. Therefore, we can define ω on [L] \ Im(σ) so that ω(ẑi) = zi
when ẑi /∈ Im(σ). Combining with the definition of ω on Im(σ), we have successfully constructed a
surjective map ω : [L]→ [K] satisfying ω(ẑi) = zi for all i ∈ [n]. The proof is complete.
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