A A proof of the PAC-Bayes-Bennett inequality (Theorem [J) and a
comparison with the PAC-Bayes-Bernstein inequality

In this section we provide a proof of Theorem[9and a numerical comparison with the PAC-Bayes-
Bernstein inequality. The proof is based on the standard change of measure argument. We use the
following version by [Tolstikhin and Seldin|[2013].

Lemma 16 (PAC-Bayes Lemma). For any function f,, : H X (X x Y)™ — R and for any distribution
7w on H, such that 7 is independent of S, with probability at least 1 — § over a random draw of S, for
all distributions p on H simultaneously:

1 :
Ep[fa(h, S)] < KL(p[7) +1n 5 + InEr[Es [ 5D,

The second ingredient is Bennett’s lemma, which is a bound on the moment generating function used
in the proof of Bennett’s inequality. Since we are unaware of a reference, we provide a proof below,
which is essentially an intermediate step in the proof of Bennett’s inequality [Boucheron et al., 2013,
Theorem 2.9].

Lemma 17 (Bennett’s Lemma). Let b > 0 and let Z, . .., Z, be i.i.d. zero-mean random variables
with finite variance, such that Z; < b for all i. Let M,, = >} | Z; and V;, = > | E [Z?]. Let
o(u) = e* —u — 1. Then for any \ > 0:

b

Proof. Since u=2¢(u) is a non-decreasing function of u € R (where at zero we continuously extend
the function), for all i € [n] and A\ > 0 we have

eMi\Z;—1< 72 ¢>(beA) ,

which implies

)

E [*] <1+ AE[Z] + ¢(bb2A)E [22] < " El]

where the second inequality uses the assumption that E [Z;] = 0 and the fact that 1 + 2 < e* for all
x € R. By the above inequality and independence of the random variables,

$(bX)
E M58V ] B

n n
Hevz-—%%w[zﬂ] e [on ] <o,
i=1

=1

Now we are ready to prove the theorem.

Proof of Theorem[9, We take f,,(h,S) = yn (f/(h) - i(h, S)) - an(h) Then by Lemma

we have Eg[e/»(%)] < 1. By plugging this into Lemma normalizing by vn, and changing sides,

we obtain the result. O

Numerical comparison of the PAC-Bayes-Bennett and PAC-Bayes-Bernstein bound

Figure [3] provides a numerical comparison of the PAC-Bayes-Bennett and PAC-Bayes-Bernstein
inequalities (Theorem@] and Theorem 7 by [Tolstikhin and Seldin| [2013]]).

B Proof of Lemma 14

Proof. Recall that
(B, (X),Y) = (L(W(X) £ Y) = p) (L (X) £ V) — ) € {(1 = )%, —p(L — ), 12}
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Figure 3: The ratio of PAC-Bayes Bennett to PAC-Bayes Bernstein bound as a function of E,[L(h, )]

and E,[V(h)]. We set KL(p||7) = 5 and § = 0.05. The value of n is provided in the captions of the
subfigures.

For ;1 < 0.5, we have —u(1 — p) < (1 — p)? and p? < (1 — p)?. Therefore, £, (h(X),h'(X),Y) <
(1—p)2.

Furthermore, for u < 0 we have pu? < —pu(1 — p), and for u > 0 we have —u(1 — p) < p?.
Therefore, for < 0.5 we have £, (h(X),h'(X),Y) > min{—pu(1 — ), u*}.

By combining the upper and the lower bound, we obtain
K, = (1= p)? —min{—p(1 - p), u*}

= max{(1 — p)* = (=p(l = p), (1 = p)* - p?}
=max{1l — u,1 —2u}.

C Comparison of the first and second order oracle bounds

In this section we show that if E,[L(h)] < 0.5 and E2[L(h,h’)] > 0.5E,[L(h)], then the first
order oracle bound is tighter than the second order oracle bounds, and if E,[L(h)] < 0.5 and
E,2[L(h,h'")] < 0.5E,[L(h)], then it is the other way around.

For comparison of the first order oracle bound L(MV,) < 2E,[L(h)] vs. the second order oracle
tandem bound L(MV ,) < 4 2 [L(h, h')] the statement above is evident.

For the second order oracle bounds based on the Chebyshev-Cantelli inequality we have
Ep2 [L(h, 1')] — Ep[L(h)]2
0.25 4+ E2[L(h, h')] — E,[L(h)]
Ep2[L(h, h)] = Eo[L(R)]*  vs.  0.5E,[L(h)] + 2E,[L(W)]E: [L(h, )] — 2E,[L(h)]?,
E 2 [L(h, h’)](l —2E,[L(h)]) vs. 0.5E,[L(h)](1—2E,[L(h)]),
p2[L(h, 1) vs.  0.5E,[L(h)],

where under the assumption that E,[L(h)] < 0.5 we can cancel (1 — 2E,[L(h)]), since it is positive,
and the result is again evident.

2K, [L(h)],

D Minimization of the bounds

In this section we provide technical details on minimization of the bounds in Theorems [I2]and [T3]
As most of the other PAC-Bayesian works, we take 7 to be a union distribution over the hypotheses
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in both cases. As discussed in Section[6] we build a set of data-dependent hypotheses by splitting the
data set S into pairs of subsets S = T} U S}, such that T, N Sy, = (, training h on T}, and calculating

an unbiased loss estimate ﬁ(h7 Sy) on Sy For tandem losses we compute the unbiased estimates
L(h,R', Sy N Sps) on the intersections of the corresponding sets S, and Sy

D.1 Minimization of the bound in Theorem

The adjustment of the bound from Theorem[I2]to this construction is for x> 0:

1 E,2[L(h, W', Sp N SK)]  2KL(p||7) + In(4y/m/8)
LMV, ) < (0.5 — p)? [ 1-3 A1=3)m
(1= 7) Bl ) - AR L) )
and for p < O:
1 E,2[L(h,h', Sy N Sp)]  2KL(p||7) + In(4y/m/d)
LMV,) < (0.5—/,02[ 1-32 A1=3)m
E,[L(h,Sh)]  KL(p|m) +In(4y/n/8)\
—2M< 12 + 7(1_%)71 >+u],

where m = miny, 5 |Sp, N Sp/| and n = miny, |Sy,|. Below we provide the pseudocode and derive
update rules for pu, A, 7y, and p for alternating minimization of this bound.

Algorithm 1: Minimization of the bound in Theorem|[I2)]

Input: m,n, tandem losses L(h, h', Sy, N Sy/) for all h, ', and Gibbs losses L(h, Sy) for all h
Initialize: p =mand p =0
while The improvement of the bound is larger than 10~° do
Compute A7, the optimal A given p
Compute 7, the optimal ~y given p and p
Compute the bound using p, u, A; and 7y,
Compute new i, the optimal  given p, A7 and v,
Update the new distribution p’ with gradient descent given p, Ay and v,
Letp:p’andu:u;
end while

Optimal ) given p Minimization of the bound with respect to A is identical to minimization of the
tandem bound by Masegosa et al.|[2020, Theorem 9]. [Masegosa et al.| derive the optimal value of A:

2
N = h
\/QMEPQ [L(h,h",SpNSy1)]

1+1
2KL(p||w)+1n 247 T+

Optimal v given p and ;4 Minimization of the bound with respect to ~ in the case of u > 0 is
analogous to minimization of the bound by Masegosa et al.|[2020, Theorem 10] with respect to .
Masegosa et al.| derive the optimal value of v:

«  |2KL(p||7) + In(16n/02)
To = B, [L(h Sh)]

On the other hand, the optimal ~ in the case of y < 0 is analogous to the optimal A above:

. 2

Yo = = .
\/ 2nE,[L(h,Sp)] +14+1

4vn
KL(p||m)+In ==
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Optimal 1 given p  Given p, we can compute the optimal A} and -y by the above formulas. Let

Up(p) = Epz[L(h,h/,ih N Sw)] , 2KL(p|r) +In(4y/m/9)

5 N A )
- /\p (1 — 7’)) m
(1 _ ’Y?p Ep[ﬁ(]% Sp)] — KL(/)HTr):/*;;z(4\/77/5)7 1n>0
La(p) = ElL0uS) | KLl in(y/n/b) 1< 0
—£ v 1-=4)n

Then the optimal p is

Gradient w.r.t. p given )\, v and ;4 Minimization of the bound w.r.t. p is equivalent to constrained
optimization of f(p) = aE,2[L(h, h', S, NSy )] — 2bE,[L(h, Sp,)] + 2¢ KL(p||m), where for p1 > 0,
a=1/(1-X2),b=pl—-~/2)and c = 1/(A(1 — A/2)m) + u/(yn), and for p < 0, a =
1/(1=X/2),b=p/(1 —~/2),and c = 1/(AN(1 — A\/2)m) — u/(v(1 — v/2)n). The constraint is
that p is a probability distribution. We optimize p by projected gradient descent, where we iteratively
take steps in the direction of the negative gradient of f and project the result onto the probability
simplex.

We use L to denote the vector of empirical losses and f/tnd to denote the matrix of tandem losses.
Let V f denote the gradient of f w.r.t. p and (V f)}, the h-th coordinate of the gradient. We have:

(V=2 (aZp(h’)im, .05~ b5 + ¢ (14 ;’;’EZ;)) ,
2

sz?(af/tndp—bf/—kc(l—i-lng)).

Gradient descent optimization w.r.t. p To optimize the weighting p, we applied iRProp+ for the
gradient based optimization, a first order method with adaptive individual step sizes [Igel and Hiisken,
2003\ |[Florescu and Igell, 2018]], until the bound did not improve for 10 iterations.

D.2 Minimization of the bound in Theorem [13

We start with the details on construction of the grid of i, A and ~.

D.2.1 The y grid for Theorem 13|

We were unable to find a closed-form solution for minimization of the bound w.r.t. 1 and applied a
heuristic. Empirically we observed that the bound was quasiconvex in p (we were unable to prove that
it is always the case) and applied binary search for y in the grid. Note that even if we take a grid of p,
we don’t need a union bound since the bound holds with high probability for all ;¢ simultaneously.

We then consider the relevant range of p. By Theorem [6] we have 1 < 0.5. At the same time,

0.5E,[L(h)]~E 2 [L(h,h)] . . . . . .
= 05—E,[L(h)] , and in Section |6| we have shown that the primary region of interest is
where E 2 [L(h, h')] < 0.5E,[L(h)], which corresponds to ;* > 0. However, since E 2 [L(h, h)]
and E,[L(h)] are unobserved and we use an upper bound for the first and a lower bound for the
second instead, we take a broader range of ;. By making a mild assumption that the upper bound for
the tandem loss E 2 [L(h, h')] is at most 0.25 and the lower bound for the Gibbs loss E,[L(h)] is at
most 0.5, we have 1 € [—0.5,0.5). We take 400 uniformly spaced points in the selected range for the
CCPBB bound.

*

D.2.2 The ) grid for Theorem

The parameter A comes from Theorem[I3] The theorem is identical to the result by [Tolstikhin and
Seldin|[2013 Equation (15)], except rescaling, but rescaling happens on top of the bound and has no
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effect on the \-grid. Therefore, we use the grid proposed by Tolstikhin and Seldin, Namely, we take

-1
 i12(n—1) n—1
Ai=a T m(ijey LT

ky = il 1 L_l+1+l
AT ey "2 In(1/67) 2|

In the experiments we took ¢; = 1.05 and 61 = 6/2.

fori e {1,...,k\} and

D.2.3 The v grid for Theorem [I5]

The parameter -y comes from Theorem[J] By taking the first two derivatives we can verify that for a
fixed p the PAC-Bayes-Bennett bound is convex in y and at the minimum point the optimal value of
~ satisfies

b2 (KL(p||w) +In L
e(’y:b—l) (’}/;b _ 1) _ 1 ( (pll ~) 52) _
e nE,[V(h)]

Thus, the optimal value of y is given by

’7; = (Wol- = -1 +1],
b € nE,[V(h)]

where W) is the principal branch of the Lambert W function, which is defined as the inverse of the
function f(z) = xe®.

In order to define a grid for  we first determine the relevant range for ;. We note that the variance
E, [V(h)] is estimated using Theorem which assumes that the length of the range of the loss £ ()

is c. The loss range provides a trivial upper bound on the variance E,[V(h)] < %. At the same time,

we have A (1 — %) < ”2;1 (it is a downward-pointing parabola) and, therefore, the right hand
2 1
5y

2
side of the bound in Theorem [13|is at least the value of its second term, which is at least Cn_l s

. . . =~ .. 2¢? In ﬁ 2
since KL(p||7) > 0. Thus, we obtain that the estimate of [E,[V(h)] is in the range | ———%, T |.
2¢2 In %

n—1

We use Vipin =

to denote the lower bound of this range.

Since Wy () is a monotonically increasing function, KL(p||w) > 0, and the estimate of E,[V(h)] is
at most %, we obtain that -y, satisfies

) L (P (KL(p||7r) +1n %)
S U _ 1] | +1
b e nE,2[V(h)]

1 1 /462 1 def
- (w1 1) % i
(w2 (Tams-1)) +1)

For an upper bound we observe that since E,[L(h)] — E,[L(h, S)] is trivially bounded by b, the

bound in TheoremHis only interesting if it is smaller than b and, in particular, ‘%Zf ) Ep[il(h)] <b.
This gives

v

P(V) - (¢ P(7b)
b> e Ep[V(h)] > 2

Vmin~
Thus, v should satisfy

b’

Vmin ’

p(vb) <
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which gives that the maximal value of v, denoted ;4 1S the positive root of

2
H('y):e'yb—’yb<1+‘f )—120.

min

Let o = (1 + bZ/Vmin) e (0,1), and £ = —yb — . Then the above problem is equivalent to
finding the root of f(z) = xze® — d for d = —ae™, which can again be solved by applying the
Lambert W function. Since for o € (0, 1), we have d € (—1/e, 0), which indicates that there are two
roots [Corless et al., [1996]. We denote the root greater than —1 as W (d) and the root less than —1
as W_1(d). It is obvious that Wy(d) = —«. However, Wy(d) is not the desired solution, since for
b > 0,2z = —« implies v = 0, but we assume vy > 0. Hence, W_; (d) is the desired root, which
gives the corresponding v = — 3 (W_1(d) + «) > 0. Thus, we obtain

1
1 1 T2 1
maz = —— | W_ - _.e " Viin 4+ —_— .
,y b ( 1 ( 1 + Vl:nzin ) 1 + Vi)rin )

We construct the grid by taking ~; = cé‘lymin for i € {1,...,ky}, were k, =
[In(Vmaz/Ymin)/ In co|. In the experiments we took co = 1.05, and 6; = 6 = §/2.

D.2.4 Minimization of the bound

The adjustment of the bound in Theorem [I3]to our hypothesis space construction, as described above,
is:

1 A 2KL(p||7) + In 2£
LMV, < ———[E[L ! , 0
( Vp)— (05_/1*)2( P [ M(hvhvshﬁsh )]+ n
+ ¢(’7Ku) Ep2 Wu(}% hl7 SpN Sh’)] + Kﬁ (2 KL(p||7r) +In QTk) )
2 >\n Y
VK, Iy nA (1 - %)

where n = miny, p/ |Sp, N Sk/| and k = kyk,. We minimize the bound without considering k-, and
k since we define the grid without taking them into consideration. However, we put back k. and k)
when computing the generalization bound. Thus, when doing the optimization we take k = 1, but
when we compute the bound we take the proper k£ = kxk-,.

Algorithm 2: Minimization of the bound in Theorem T3]

Input: n, grid of 1 and losses 1(h(X;) # Y;) for all (X;,Y;) € Sy, forall h
for 1 selected by the binary search in the grid do
Initialize: p =
Compute IA/,,,(h, k', Sp N Sp) and V,L(h, k', Sp N Sps) for all b, A’
while The improvement of the bound for a fixed y is larger than 10~° do
Compute A}, ,, the optimal A given p and p
Compute ,, ,, the optimal ~y given p and
Apply gradient descent to the bound w.r.t. p given u, A}, , and 7}, ,
end while
Proceed to the next . in the grid proposed by the binary search
end for

Optimal )\ given pand p  Given p and p, A can be computed in the same way as in the optimization
of Theorem [I3] since the optimization problem is the same, and get

- 2(n — 1)E 2 [V, (h, I /
)\*L _ 2(71 1) (n ) P [ H( 5 aShzr’jSh )} +141
P n KZ2(2KL(p||) + In 57)

-1

In our implementation at every optimization step we took the closest A to the above value from the
A-grid.
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Optimal v given 1 and p  Given p and p, the bound for the variance is obtained by plugging in the

optimal A7, , computed above. Let
B2 [V, (h, 1/, SN Sp)] K2 (2KL(p|7) + In 2
Uv(p,u): P H /\len + #( — 6)'
L= 5wt nALp (1 - 2(%&))
Then

R T KE KL+ %) Y
oKy € nUy(p, 1) ’

where W) is the principal branch of the Lambert W function, which is defined as the inverse of the
function f(x) = xe®. In our implementation at every optimization step we took the closest +y to the
above value from the ~-grid.

Gradient w.r.t. p given ), 7, and x Optimizing the bound w.r.t. p is equivalent to constrained
optimization of f(p) = Ej2[L,(h,h',S")] 4+ aE,2 [V, (h, h',S")] + 20 KL(p||7), where

yo OE) 1 po L OEL) K
niA_ "’ nA ’
Kiy 1- 2(n—1) n iy nA(l— 5Ty

and the constraint is that p must be a probability distribution. We optimize p in the same way as

presented in Appendix We use L, to denote the matrix of empirical y-tandem losses and V, to
denote the matrix of empirical variance of the u-tandem losses. Then, the gradient w.r.t. p is given by:

(Vn=2 <Z p(W) (L, (h, B, 8") + aVu(h,1',S")) + b (1 +1In WEZ;)) ,
m

Vf:2(ﬁup+a§/“p+b<1+ln§>).

We applied gradient descent in the same way as presented in Appendix [D.T]

E Experiments

E.1 Data sets

As mentioned, we considered data sets from the UCI and LibSVM repositories [Dua and Graffl, 2019,
Chang and Lin, |2011]], as well as Fashion-MNIST (Fashion) from Zalando Researc We used data
sets with size 3000 < N < 70000 and dimension d < 1000. These relatively large data sets were
chosen in order to provide meaningful bounds in the standard bagging setting, where individual trees
are trained on n = 0.8 N randomly subsampled points with replacement and the size of the overlap
of out-of-bag sets is roughly /9. An overview of the data sets is given in Table

For all experiments, we removed patterns with missing entries and made a stratified split of the data
set. For data sets with a training and a test set (SVMGuidel, Splice, Adult, wla, MNIST, Shuttle,
Pendigits, Protein, Satlmage, USPS) we combined the training and test sets and shuffled the entire
set before splitting.

E.2 Optimized weighted random forest

Experimental Setting

This section describes in detail the settings and the results of the empirical evaluation using random
forest (RF) majority vote classifiers.

We construct the ensemble from decision trees available in scikit-learn. For each data set, an ensemble
of 100 trees is trained using bagging (as described in Section [6). For each tree, the Gini criterion is

used for splitting and v/d features are considered in each split.

*https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
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Table 1: Data set overview. ¢y, and cpyax denote the minimum and maximum class frequency.

Data set N d c Crmin Cmax Source
Adult 32561 123 2 0.2408 0.7592 LIBSVM (ala)
Cod-RNA 59535 8 2 0.3333 0.6667 LIBSVM
Connect-4 67557 126 3 0.0955 0.6583 LIBSVM
Fashion 70000 784 10 0.1000 0.1000 Zalando Research
Letter 20000 16 26 0.0367 0.0406 UCI
MNIST 70000 780 10 0.0902 0.1125 LIBSVM
Mushroom 8124 22 2 04820 0.5180 LIBSVM
Pendigits 10992 16 10 0.0960 0.1041 LIBSVM
Phishing 11055 68 2 0.4431 0.5569 LIBSVM
Protein 24387 357 3 0.2153 0.4638 LIBSVM
SVMGuidel 3089 4 2 0.3525 0.6475 LIBSVM
SatImage 6435 36 6 0.0973 0.2382 LIBSVM
Sensorless 58509 48 11 0.0909 0.0909 LIBSVM
Shuttle 58000 9 7 0.0002 0.7860 LIBSVM
Splice 3175 60 2 04809 0.5191 LIBSVM
USPS 9298 256 10 0.0761 0.1670 LIBSVM
wla 49749 300 2 0.0297 0.9703 LIBSVM

Table 2: Numerical values of the test loss obtained by the RFs with optimized weighting. The smallest
loss is highlighted in bold, while the smallest optimized loss is underlined.

Data set L(NIVU) L(N[VPA ) L(l\lVPTND ) L(]‘\/IVPCCTND ) L(N[VPCCPBB )
SVMGuidel 0.0284 (0.0037) 0.0372 (0.0066) 0.0287 (0.0035) 0.0286 (0.0036)  0.0287 (0.0039)
Phishing 0.0292 (0.004)  0.0371 (0.0073)  0.0292 (0.0036) 0.0292 (0.0036)  0.0292 (0.004)
Mushroom 0.0 (0.0 0.0 (0.0) 0.0 (0.0 0.0 (0.0) 0.0 (0.0)
Splice 0.0299 (0.009)  0.1087 (0.021)  0.0306 (0.0099)  0.0309 (0.0092)  0.0302 (0.01)
wla 0.0108 (0.0007)  0.016 (0.0025)  0.0108 (0.0006) 0.0107 (0.0006) 0.0108 (0.0006)
Cod-RNA 0.0402 (0.0013)  0.0712 (0.0064)  0.0395 (0.0014)  0.0395 (0.0014)  0.0395 (0.0015)
Adult 0.1693 (0.0027) 0.1942 (0.0151)  0.1698 (0.0031)  0.1701 (0.003)  0.1698 (0.0031)
Connect-4 0.1706 (0.0023)  0.2803 (0.0165)  0.1699 (0.002)  0.1705 (0.0024)  0.1695 (0.0019)
Shuttle 0.0002 (0.0001) 0.0003 (0.0002)  0.0002 (0.0001) 0.0002 (0.0001) 0.0002 (0.0001)
Pendigits 0.0096 (0.0023)  0.0452 (0.0124)  0.0092 (0.0022) 0.0093 (0.0021)  0.0092 (0.0025)
Letter 0.0378 (0.0036)  0.1408 (0.0356) 0.0398 (0.0041) 0.0402 (0.0042) 0.0383 (0.0034)
SatImage 0.0828 (0.0068) 0.1321 (0.0268)  0.0835 (0.0061)  0.0839 (0.0062)  0.0832 (0.006)
Sensorless 0.0014 (0.0004) 0.0138 (0.0019)  0.0012 (0.0003)  0.0012 (0.0003)  0.0012 (0.0003)
USPS 0.0394 (0.0043) 0.1325 (0.0251) 0.0401 (0.0055) 0.0405 (0.0052) 0.0404 (0.005)
MNIST 0.0316 (0.0017)  0.16 (0.0352)  0.0323 (0.0017)  0.0324 (0.0017)  0.0317 (0.0014)
Fashion 0.1175 (0.0018)  0.2122 (0.0299) 0.1192 (0.0022)  0.1197 (0.0022) 0.1178 (0.0021)

We compare the RF using the default uniform weighting p,, and the optimized weighting obtained
by FO [Thiemann et al.,[2016]], TND [Masegosa et al.} 2020], CCTND (Theorem@ and CCPBB
(Theorem [15)). Optimization is based on the out-of-bag sets (see Section[6). For each optimized RF,
we also compute the optimized bound.

Numerical Results

This section lists the numerical results for the empirical evaluation using RF. Table [2|provides the
numerical values of the test loss obtained by the RFs with uniform weighting and with weighting
optimized by FO, TND, CCTND and CCPBB; a visual presentation is given in Figure Za] As
observed by [Masegosa et al.|[2020]], optimization using FO leads to overfitting, while the second-
order bounds does not significantly degrade the performance. Among the second-order bounds,
optimizing using CCPBB produces the best classifier in most cases.

Table |3| provides the numerical values of the optimized bounds; a visual presentation is given in
Figure [2b] Table [ provides the recorded Gibbs loss and tandem loss using the optimized p. The
optimal y found is reported for CCTND and CCPBB as well.
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Table 3: Numerical values of the bounds for the RFs with optimized weighting. The tightest bound is

highlighted in bold, while the tightest second-order bound is underlined.

Data set FO(p)\) TND(/)TND) CCTND(pCCTND) CCPBB(I)CCPBB)
SVMGuidel 0.1079 (0.0079) 0.1836 (0.0062) 0.1853 (0.0059) 0.2806 (0.0071)
Phishing 0.1189 (0.0035) 0.1642 (0.0043) 0.1674 (0.0042) 0.2336 (0.005)
Mushroom 0.0068 (0.0001) 0.0353 (0.0002) 0.0388 (0.0002) 0.1121 (0.0006)
Splice 0.3245 (0.0218) 0.4077 (0.0062) 0.4247 (0.0065) 0.6562 (0.0056)
wla 0.0424 (0.0015) 0.0633 (0.0000)  0.0642 (0.0009)  0.0805 (0.0011)
Cod-RNA 0.1629 (0.0018) 0.1663 (0.0014) 0.1698 (0.0014) 0.19 (0.0018)
Adult 0.4388 (0.0042) 05701 (0.0051)  0.5508 (0.004) 0.5976 (0.0042)
Connect-4 0.5978 (0.0067) 0.6831 (0.0039) 0.6758 (0.0036) 0.7112 (0.0038)
Shuttle 0.0026 (0.0002) 0.0078 (0.0002) 0.0083 (0.0002) 0.018 (0.0003)
Pendigits 0.142 (0.0035)  0.1445 (0.0026) 0.1504 (0.0042) 0.2155 (0.003)
Letter 0.3858 (0.0067) 0.4504 (0.0032) 0.4513 (0.003) 0.5134 (0.0039)
SatImage 0.3762 (0.0075) 0.4902 (0.0079) 0.4851 (0.007) 0.6158 (0.0083)
Sensorless 0.0348 (0.0031)  0.0257 (0.0006) 0.0265 (0.0006) 0.0376 (0.0007)
USPS 0.3394 (0.0065) 0.4059 (0.0048) 0.4097 (0.0044) 0.5086 (0.0042)
MNIST 0.3795 (0.0031)  0.3537 (0.0014) 0.3598 (0.0014) 0.3853 (0.0014)
Fashion 0.4806 (0.003)  0.5436 (0.0023) 0.5408 (0.0021) 0.5728 (0.0021)

Table 4: Numerical values for Gibbs loss, tandem loss and optimized y for the RFs with optimized
weighting. We use E,[L] and E,>[L] as short-hands for the Gibbs and the tandem loss respectively.

FO TND CCTND CCPBB

Data set ‘ E,[L] E,[L] ‘ E,[L] E,[L] ‘ Ep[L] E,[L] m Eo[L] E,[L] "

SVMGuidel 00325 00217 00406 00185 00403 00184  -0.0527 00413 00194  -0.0258
Phishing 0041 00255 00486 00197 00484 00196  -0.0295 0049 00202  -0.0125
Mushroom 0.0 0.0 0.0002 0.0 0.0002 0.0 -0.0317  0.0002 0.0 -0.01
Splice 01068  0.0903 01564 00424  0.1522 00415  -0057  0.16 0044  0.0045
wla 00156 00123 00179 00091 00179  0.009  -00111 0018 00092  -0.0065
Cod-RNA 00712 00602 00802 00314 00803 00314 -00178 00815 00318  0.0102
Adult 0.1995  0.1474 02061  0.1184 02056  0.1182  -0.1216 02068  0.1194  -0.0918
Connect-4 02824 02564 02953  0.1523 02943  0.1521  -0.0959 02974 01535  -0.0615
Shuttle 00003  0.0001  0.0006 00002 00006 0.0002 -0.0044 0.0006  0.0002 0.0

Pendigits 00502  0.0346 0061 00163 00609 00163 -00099 00614 00166  0.0092
Letter 0.1685  0.1249  0.803 00851  0.1797  0.0849  -00501 0.1816 00861  -0.0228
SatImage 0.1478 00968  0.1612 00746  0.1602 00741  -0.1104 01617 00755  -0.0535
Sensorless 00125 00113 00192 00027 00192 00027  0.0008 00195  0.0027 0.01

USPS 01363 00989 01517 00644  0.1509  0.0641 0053 01522 0065  -0.0173
MNIST 01763  0.1286 01837 0075  0.835 0075 00281 0185 00756  0.037
Fashion 02256  0.1715 02325 01196 02322  0.1195 -00577 02334 01203  -0.0382

E.3 Ensemble of multiple heterogeneous classifiers

Experimental Setting

This section describes in detail the settings and the results of the experimental evaluation using an
ensemble of multiple heterogeneous classifiers.

The ensemble is defined by a set of standard classifiers available in scikit-learn:
* Linear Discriminant Analysis, with default parameters, which includes a singular value
decomposition solver.

* Three versions of k-Nearest Neighbors: (i) k=3 and uniform weights (i.e., all points in
each neighborhood are weighted equally); (ii) k=5 and uniform weights; and (iii) k=5 where
points are weighted by the inverse of their distance. In all cases, it is employed the Euclidean
distance.

* Decision Tree, with default parameters, which includes Gini criterion for splitting and no
maximum depth.

* Logistic Regression, with default parameters, which includes L2 penalization.
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Table 5: Numerical values of the test loss obtained by ensembles of multiple heterogeneous classifiers
with optimized weighting. The smallest loss is highlighted in bold, while the smallest optimized loss
is underlined.

Data set L(MV,) L(hpest) L(MV,,,) LMV,pn)  LMVpcomn) LMV pcorns)
SVMGuidel ~ 0.0357 (0.005) ~ 0.0404 (0.0047)  0.0404 (0.0047)  0.0352 (0.0051)  0.0348 (0.0053)  0.0343 (0.0059)
Phishing 0.0353 (0.0035)  0.0459 (0.0058) 0.0459 (0.0058) 0.0333 (0.0031)  0.0337 (0.0028) 0.0335 (0.0032)
Mushroom  0.0001 (0.0002)  0.0002 (0.0004) 0.0 (0.0) 0.0001 (0.0002)  0.0001 (0.0002) 0.0001 (0.0002)
Splice 0.1055 (0.0104)  0.0768 (0.0098) 0.0768 (0.0098)  0.075 (0.0093)  0.0768 (0.0098)  0.069 (0.0082)
wla 0.0125 (0.0007)  0.0153 (0.0009) 0.0153 (0.0009) ~ 0.0128 (0.0008) ~ 0.0129 (0.0008)  0.0128 (0.0007)
Cod-RNA  0.0707 (0.0022) ~ 0.064 (0.0022)  0.064 (0.0022) ~ 0.0552 (0.002)  0.0551 (0.0019) 0.0581 (0.0023)
Adult 0.1627 (0.0036)  0.1543 (0.0039)  0.1543 (0.0039) 0.1563 (0.0042)  0.1541 (0.0039)  0.1566 (0.0048)
Protein 0.3491 (0.0066) 0.3251 (0.0061) 0.3251 (0.0061) 0.3176 (0.0052) 0.3251 (0.0061) 0.3185 (0.0048)
Comnect-4 02039 (0.0035)  0.2433 (0.0032)  0.2433 (0.0032)  0.1989 (0.003)  0.1992 (0.0032)  0.2018 (0.0037)
Shuttle 0.0012 (0.0002)  0.0005 (0.0002)  0.0005 (0.0002) 0.0006 (0.0002) 0.0006 (0.0002)  0.0006 (0.0002)
Pendigits 0.0111 (0.0016) 0.0092 (0.0017) 0.0092 (0.0017) 0.0086 (0.0016) ~ 0.0087 (0.0016)  0.0085 (0.0019)
Letter 0.069 (0.0041)  0.0673 (0.0052) 0.0673 (0.0052) 0.0538 (0.0043)  0.054 (0.0043)  0.0526 (0.0041)
SatTmage 0.0997 (0.0069)  0.1054 (0.0046) ~0.1053 (0.0046) ~ 0.0939 (0.0061)  0.0954 (0.0063)  0.093 (0.0059)
Sensorless  0.1816 (0.0121)  0.0213 (0.0018)  0.0213 (0.0018)  0.0213 (0.0018)  0.1089 (0.2764)  0.0213 (0.0018)
USPS 0.0359 (0.0054) 0.0375 (0.0038) 0.0375 (0.0038) 0.0324 (0.0044) 0.0326 (0.0042) 0.0326 (0.0036)
MNIST 0.0356 (0.002)  0.0349 (0.0017) 0.0349 (0.0017) 0.0304 (0.0016)  0.0304 (0.0017) ~ 0.0304 (0.0016)
Fashion 0.1341 (0.0019)  0.154 (0.0028)  0.154 (0.0028)  0.1323 (0.003)  0.1341 (0.003)  0.1346 (0.0034)

* Gaussian Naive Bayes, with default parameters.

We included three versions of the kNN classifier to test if our bounds could deal with a heterogeneous
set of classifiers where some of them are expected to provide highly correlated errors while others are
expected to provide much less correlated errors.

Each of the seven classifiers of the ensemble was learned from a bootstrap sample of the training data
set. We did it in the way to be able to compute and optimize our bounds with the out-of-bag-samples
as described in Section[6l

Numerical Results

This section lists the numerical results for the empirical evaluation using ensembles of multiple
heterogeneous classifiers.

Table [5| provides the numerical values of the test loss obtained by these ensembles with uniform
weighting and with weighting optimized by FO, TND, CCTND and CCPBB; a visual presentation
is given in Figure In this case, uniform voting is not a competitive weighting scheme. The
second-order bounds perform much better than uniform weighting and than the weights computed
according to the first-order bound. There is not any clear winner among the second-order bounds.

Table [6] provides the numerical values of the optimized bounds; a visual presentation is given in
Figure[2d| Among the second-order bounds, the CCTND bound is often tighter in this setting.

Table[7)provides the recorded Gibbs loss and tandem loss using the optimized p. The optimal  found
is reported for CCTND and CCPBB as well.
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Table 6: Numerical values of the bounds for ensembles of multiple heterogeneous classifiers with
optimized weighting. The tightest bound is highlighted in bold, while the tightest second-order bound

is underlined.

Data set FO(/))\) TND(pTND) CCTND(pCCTND) CCPBB(pCCPBB)
SVMGuidel 0.1133 (0.0053) 0.221 (0.0127) 0.2183 (0.0112) 0.3142 (0.0116)
Phishing 0.1242 (0.0056) 0.1957 (0.0075) 0.1977 (0.0072) 0.2658 (0.0074)
Mushroom  0.0078 (0.0008) 0.0412 (0.0019)  0.0441 (0.0019) 0.1162 (0.0026)
Splice 0.2361 (0.0186) 0.4772 (0.0286) 0.4613 (0.0242) 0.6769 (0.0288)
wla 0.0392 (0.0015) 0.0694 (0.0021) 0.0703 (0.0021) 0.0879 (0.0022)
Cod-RNA 0.1448 (0.0026) 0.2164 (0.0032) 0.2148 (0.0031) 0.2445 (0.003)
Adult 0.3343 (0.0071) 0.5648 (0.0077) 0.5366 (0.0066) 0.5857 (0.0064)
Protein 0.6944 (0.0057) 1.0 (0.0) 0.9078 (0.0034) 1.0 (0.0)
Connect-4 0.5157 (0.0047) 0.7272 (0.0099) 0.6733 (0.0068) 0.7107 (0.0064)
Shuttle 0.0033 (0.0008) 0.0106 (0.0012)  0.0111 (0.0012) 0.0215 (0.0011)
Pendigits 0.0335 (0.0033) 0.0838 (0.0062) 0.0856 (0.0061) 0.1412 (0.0067)
Letter 0.1591 (0.0053) 0.2682 (0.0092) 0.2627 (0.0084) 0.3154 (0.0099)
Satlmage 0.271 (0.0146)  0.4908 (0.0123) 0.4593 (0.011) 0.5857 (0.0122)
Sensorless  0.0523 (0.0031) 0.1173 (0.0057)  0.2054 (0.2793) 0.1357 (0.0064)
USPS 0.1069 (0.0053) 0.2183 (0.0074) 0.2142 (0.0066) 0.2932 (0.0084)
MNIST 0.081 (0.0022)  0.139 (0.0049) 0.1383 (0.0046) 0.1574 (0.0051)
Fashion 0.3291 (0.0033) 0.4945 (0.0066) 0.4709 (0.0049) 0.5049 (0.0045)

Table 7: Numerical values for Gibbs loss, tandem loss and optimized p for the heterogeneous
classifiers with optimized weighting. We use E,[L] and E ,2[L] as short-hands for the Gibbs loss and
the tandem loss respectively.

FO TND CCTND CCPBB

Data set Eo[L] Ep[L] | By[L] E,»[L] ‘ E,[L] E,[L] m ‘ Eo[L] E,[L] M

SVMGuidel ~ 0.0365  0.031 00457 0026 00439 00258 -0.0691 0046 00267  -0.0362
Phishing 00447 00383 0059 00262 00533 00262 -0.0419 0059 00266 -0.0158
Mushroom ~ 0.0001 0.0 00041 00003 00029 00002  -0.0289  0.0046  0.0003 0.008
Splice 00754 00754 01265 00552 01062 00548  -0.19  0.1331 00578  -0.0672
wla 00147 00134 00204 00106 00195 00106 -00125 00192 00108  -0.0065
Cod-RNA 00638 00572  0.0737 00425 00717 00425 -0.0356 00813 00442  -0.02
Adult 01502  0.1484 02049 01181  0.1726  0.1224  -0.1771 01907  0.1202  -0.1168
Protein 03224 03153 04052 02645 0324 03017  -12391 04182  0.267 -0.5

Connect-4 02438 0236 02612 01634 0253  0.638  -0221 02628 0165  -0.1912
Shuttle 00005  0.0004 00019 00004 00014 00004 -0.0047 0.0021  0.0004 0.0

Pendigits 0008 00069 00156 00062 00133 00061  -0.0299 00144 00063  -0.0118
Letter 00644 00587 00768 00454 00723 00454  -0.0641  0.086  0.0466  -0.0407
SatTmage 01032 00928  0.246 00766  0.1188 00764  -0.1647 0.1284  0.0783  -0.0995
Sensorless 00208 00208 00345 00198 0.1161  0.1036  -0.027 00445 00202 -0.0122
USPS 0036 00326 00478 0028 00434 00278 -00676 0.0496 00288  -0.0357
MNIST 00345 00304 00428 0026 00403 0026  -0.0272 00482  0.0265 0.017
Fashion 0.1528  0.1488  0.1665 0.1081  0.1636  0.1084  -0.1173 01724 01092  -0.094
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