
A A proof of the PAC-Bayes-Bennett inequality (Theorem 9) and a
comparison with the PAC-Bayes-Bernstein inequality

In this section we provide a proof of Theorem 9 and a numerical comparison with the PAC-Bayes-
Bernstein inequality. The proof is based on the standard change of measure argument. We use the
following version by Tolstikhin and Seldin [2013].

Lemma 16 (PAC-Bayes Lemma). For any function fn : H×(X ×Y)n → R and for any distribution
π onH, such that π is independent of S, with probability at least 1− δ over a random draw of S, for
all distributions ρ onH simultaneously:

Eρ[fn(h, S)] ≤ KL(ρ‖π) + ln
1

δ
+ lnEπ[ES′ [efn(h,S

′)]].

The second ingredient is Bennett’s lemma, which is a bound on the moment generating function used
in the proof of Bennett’s inequality. Since we are unaware of a reference, we provide a proof below,
which is essentially an intermediate step in the proof of Bennett’s inequality [Boucheron et al., 2013,
Theorem 2.9].

Lemma 17 (Bennett’s Lemma). Let b > 0 and let Z1, . . . , Zn be i.i.d. zero-mean random variables
with finite variance, such that Zi ≤ b for all i. Let Mn =

∑n
i=1 Zi and Vn =

∑n
i=1 E

[
Z2
i

]
. Let

φ(u) = eu − u− 1. Then for any λ > 0:

E
[
eλMn−φ(bλ)b2

Vn
]
≤ 1.

Proof. Since u−2φ(u) is a non-decreasing function of u ∈ R (where at zero we continuously extend
the function), for all i ∈ [n] and λ > 0 we have

eλZi − λZi − 1 ≤ Z2
i

φ(bλ)

b2
,

which implies

E
[
eλZi

]
≤ 1 + λE [Zi] +

φ(bλ)

b2
E
[
Z2
i

]
≤ e

φ(bλ)

b2
E[Z2

i ],

where the second inequality uses the assumption that E [Zi] = 0 and the fact that 1 + x ≤ ex for all
x ∈ R. By the above inequality and independence of the random variables,

E
[
eλMn−φ(bλ)b2

Vn
]
= E

[
n∏
i=1

eλZi−
φ(bλ)

b2
E[Z2

i ]

]
=

n∏
i=1

E
[
eλZi−

φ(bλ)

b2
E[Z2

i ]
]
≤ 1.

Now we are ready to prove the theorem.

Proof of Theorem 9. We take fn(h, S) = γn
(
L̃(h)− ˆ̃L(h, S)

)
− φ(γb)

b2 nṼ(h). Then by Lemma 17

we have ES [efn(h,S)] ≤ 1. By plugging this into Lemma 16, normalizing by γn, and changing sides,
we obtain the result.

Numerical comparison of the PAC-Bayes-Bennett and PAC-Bayes-Bernstein bound

Figure 3 provides a numerical comparison of the PAC-Bayes-Bennett and PAC-Bayes-Bernstein
inequalities (Theorem 9 and Theorem 7 by Tolstikhin and Seldin [2013]).

B Proof of Lemma 14

Proof. Recall that

`µ(h(X), h′(X), Y ) = (1(h(X) 6= Y )− µ)(1(h′(X) 6= Y )− µ) ∈
{
(1− µ)2,−µ(1− µ), µ2

}
.
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(a) n = 1000 (b) n = 10000

Figure 3: The ratio of PAC-Bayes Bennett to PAC-Bayes Bernstein bound as a function of Eρ[ ˆ̃L(h, S)]
and Eρ[Ṽ(h)]. We set KL(ρ‖π) = 5 and δ = 0.05. The value of n is provided in the captions of the
subfigures.

For µ < 0.5, we have −µ(1−µ) < (1−µ)2 and µ2 < (1−µ)2. Therefore, `µ(h(X), h′(X), Y ) ≤
(1− µ)2.

Furthermore, for µ < 0 we have µ2 < −µ(1 − µ), and for µ > 0 we have −µ(1 − µ) ≤ µ2.
Therefore, for µ < 0.5 we have `µ(h(X), h′(X), Y ) ≥ min{−µ(1− µ), µ2}.
By combining the upper and the lower bound, we obtain

Kµ = (1− µ)2 −min{−µ(1− µ), µ2}
= max{(1− µ)2 − (−µ(1− µ)), (1− µ)2 − µ2}
= max{1− µ, 1− 2µ}.

C Comparison of the first and second order oracle bounds

In this section we show that if Eρ[L(h)] < 0.5 and Eρ2 [L(h, h′)] > 0.5Eρ[L(h)], then the first
order oracle bound is tighter than the second order oracle bounds, and if Eρ[L(h)] < 0.5 and
Eρ2 [L(h, h′)] < 0.5Eρ[L(h)], then it is the other way around.

For comparison of the first order oracle bound L(MVρ) ≤ 2Eρ[L(h)] vs. the second order oracle
tandem bound L(MVρ) ≤ 4Eρ2 [L(h, h′)] the statement above is evident.

For the second order oracle bounds based on the Chebyshev-Cantelli inequality we have

Eρ2 [L(h, h′)]− Eρ[L(h)]2

0.25 + Eρ2 [L(h, h′)]− Eρ[L(h)]
vs. 2Eρ[L(h)],

Eρ2 [L(h, h′)]− Eρ[L(h)]2 vs. 0.5Eρ[L(h)] + 2Eρ[L(h)]Eρ2 [L(h, h′)]− 2Eρ[L(h)]2,
Eρ2 [L(h, h′)](1− 2Eρ[L(h)]) vs. 0.5Eρ[L(h)](1− 2Eρ[L(h)]),

Eρ2 [L(h, h′)] vs. 0.5Eρ[L(h)],
where under the assumption that Eρ[L(h)] < 0.5 we can cancel (1− 2Eρ[L(h)]), since it is positive,
and the result is again evident.

D Minimization of the bounds

In this section we provide technical details on minimization of the bounds in Theorems 12 and 15.
As most of the other PAC-Bayesian works, we take π to be a union distribution over the hypotheses

14



in both cases. As discussed in Section 6, we build a set of data-dependent hypotheses by splitting the
data set S into pairs of subsets S = Th ∪Sh, such that Th ∩Sh = ∅, training h on Th and calculating
an unbiased loss estimate L̂(h, Sh) on Sh. For tandem losses we compute the unbiased estimates
L̂(h, h′, Sh ∩ Sh′) on the intersections of the corresponding sets Sh and Sh′ .

D.1 Minimization of the bound in Theorem 12

The adjustment of the bound from Theorem 12 to this construction is for µ ≥ 0:

L(MVρ) ≤
1

(0.5− µ)2
[
Eρ2 [L̂(h, h′, Sh ∩ Sh′)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ
(
1− λ

2

)
m

− 2µ

((
1− γ

2

)
Eρ[L̂(h, Sh)]−

KL(ρ‖π) + ln(4
√
n/δ)

γn

)
+ µ2

]
,

and for µ < 0:

L(MVρ) ≤
1

(0.5− µ)2
[
Eρ2 [L̂(h, h′, Sh ∩ Sh′)]

1− λ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ
(
1− λ

2

)
m

− 2µ

(
Eρ[L̂(h, Sh)]

1− γ
2

+
KL(ρ‖π) + ln(4

√
n/δ)

γ
(
1− γ

2

)
n

)
+ µ2

]
,

where m = minh,h′ |Sh ∩ Sh′ | and n = minh |Sh|. Below we provide the pseudocode and derive
update rules for µ, λ, γ, and ρ for alternating minimization of this bound.

Algorithm 1: Minimization of the bound in Theorem 12

Input: m,n, tandem losses L̂(h, h′, Sh ∩ Sh′) for all h, h′, and Gibbs losses L̂(h, Sh) for all h
Initialize: ρ = π and µ = 0
while The improvement of the bound is larger than 10−9 do

Compute λ∗ρ, the optimal λ given ρ
Compute γ∗ρ , the optimal γ given ρ and µ
Compute the bound using ρ, µ, λ∗ρ and γ∗ρ
Compute new µ∗ρ, the optimal µ given ρ, λ∗ρ and γ∗ρ
Update the new distribution ρ′ with gradient descent given µ, λ∗ρ and γ∗ρ
Let ρ = ρ′ and µ = µ∗ρ

end while

Optimal λ given ρ Minimization of the bound with respect to λ is identical to minimization of the
tandem bound by Masegosa et al. [2020, Theorem 9]. Masegosa et al. derive the optimal value of λ:

λ∗ρ =
2√

2mEρ2 [L̂(h,h′,Sh∩Sh′ )]
2KL(ρ||π)+ln 4

√
m
δ

+ 1 + 1

.

Optimal γ given ρ and µ Minimization of the bound with respect to γ in the case of µ ≥ 0 is
analogous to minimization of the bound by Masegosa et al. [2020, Theorem 10] with respect to γ.
Masegosa et al. derive the optimal value of γ:

γ∗ρ =

√
2KL(ρ||π) + ln(16n/δ2)

nEρ[L̂(h, Sh)]
.

On the other hand, the optimal γ in the case of µ < 0 is analogous to the optimal λ above:

γ∗ρ =
2√

2nEρ[L̂(h,Sh)]
KL(ρ||π)+ln 4

√
n
δ

+ 1 + 1

.

15



Optimal µ given ρ Given ρ, we can compute the optimal λ∗ρ and γ∗ρ by the above formulas. Let

UT (ρ) :=
Eρ2 [L̂(h, h′, Sh ∩ Sh′)]

1− λ∗ρ
2

+
2KL(ρ‖π) + ln(4

√
m/δ)

λ∗ρ
(
1− λ∗ρ

2

)
m

,

LG(ρ) :=


(
1− γ∗ρ

2

)
Eρ[L̂(h, Sh)]− KL(ρ‖π)+ln(4

√
n/δ)

γ∗ρn
, µ ≥ 0

Eρ[L̂(h,Sh)]

1− γ
∗
ρ
2

+ KL(ρ‖π)+ln(4
√
n/δ)

γ∗ρ

(
1− γ

∗
ρ
2

)
n

, µ < 0

Then the optimal µ is

µ∗ρ =
1
2LG(ρ)− UT (ρ)

1
2 − LG(ρ)

.

Gradient w.r.t. ρ given λ, γ and µ Minimization of the bound w.r.t. ρ is equivalent to constrained
optimization of f(ρ) = aEρ2 [L̂(h, h′, Sh ∩Sh′)]− 2bEρ[L̂(h, Sh)]+2cKL(ρ||π), where for µ ≥ 0,
a = 1/(1 − λ/2), b = µ(1 − γ/2) and c = 1/(λ(1 − λ/2)m) + µ/(γn), and for µ < 0, a =
1/(1− λ/2), b = µ/(1− γ/2), and c = 1/(λ(1− λ/2)m)− µ/(γ(1− γ/2)n). The constraint is
that ρ is a probability distribution. We optimize ρ by projected gradient descent, where we iteratively
take steps in the direction of the negative gradient of f and project the result onto the probability
simplex.

We use L̂ to denote the vector of empirical losses and L̂tnd to denote the matrix of tandem losses.
Let ∇f denote the gradient of f w.r.t. ρ and (∇f)h the h-th coordinate of the gradient. We have:

(∇f)h = 2

(
a
∑
h′

ρ(h′)L̂(h, h′, Sh ∩ Sh′)− bL̂(h, Sh) + c

(
1 + ln

ρ(h)

π(h)

))
,

∇f = 2
(
aL̂tndρ− bL̂+ c

(
1 + ln

ρ

π

))
.

Gradient descent optimization w.r.t. ρ To optimize the weighting ρ, we applied iRProp+ for the
gradient based optimization, a first order method with adaptive individual step sizes [Igel and Hüsken,
2003, Florescu and Igel, 2018], until the bound did not improve for 10 iterations.

D.2 Minimization of the bound in Theorem 15

We start with the details on construction of the grid of µ, λ and γ.

D.2.1 The µ grid for Theorem 15

We were unable to find a closed-form solution for minimization of the bound w.r.t. µ and applied a
heuristic. Empirically we observed that the bound was quasiconvex in µ (we were unable to prove that
it is always the case) and applied binary search for µ in the grid. Note that even if we take a grid of µ,
we don’t need a union bound since the bound holds with high probability for all µ simultaneously.

We then consider the relevant range of µ. By Theorem 6, we have µ < 0.5. At the same time,
µ∗ =

0.5Eρ[L(h)]−Eρ2 [L(h,h)]
0.5−Eρ[L(h)] , and in Section 6 we have shown that the primary region of interest is

where Eρ2 [L(h, h′)] < 0.5Eρ[L(h)], which corresponds to µ∗ > 0. However, since Eρ2 [L(h, h)]
and Eρ[L(h)] are unobserved and we use an upper bound for the first and a lower bound for the
second instead, we take a broader range of µ. By making a mild assumption that the upper bound for
the tandem loss Eρ2 [L(h, h′)] is at most 0.25 and the lower bound for the Gibbs loss Eρ[L(h)] is at
most 0.5, we have µ ∈ [−0.5, 0.5). We take 400 uniformly spaced points in the selected range for the
CCPBB bound.

D.2.2 The λ grid for Theorem 15

The parameter λ comes from Theorem 13. The theorem is identical to the result by Tolstikhin and
Seldin [2013, Equation (15)], except rescaling, but rescaling happens on top of the bound and has no
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effect on the λ-grid. Therefore, we use the grid proposed by Tolstikhin and Seldin. Namely, we take

λi = ci−11

2(n− 1)

n

(√
n− 1

ln(1/δ1)
+ 1 + 1

)−1
for i ∈ {1, . . . , kλ} and

kλ =

⌈
1

ln c1
ln

(
1

2

√
n− 1

ln(1/δ1)
+ 1 +

1

2

)⌉
.

In the experiments we took c1 = 1.05 and δ1 = δ/2.

D.2.3 The γ grid for Theorem 15

The parameter γ comes from Theorem 9. By taking the first two derivatives we can verify that for a
fixed ρ the PAC-Bayes-Bennett bound is convex in γ and at the minimum point the optimal value of
γ satisfies

e(γ
∗
ρb−1)

(
γ∗ρb− 1

)
=

1

e

b2
(
KL(ρ‖π) + ln 1

δ2

)
nEρ[Ṽ(h)]

− 1

 .

Thus, the optimal value of γ is given by

γ∗ρ =
1

b

W0

1

e

b2
(
KL(ρ‖π) + ln 1

δ2

)
nEρ[Ṽ(h)]

− 1

+ 1

 ,

where W0 is the principal branch of the Lambert W function, which is defined as the inverse of the
function f(x) = xex.

In order to define a grid for γ we first determine the relevant range for γ∗ρ . We note that the variance
Eρ[Ṽ(h)] is estimated using Theorem 13, which assumes that the length of the range of the loss ˜̀(·, ·)
is c. The loss range provides a trivial upper bound on the variance Eρ[Ṽ(h)] ≤ c2

4 . At the same time,

we have λ
(
1− λn

2(n−1)

)
≤ n−1

2n (it is a downward-pointing parabola) and, therefore, the right hand

side of the bound in Theorem 13 is at least the value of its second term, which is at least
2c2 ln 1

δ1

n−1 ,

since KL(ρ‖π) ≥ 0. Thus, we obtain that the estimate of Eρ[Ṽ(h)] is in the range
[
2c2 ln 1

δ1

n−1 , c
2

4

]
.

We use Vmin =
2c2 ln 1

δ1

n−1 to denote the lower bound of this range.

Since W0(·) is a monotonically increasing function, KL(ρ‖π) ≥ 0, and the estimate of Eρ[Ṽ(h)] is
at most c

2

4 , we obtain that γ∗ρ satisfies

γ∗ρ =
1

b

W0

1

e

b2
(
KL(ρ‖π) + ln 1

δ2

)
nEρ2 [Ṽ(h)]

− 1

+ 1


≥ 1

b

(
W0

(
1

e

(
4b2

nc2
ln

1

δ2
− 1

))
+ 1

)
def
= γmin.

For an upper bound we observe that since Eρ[L̃(h)] − Eρ[ ˆ̃L(h, S)] is trivially bounded by b, the
bound in Theorem 13 is only interesting if it is smaller than b and, in particular, φ(γb)γb2 Eρ[Ṽ(h)] ≤ b.
This gives

b ≥ φ(γb)

γb2
Eρ[Ṽ(h)] ≥

φ(γb)

γb2
Vmin.

Thus, γ should satisfy

φ(γb) ≤ γb3

Vmin
,
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which gives that the maximal value of γ, denoted γmax, is the positive root of

H(γ) = eγb − γb
(
1 +

b2

Vmin

)
− 1 = 0.

Let α =
(
1 + b2/Vmin

)−1 ∈ (0, 1), and x = −γb − α. Then the above problem is equivalent to
finding the root of f(x) = xex − d for d = −αe−α, which can again be solved by applying the
Lambert W function. Since for α ∈ (0, 1), we have d ∈ (−1/e, 0), which indicates that there are two
roots [Corless et al., 1996]. We denote the root greater than −1 as W0(d) and the root less than −1
as W−1(d). It is obvious that W0(d) = −α. However, W0(d) is not the desired solution, since for
b > 0, x = −α implies γ = 0, but we assume γ > 0. Hence, W−1(d) is the desired root, which
gives the corresponding γ = − 1

b (W−1(d) + α) > 0. Thus, we obtain

γmax = −1

b

(
W−1

(
− 1

1 + b2

Vmin

· e
− 1

1+ b2
Vmin

)
+

1

1 + b2

Vmin

)
.

We construct the grid by taking γi = ci−12 γmin for i ∈ {1, . . . , kγ}, were kγ =
dln(γmax/γmin)/ ln c2e. In the experiments we took c2 = 1.05, and δ1 = δ2 = δ/2.

D.2.4 Minimization of the bound

The adjustment of the bound in Theorem 15 to our hypothesis space construction, as described above,
is:

L(MVρ) ≤
1

(0.5− µ)2

(
Eρ2 [L̂µ(h, h′, Sh ∩ Sh′)] +

2KL(ρ‖π) + ln 2k
δ

γn

+
φ(γKµ)

γK2
µ

Eρ2 [V̂µ(h, h′, Sh ∩ Sh′)]
1− λn

2(n−1)
+
K2
µ

(
2KL(ρ‖π) + ln 2k

δ

)
nλ
(
1− λn

2(n−1)

)
),

where n = minh,h′ |Sh ∩ Sh′ | and k = kλkγ . We minimize the bound without considering kγ and
kλ since we define the grid without taking them into consideration. However, we put back kγ and kλ
when computing the generalization bound. Thus, when doing the optimization we take k = 1, but
when we compute the bound we take the proper k = kλkγ .

Algorithm 2: Minimization of the bound in Theorem 15
Input: n, grid of µ and losses 1(h(Xi) 6= Yi) for all (Xi, Yi) ∈ Sh for all h
for µ selected by the binary search in the grid do

Initialize: ρ = π
Compute L̂µ(h, h′, Sh ∩ Sh′) and V̂µ(h, h′, Sh ∩ Sh′) for all h, h′

while The improvement of the bound for a fixed µ is larger than 10−9 do
Compute λ∗µ,ρ, the optimal λ given ρ and µ
Compute γ∗µ,ρ, the optimal γ given ρ and µ
Apply gradient descent to the bound w.r.t. ρ given µ, λ∗µ,ρ and γ∗µ,ρ

end while
Proceed to the next µ in the grid proposed by the binary search

end for

Optimal λ given µ and ρ Given µ and ρ, λ can be computed in the same way as in the optimization
of Theorem 13, since the optimization problem is the same, and get

λ∗µ,ρ =
2(n− 1)

n

(√
2(n− 1)Eρ2 [V̂µ(h, h′, Sh ∩ Sh′)]

K2
µ(2KL(ρ‖π) + ln 2k

δ )
+ 1 + 1

)−1
.

In our implementation at every optimization step we took the closest λ to the above value from the
λ-grid.
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Optimal γ given µ and ρ Given µ and ρ, the bound for the variance is obtained by plugging in the
optimal λ∗µ,ρ computed above. Let

UV(ρ, µ) =
Eρ2 [V̂µ(h, h′, Sh ∩ Sh′)]

1− λ∗µ,ρn

2(n−1)
+
K2
µ

(
2KL(ρ‖π) + ln 2k

δ

)
nλ∗µ,ρ

(
1− λ∗µ,ρn

2(n−1)

) .

Then

γ∗µ,ρ =
1

Kµ

(
W0

(
1

e

(
K2
µ

(
2KL(ρ‖π) + ln 2k

δ

)
nUV(ρ, µ)

− 1

))
+ 1

)
,

where W0 is the principal branch of the Lambert W function, which is defined as the inverse of the
function f(x) = xex. In our implementation at every optimization step we took the closest γ to the
above value from the γ-grid.

Gradient w.r.t. ρ given λ, γ, and µ Optimizing the bound w.r.t. ρ is equivalent to constrained
optimization of f(ρ) = Eρ2 [L̂µ(h, h′, S′)] + aEρ2 [V̂µ(h, h′, S′)] + 2bKL(ρ||π), where

a =
φ(Kµγ)

K2
µγ

1

1− nλ
2(n−1)

, b =
1

γn
+
φ(Kµγ)

K2
µγ

K2
µ

nλ(1− nλ
2(n−1) )

,

and the constraint is that ρ must be a probability distribution. We optimize ρ in the same way as
presented in Appendix D.1. We use L̂µ to denote the matrix of empirical µ-tandem losses and V̂µ to
denote the matrix of empirical variance of the µ-tandem losses. Then, the gradient w.r.t. ρ is given by:

(∇f)h = 2

(∑
h′

ρ(h′)(L̂µ(h, h
′, S′) + aV̂µ(h, h′, S′)) + b

(
1 + ln

ρ(h)

π(h)

))
,

∇f = 2
(
L̂µρ+ aV̂µρ+ b

(
1 + ln

ρ

π

))
.

We applied gradient descent in the same way as presented in Appendix D.1.

E Experiments

E.1 Data sets

As mentioned, we considered data sets from the UCI and LibSVM repositories [Dua and Graff, 2019,
Chang and Lin, 2011], as well as Fashion-MNIST (Fashion) from Zalando Research3. We used data
sets with size 3000 ≤ N ≤ 70000 and dimension d ≤ 1000. These relatively large data sets were
chosen in order to provide meaningful bounds in the standard bagging setting, where individual trees
are trained on n = 0.8N randomly subsampled points with replacement and the size of the overlap
of out-of-bag sets is roughly n/9. An overview of the data sets is given in Table 1.

For all experiments, we removed patterns with missing entries and made a stratified split of the data
set. For data sets with a training and a test set (SVMGuide1, Splice, Adult, w1a, MNIST, Shuttle,
Pendigits, Protein, SatImage, USPS) we combined the training and test sets and shuffled the entire
set before splitting.

E.2 Optimized weighted random forest

Experimental Setting

This section describes in detail the settings and the results of the empirical evaluation using random
forest (RF) majority vote classifiers.

We construct the ensemble from decision trees available in scikit-learn. For each data set, an ensemble
of 100 trees is trained using bagging (as described in Section 6). For each tree, the Gini criterion is
used for splitting and

√
d features are considered in each split.

3https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
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Table 1: Data set overview. cmin and cmax denote the minimum and maximum class frequency.
Data set N d c cmin cmax Source

Adult 32561 123 2 0.2408 0.7592 LIBSVM (a1a)
Cod-RNA 59535 8 2 0.3333 0.6667 LIBSVM
Connect-4 67557 126 3 0.0955 0.6583 LIBSVM
Fashion 70000 784 10 0.1000 0.1000 Zalando Research
Letter 20000 16 26 0.0367 0.0406 UCI
MNIST 70000 780 10 0.0902 0.1125 LIBSVM
Mushroom 8124 22 2 0.4820 0.5180 LIBSVM
Pendigits 10992 16 10 0.0960 0.1041 LIBSVM
Phishing 11055 68 2 0.4431 0.5569 LIBSVM
Protein 24387 357 3 0.2153 0.4638 LIBSVM
SVMGuide1 3089 4 2 0.3525 0.6475 LIBSVM
SatImage 6435 36 6 0.0973 0.2382 LIBSVM
Sensorless 58509 48 11 0.0909 0.0909 LIBSVM
Shuttle 58000 9 7 0.0002 0.7860 LIBSVM
Splice 3175 60 2 0.4809 0.5191 LIBSVM
USPS 9298 256 10 0.0761 0.1670 LIBSVM
w1a 49749 300 2 0.0297 0.9703 LIBSVM

Table 2: Numerical values of the test loss obtained by the RFs with optimized weighting. The smallest
loss is highlighted in bold, while the smallest optimized loss is underlined.

Data set L(MVu) L(MVρλ) L(MVρTND) L(MVρCCTND) L(MVρCCPBB)

SVMGuide1 0.0284 (0.0037) 0.0372 (0.0066) 0.0287 (0.0035) 0.0286 (0.0036) 0.0287 (0.0039)
Phishing 0.0292 (0.004) 0.0371 (0.0073) 0.0292 (0.0036) 0.0292 (0.0036) 0.0292 (0.004)
Mushroom 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Splice 0.0299 (0.009) 0.1087 (0.021) 0.0306 (0.0099) 0.0309 (0.0092) 0.0302 (0.01)
w1a 0.0108 (0.0007) 0.016 (0.0025) 0.0108 (0.0006) 0.0107 (0.0006) 0.0108 (0.0006)
Cod-RNA 0.0402 (0.0013) 0.0712 (0.0064) 0.0395 (0.0014) 0.0395 (0.0014) 0.0395 (0.0015)
Adult 0.1693 (0.0027) 0.1942 (0.0151) 0.1698 (0.0031) 0.1701 (0.003) 0.1698 (0.0031)
Connect-4 0.1706 (0.0023) 0.2803 (0.0165) 0.1699 (0.002) 0.1705 (0.0024) 0.1695 (0.0019)
Shuttle 0.0002 (0.0001) 0.0003 (0.0002) 0.0002 (0.0001) 0.0002 (0.0001) 0.0002 (0.0001)
Pendigits 0.0096 (0.0023) 0.0452 (0.0124) 0.0092 (0.0022) 0.0093 (0.0021) 0.0092 (0.0025)
Letter 0.0378 (0.0036) 0.1408 (0.0356) 0.0398 (0.0041) 0.0402 (0.0042) 0.0383 (0.0034)
SatImage 0.0828 (0.0068) 0.1321 (0.0268) 0.0835 (0.0061) 0.0839 (0.0062) 0.0832 (0.006)
Sensorless 0.0014 (0.0004) 0.0138 (0.0019) 0.0012 (0.0003) 0.0012 (0.0003) 0.0012 (0.0003)
USPS 0.0394 (0.0043) 0.1325 (0.0251) 0.0401 (0.0055) 0.0405 (0.0052) 0.0404 (0.005)
MNIST 0.0316 (0.0017) 0.16 (0.0352) 0.0323 (0.0017) 0.0324 (0.0017) 0.0317 (0.0014)
Fashion 0.1175 (0.0018) 0.2122 (0.0299) 0.1192 (0.0022) 0.1197 (0.0022) 0.1178 (0.0021)

We compare the RF using the default uniform weighting ρu and the optimized weighting obtained
by FO [Thiemann et al., 2016], TND [Masegosa et al., 2020], CCTND (Theorem 12) and CCPBB
(Theorem 15). Optimization is based on the out-of-bag sets (see Section 6). For each optimized RF,
we also compute the optimized bound.

Numerical Results

This section lists the numerical results for the empirical evaluation using RF. Table 2 provides the
numerical values of the test loss obtained by the RFs with uniform weighting and with weighting
optimized by FO, TND, CCTND and CCPBB; a visual presentation is given in Figure 2a. As
observed by Masegosa et al. [2020], optimization using FO leads to overfitting, while the second-
order bounds does not significantly degrade the performance. Among the second-order bounds,
optimizing using CCPBB produces the best classifier in most cases.

Table 3 provides the numerical values of the optimized bounds; a visual presentation is given in
Figure 2b. Table 4 provides the recorded Gibbs loss and tandem loss using the optimized ρ. The
optimal µ found is reported for CCTND and CCPBB as well.
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Table 3: Numerical values of the bounds for the RFs with optimized weighting. The tightest bound is
highlighted in bold, while the tightest second-order bound is underlined.

Data set FO(ρλ) TND(ρTND) CCTND(ρCCTND) CCPBB(ρCCPBB)

SVMGuide1 0.1079 (0.0079) 0.1836 (0.0062) 0.1853 (0.0059) 0.2806 (0.0071)
Phishing 0.1189 (0.0035) 0.1642 (0.0043) 0.1674 (0.0042) 0.2336 (0.005)
Mushroom 0.0068 (0.0001) 0.0353 (0.0002) 0.0388 (0.0002) 0.1121 (0.0006)
Splice 0.3245 (0.0218) 0.4077 (0.0062) 0.4247 (0.0065) 0.6562 (0.0056)
w1a 0.0424 (0.0015) 0.0633 (0.0009) 0.0642 (0.0009) 0.0805 (0.0011)
Cod-RNA 0.1629 (0.0018) 0.1663 (0.0014) 0.1698 (0.0014) 0.19 (0.0018)
Adult 0.4388 (0.0042) 0.5701 (0.0051) 0.5508 (0.004) 0.5976 (0.0042)
Connect-4 0.5978 (0.0067) 0.6831 (0.0039) 0.6758 (0.0036) 0.7112 (0.0038)
Shuttle 0.0026 (0.0002) 0.0078 (0.0002) 0.0083 (0.0002) 0.018 (0.0003)
Pendigits 0.142 (0.0035) 0.1445 (0.0026) 0.1504 (0.0042) 0.2155 (0.003)
Letter 0.3858 (0.0067) 0.4504 (0.0032) 0.4513 (0.003) 0.5134 (0.0039)
SatImage 0.3762 (0.0075) 0.4902 (0.0079) 0.4851 (0.007) 0.6158 (0.0083)
Sensorless 0.0348 (0.0031) 0.0257 (0.0006) 0.0265 (0.0006) 0.0376 (0.0007)
USPS 0.3394 (0.0065) 0.4059 (0.0048) 0.4097 (0.0044) 0.5086 (0.0042)
MNIST 0.3795 (0.0031) 0.3537 (0.0014) 0.3598 (0.0014) 0.3853 (0.0014)
Fashion 0.4806 (0.003) 0.5436 (0.0023) 0.5408 (0.0021) 0.5728 (0.0021)

Table 4: Numerical values for Gibbs loss, tandem loss and optimized µ for the RFs with optimized
weighting. We use Eρ[L] and Eρ2 [L] as short-hands for the Gibbs and the tandem loss respectively.

FO TND CCTND CCPBB
Data set Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] µ Eρ[L] Eρ2 [L] µ

SVMGuide1 0.0325 0.0217 0.0406 0.0185 0.0403 0.0184 -0.0527 0.0413 0.0194 -0.0258
Phishing 0.041 0.0255 0.0486 0.0197 0.0484 0.0196 -0.0295 0.049 0.0202 -0.0125
Mushroom 0.0 0.0 0.0002 0.0 0.0002 0.0 -0.0317 0.0002 0.0 -0.01
Splice 0.1068 0.0903 0.1564 0.0424 0.1522 0.0415 -0.057 0.16 0.044 0.0045
w1a 0.0156 0.0123 0.0179 0.0091 0.0179 0.009 -0.0111 0.018 0.0092 -0.0065
Cod-RNA 0.0712 0.0602 0.0802 0.0314 0.0803 0.0314 -0.0178 0.0815 0.0318 0.0102
Adult 0.1995 0.1474 0.2061 0.1184 0.2056 0.1182 -0.1216 0.2068 0.1194 -0.0918
Connect-4 0.2824 0.2564 0.2953 0.1523 0.2943 0.1521 -0.0959 0.2974 0.1535 -0.0615
Shuttle 0.0003 0.0001 0.0006 0.0002 0.0006 0.0002 -0.0044 0.0006 0.0002 0.0
Pendigits 0.0502 0.0346 0.061 0.0163 0.0609 0.0163 -0.0099 0.0614 0.0166 0.0092
Letter 0.1685 0.1249 0.1803 0.0851 0.1797 0.0849 -0.0501 0.1816 0.0861 -0.0228
SatImage 0.1478 0.0968 0.1612 0.0746 0.1602 0.0741 -0.1104 0.1617 0.0755 -0.0535
Sensorless 0.0125 0.0113 0.0192 0.0027 0.0192 0.0027 0.0008 0.0195 0.0027 0.01
USPS 0.1363 0.0989 0.1517 0.0644 0.1509 0.0641 -0.053 0.1522 0.065 -0.0173
MNIST 0.1763 0.1286 0.1837 0.075 0.1835 0.075 0.0281 0.185 0.0756 0.037
Fashion 0.2256 0.1715 0.2325 0.1196 0.2322 0.1195 -0.0577 0.2334 0.1203 -0.0382

E.3 Ensemble of multiple heterogeneous classifiers

Experimental Setting

This section describes in detail the settings and the results of the experimental evaluation using an
ensemble of multiple heterogeneous classifiers.

The ensemble is defined by a set of standard classifiers available in scikit-learn:

• Linear Discriminant Analysis, with default parameters, which includes a singular value
decomposition solver.

• Three versions of k-Nearest Neighbors: (i) k=3 and uniform weights (i.e., all points in
each neighborhood are weighted equally); (ii) k=5 and uniform weights; and (iii) k=5 where
points are weighted by the inverse of their distance. In all cases, it is employed the Euclidean
distance.

• Decision Tree, with default parameters, which includes Gini criterion for splitting and no
maximum depth.

• Logistic Regression, with default parameters, which includes L2 penalization.
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Table 5: Numerical values of the test loss obtained by ensembles of multiple heterogeneous classifiers
with optimized weighting. The smallest loss is highlighted in bold, while the smallest optimized loss
is underlined.

Data set L(MVu) L(hbest) L(MVρλ) L(MVρTND
) L(MVρCCTND

) L(MVρCCPBB
)

SVMGuide1 0.0357 (0.005) 0.0404 (0.0047) 0.0404 (0.0047) 0.0352 (0.0051) 0.0348 (0.0053) 0.0343 (0.0059)
Phishing 0.0353 (0.0035) 0.0459 (0.0058) 0.0459 (0.0058) 0.0333 (0.0031) 0.0337 (0.0028) 0.0335 (0.0032)
Mushroom 0.0001 (0.0002) 0.0002 (0.0004) 0.0 (0.0) 0.0001 (0.0002) 0.0001 (0.0002) 0.0001 (0.0002)
Splice 0.1055 (0.0104) 0.0768 (0.0098) 0.0768 (0.0098) 0.075 (0.0093) 0.0768 (0.0098) 0.069 (0.0082)
w1a 0.0125 (0.0007) 0.0153 (0.0009) 0.0153 (0.0009) 0.0128 (0.0008) 0.0129 (0.0008) 0.0128 (0.0007)
Cod-RNA 0.0707 (0.0022) 0.064 (0.0022) 0.064 (0.0022) 0.0552 (0.002) 0.0551 (0.0019) 0.0581 (0.0023)
Adult 0.1627 (0.0036) 0.1543 (0.0039) 0.1543 (0.0039) 0.1563 (0.0042) 0.1541 (0.0039) 0.1566 (0.0048)
Protein 0.3491 (0.0066) 0.3251 (0.0061) 0.3251 (0.0061) 0.3176 (0.0052) 0.3251 (0.0061) 0.3185 (0.0048)
Connect-4 0.2039 (0.0035) 0.2433 (0.0032) 0.2433 (0.0032) 0.1989 (0.003) 0.1992 (0.0032) 0.2018 (0.0037)
Shuttle 0.0012 (0.0002) 0.0005 (0.0002) 0.0005 (0.0002) 0.0006 (0.0002) 0.0006 (0.0002) 0.0006 (0.0002)
Pendigits 0.0111 (0.0016) 0.0092 (0.0017) 0.0092 (0.0017) 0.0086 (0.0016) 0.0087 (0.0016) 0.0085 (0.0019)
Letter 0.069 (0.0041) 0.0673 (0.0052) 0.0673 (0.0052) 0.0538 (0.0043) 0.054 (0.0043) 0.0526 (0.0041)
SatImage 0.0997 (0.0069) 0.1054 (0.0046) 0.1053 (0.0046) 0.0939 (0.0061) 0.0954 (0.0063) 0.093 (0.0059)
Sensorless 0.1816 (0.0121) 0.0213 (0.0018) 0.0213 (0.0018) 0.0213 (0.0018) 0.1089 (0.2764) 0.0213 (0.0018)
USPS 0.0359 (0.0054) 0.0375 (0.0038) 0.0375 (0.0038) 0.0324 (0.0044) 0.0326 (0.0042) 0.0326 (0.0036)
MNIST 0.0356 (0.002) 0.0349 (0.0017) 0.0349 (0.0017) 0.0304 (0.0016) 0.0304 (0.0017) 0.0304 (0.0016)
Fashion 0.1341 (0.0019) 0.154 (0.0028) 0.154 (0.0028) 0.1323 (0.003) 0.1341 (0.003) 0.1346 (0.0034)

• Gaussian Naive Bayes, with default parameters.

We included three versions of the kNN classifier to test if our bounds could deal with a heterogeneous
set of classifiers where some of them are expected to provide highly correlated errors while others are
expected to provide much less correlated errors.

Each of the seven classifiers of the ensemble was learned from a bootstrap sample of the training data
set. We did it in the way to be able to compute and optimize our bounds with the out-of-bag-samples
as described in Section 6.

Numerical Results

This section lists the numerical results for the empirical evaluation using ensembles of multiple
heterogeneous classifiers.

Table 5 provides the numerical values of the test loss obtained by these ensembles with uniform
weighting and with weighting optimized by FO, TND, CCTND and CCPBB; a visual presentation
is given in Figure 2c. In this case, uniform voting is not a competitive weighting scheme. The
second-order bounds perform much better than uniform weighting and than the weights computed
according to the first-order bound. There is not any clear winner among the second-order bounds.

Table 6 provides the numerical values of the optimized bounds; a visual presentation is given in
Figure 2d. Among the second-order bounds, the CCTND bound is often tighter in this setting.

Table 7 provides the recorded Gibbs loss and tandem loss using the optimized ρ. The optimal µ found
is reported for CCTND and CCPBB as well.
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Table 6: Numerical values of the bounds for ensembles of multiple heterogeneous classifiers with
optimized weighting. The tightest bound is highlighted in bold, while the tightest second-order bound
is underlined.

Data set FO(ρλ) TND(ρTND) CCTND(ρCCTND) CCPBB(ρCCPBB)

SVMGuide1 0.1133 (0.0053) 0.221 (0.0127) 0.2183 (0.0112) 0.3142 (0.0116)
Phishing 0.1242 (0.0056) 0.1957 (0.0075) 0.1977 (0.0072) 0.2658 (0.0074)
Mushroom 0.0078 (0.0008) 0.0412 (0.0019) 0.0441 (0.0019) 0.1162 (0.0026)
Splice 0.2361 (0.0186) 0.4772 (0.0286) 0.4613 (0.0242) 0.6769 (0.0288)
w1a 0.0392 (0.0015) 0.0694 (0.0021) 0.0703 (0.0021) 0.0879 (0.0022)
Cod-RNA 0.1448 (0.0026) 0.2164 (0.0032) 0.2148 (0.0031) 0.2445 (0.003)
Adult 0.3343 (0.0071) 0.5648 (0.0077) 0.5366 (0.0066) 0.5857 (0.0064)
Protein 0.6944 (0.0057) 1.0 (0.0) 0.9078 (0.0034) 1.0 (0.0)
Connect-4 0.5157 (0.0047) 0.7272 (0.0099) 0.6733 (0.0068) 0.7107 (0.0064)
Shuttle 0.0033 (0.0008) 0.0106 (0.0012) 0.0111 (0.0012) 0.0215 (0.0011)
Pendigits 0.0335 (0.0033) 0.0838 (0.0062) 0.0856 (0.0061) 0.1412 (0.0067)
Letter 0.1591 (0.0053) 0.2682 (0.0092) 0.2627 (0.0084) 0.3154 (0.0099)
SatImage 0.271 (0.0146) 0.4908 (0.0123) 0.4593 (0.011) 0.5857 (0.0122)
Sensorless 0.0523 (0.0031) 0.1173 (0.0057) 0.2054 (0.2793) 0.1357 (0.0064)
USPS 0.1069 (0.0053) 0.2183 (0.0074) 0.2142 (0.0066) 0.2932 (0.0084)
MNIST 0.081 (0.0022) 0.139 (0.0049) 0.1383 (0.0046) 0.1574 (0.0051)
Fashion 0.3291 (0.0033) 0.4945 (0.0066) 0.4709 (0.0049) 0.5049 (0.0045)

Table 7: Numerical values for Gibbs loss, tandem loss and optimized µ for the heterogeneous
classifiers with optimized weighting. We use Eρ[L] and Eρ2 [L] as short-hands for the Gibbs loss and
the tandem loss respectively.

FO TND CCTND CCPBB
Data set Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] Eρ[L] Eρ2 [L] µ Eρ[L] Eρ2 [L] µ

SVMGuide1 0.0365 0.031 0.0457 0.026 0.0439 0.0258 -0.0691 0.046 0.0267 -0.0362
Phishing 0.0447 0.0383 0.059 0.0262 0.0533 0.0262 -0.0419 0.059 0.0266 -0.0158
Mushroom 0.0001 0.0 0.0041 0.0003 0.0029 0.0002 -0.0289 0.0046 0.0003 -0.008
Splice 0.0754 0.0754 0.1265 0.0552 0.1062 0.0548 -0.19 0.1331 0.0578 -0.0672
w1a 0.0147 0.0134 0.0204 0.0106 0.0195 0.0106 -0.0125 0.0192 0.0108 -0.0065
Cod-RNA 0.0638 0.0572 0.0737 0.0425 0.0717 0.0425 -0.0356 0.0813 0.0442 -0.02
Adult 0.1502 0.1484 0.2049 0.1181 0.1726 0.1224 -0.1771 0.1907 0.1202 -0.1168
Protein 0.3224 0.3153 0.4052 0.2645 0.324 0.3017 -1.2391 0.4182 0.267 -0.5
Connect-4 0.2438 0.236 0.2612 0.1634 0.2534 0.1638 -0.221 0.2628 0.165 -0.1912
Shuttle 0.0005 0.0004 0.0019 0.0004 0.0014 0.0004 -0.0047 0.0021 0.0004 0.0
Pendigits 0.008 0.0069 0.0156 0.0062 0.0133 0.0061 -0.0299 0.0144 0.0063 -0.0118
Letter 0.0644 0.0587 0.0768 0.0454 0.0723 0.0454 -0.0641 0.086 0.0466 -0.0407
SatImage 0.1032 0.0928 0.1246 0.0766 0.1188 0.0764 -0.1647 0.1284 0.0783 -0.0995
Sensorless 0.0208 0.0208 0.0345 0.0198 0.1161 0.1036 -0.027 0.0445 0.0202 -0.0122
USPS 0.036 0.0326 0.0478 0.028 0.0434 0.0278 -0.0676 0.0496 0.0288 -0.0357
MNIST 0.0345 0.0304 0.0428 0.026 0.0403 0.026 -0.0272 0.0482 0.0265 -0.017
Fashion 0.1528 0.1488 0.1665 0.1081 0.1636 0.1084 -0.1173 0.1724 0.1092 -0.094
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