
Appendix – Scalable Bayesian GPFA with
automatic relevance determination and
discrete noise models
A Further analyses of preparatory dynamics in the primate reaching task
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Figure 5: Further analyses of M1 preparatory dynamics. (a-d) Similarity matrix of raw neural
activity Y (a & b) and latent states found by FA (c & d) at target onset (a & c) and 75 ms prior
to movement onset (b & d), with analyses performed as in Figure 3f. (e) z-scored similarity as a
function of difference in reach direction; here, the mean similarity across pairs of reaches is shown at
target onset (left) and 75 ms prior to movement onset (right). The bGPFA latent states show much
stronger modulation than either raw neural activity (Y ) or latent states from FA. (f) Modulation of
similarity by reach direction as a function of time from movement onset. Modulation was defined
as the difference between maximum and minimum z-scored similarity as a function of difference
in reach direction (peak-to-trough in panel e). Blue solid line indicates the z-scored hand speed,
confirming the absence of premature movement relative to our definition of movement onset. bGPFA
latent similarity increases well before hand speed and starts decreasing substantially before the hand
speed peaks. Dashed lines indicate modulation at target onset for each method.

We performed analyses as in Figure 3f using the raw data (Y ) and using factor analysis (FA) with 20
latent dimensions instead of using the bGPFA latent states. The raw data Y showed a high degree of
similarity at target onset compared to movement onset, but little discernable structure as a function of
reach direction at either point in time (Figure 5a-b).

While the FA latent distances exhibited no modulation by reach direction at target onset, FA did
discover weak modulation at movement onset (Figure 5a-b). This is qualitatively consistent with
our results using bGPFA but with a lower signal to noise ratio. Here and in Section 3.2, we defined
movement onset as the first time during a reach where the cursor velocity exceeded 0.025 m s−1, and
we observed little to no quantifiable movement before this point (Figure 5f). We also discarded ‘trials’
with premature movement for all analyses here and in Section 3.2, which we defined as reaches with
a reaction time of 75 ms or less.

To quantify and compare how neural activity was modulated by the similarity of reach directions
for different analysis methods, we first computed z-scores of the similarity matrices for both the
bGPFA latent states, raw activity, and the latent states from FA. z-scores were calculated as z =
(S − mean(S))/std(S) for each similarity matrix S, and the diagonal elements were excluded
for this analysis. We then computed the mean of the z-scored pairwise similarities as a function
of difference in reach direction across all pairs of 762 reaches. We found that none of the datasets
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Figure 6: Analyses of M1 dynamics with GPFA and FA. (a) P-GPFA was fitted to data recorded
from M1 during the self-paced reaching task. We computed the similarity matrix of the latent
state at stimulus onset showing no obvious structure (left) and 75 ms prior to movement onset
showing modulation by reach direction (right). Reaches are sorted by reach direction along both
axes. (b) Example P-GPFA latent trajectories in the two principal latent dimensions for five rightward
reaches (grey) and five leftward reaches (red). Trajectories are plotted from the appearance of the
stimulus until movement onset (circles; the trajectories shown are the same as in Figure 3e). (c) As
in (b), now showing latent trajectories inferred by factor analysis. These exhibit less discernable
structure due to the lack of an explicit smoothness prior.

exhibited notable modulation at target onset (Figure 5e). In contrast, the neural data exhibited
modulation by reach similarity 75 ms prior to movement onset. This modulation was strongest for
the bGPFA latent states followed by the FA latents, and the modulation by reach similarity was very
weak for the raw neural activity (Figure 5e). To see how this modulation by reach direction varied as
a function of time from movement onset, we computed the difference (δz) between the maximum
and minimum of the modulation curves and repeated this analysis at different times prior to and
during the reach process. We found that the modulation in neural activity space increased before any
detectable movement, with bGPFA showing the strongest signal followed by factor analysis and then
the raw activity (Figure 5f). Indeed, the bGPFA latent modulation was maximized near movement
onset, while the reach speed did not peak until several hundred milliseconds after movement onset
where bGPFA latent trajectories have started to diverge again. Taken together, these results confirm
that our analyses of bGPFA preparatory states do not reflect premature movement onset, and that they
are not artifacts of the temporal correlations introduced by our GP prior since noisier but qualitatively
similar results arise from the use of factor analysis.

For further comparison with non-Bayesian Gaussian process factor analysis, we also fitted Poisson
GPFA (P-GPFA) to the primate dataset using our variational inference approach for scalability but
without a prior over C (Section 2.1). For this analysis, we used 16 latent dimensions as inferred by
bGPFA, and we subselected latent processes with timescales ≤ 200 ms to study the putatively fast
motor preparation as for bGPFA. We then orthogonalized the latent dimensions by performing an
SVD on the loading matrix (see 20 for details). Similar to our results from bGPFA, we found that the
latent trajectories became modulated by movement direction prior to movement onset (Figure 6a)
with a similar degree of modulation to bGPFA (δz = 1.01 for bGPFA; δz = 0.99 for P-GPFA).
When visualizing the latent trajectories for the example reaches considered in Figure 3e, we also
found that these diverged by reach direction (Figure 6b), similar to the bGPFA latent trajectories and
unlike vanilla factor analysis which assumes temporal independence a priori (Figure 6c)

B S1 activity

In this section, we compare the latent processes inferred for M1 dynamics to those inferred by
applying bGPFA to the recordings from S1. In contrast to the clustering by reach direction in M1,
there was less obvious modulation by movement direction in S1 prior to movement onset (Figure 7).
To quantify this, we again computed the degree of modulation prior to movement onset, which was
δz = 0.38 for S1 compared to δz = 1.01 for M1. This is also consistent with our decoding analyses
in Figure 3b which showed that activity in M1 predicts movement 100-150 ms into the future while
S1 activity is not predictive of future kinematics to the same extent.
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Figure 7: Analyses of S1 dynamics by reach direction. (a) bGPFA was fitted to data recorded
from S1 during the self-paced reaching task. The panel shows example latent trajectories in the
two most informative latent dimensions for five rightward reaches (grey) and five leftward reaches
(red). Trajectories are plotted from the appearance of the stimulus until movement onset (circles; the
trajectories shown are the same as in Figure 3e). Unlike the M1 latent trajectories, there is no obvious
clustering by reach direction during movement preparation. (b) Similarity matrix of the latent state at
stimulus onset (left) and 75 ms prior to movement onset (right). Reaches are sorted by reach direction
along both axes, and there is no obvious structure in either similarity matrix in contrast to the results
for the M1 recordings.

C Further reaction time analyses

For analyses of correlations between latent distances and reaction times, we only considered reaches
with a reaction time of at least 125 ms and at most 425 ms, which retained 712 of 762 reaches
(Figure 8a). This is because very long reaction times may reflect the monkey not being fully engaged
with the task during those reaches, and very short reaction times may reflect spurious movement.
To confirm that our finding of a strong correlation between latent distance and reaction time in
Figure 3g is not an artifact of the temporal correlations introduced by the bGPFA generative model,
we generated a synthetic control distribution. Here we drew 50,000 synthetic latent trajectories from
our learned generative model with trajectory durations matched to those observed experimentally on
each trial. We then computed mean preparatory states and latent distances to preparatory states as in
the experimental data (Section 3.2) and computed correlations with the experimental reaction times.
We found a mean correlation of 0.02 and a range of −0.14 to 0.18 in the synthetic data, suggesting
that our generative model may introduce weak correlations between latent distances and reaction
times. However, the experimentally observed correlation of 0.45 was much larger than what could be
expected by chance. This verifies our finding that the distance from the latent state at target onset
to the corresponding preparatory state has behavioral relevance, with better initial states leading to
shorter reaction times.

Although we already find a fairly strong relationship between latent distances and reaction times, it is
worth noting that several additional considerations may further improve such predictions. Notably,
our naïve Euclidean distance metric could be improved by instead defining a metric based on the
probabilistic model itself [16]. Additionally, while we categorize reaches by reach direction, reaches
in the same direction can still have different start and end points on the grid (Figure 3a), leading to
different posture and muscle activations which is likely to significantly affect neural activity. Our
analysis by reach direction therefore only represents a coarse categorization of the rich behavioral
space, and it remains to be seen how neural activity and latent trajectories are affected by e.g. posture
during the task.

Finally we considered how the dynamics of long-timescale latent processes relate to the reaction
time across trials (c.f. Section 3.3). Here we found that the two slowest dimensions had timescales
of τ = 1.4 s and τ = 1.7 s, similar to the timescale of single reaches which generally lasted
between 1 and 2 seconds (Figure 8c). Intriguingly, the latent state in these dimensions at target onset
was predictive of reaction time with Pearson correlations of ρ = 0.40 and ρ = 0.36 respectively
(Figure 8d). While the information about reaction time contained in these two dimensions was
largely redundant, it was orthogonal to that encoded by the distance to preparatory state in the fast
dimensions. In particular, a linear model had 19.9% variance explained from the distance to prep
in fast dimensions, 15.7% variance explained from the slow latent dimension with the strongest
correlation, and 28.7% when combining these two features which corresponds to 80.7% of the
additive value.
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Figure 8: Further reaction time analyses. (a) Histogram of reaction times across all succesful
reaches. For our correlation analyses, we only considered reaches with a reaction time between
125 ms and 425 ms (blue vertical lines). (b) Pearson correlations between distance to prep state and
reaction time in synthetic data. Histogram corresponds to correlations between the true reaction times
and 50,000 draws from the learned generative model. Blue dashed line indicates mean across all
synthetic datasets (0.02), which is much smaller than the observed correlation in the experimental
data of 0.45 (blue solid line). (c) Histogram of reach durations for all reaches with a reaction time
between 125 ms and 425 ms. (d) Plot of reaction time against the value of a long timescale latent
dimension at target onset (τ = 1.4 s, ρ = 0.40).

D Latent dimensionality

In this section, we estimate the dimensionality of the primate data as a function of the offset between
M1 and S1 spike times using both bGPFA and participation ratios computed on the basis of PCA
[13]. The participation ratio is defined as

PR =

(∑
i

λi

)2

/
∑
i

λ2i , (15)

where λi is the ith eigenvalue of the covariance matrix Y Y T . When computing the participation
ratio of the data as a function of the M1 spike time shift, we find that the dimensionality is minimized
for a shift of 75-100 ms (Figure 9). This suggests that the neural recordings can be explained more
concisely when taking into account the offset in decoding between M1 and S1 which is consistent
with the increased log likelihood after shifting the M1 spikes (Section 3.2).

This trend is not directly observable in the number of dimensions retained by bGPFA with and without
a 100 ms shift of the M1 spike times (18.8± 0.19 vs 18.7± 0.20 respectively across 10 model fits).
However, the discrete nature of this dimensionality measure makes it relatively insensitive to small
effects since it relies on stochastic differences in the retention of a dimension with little information
content. We therefore utilized the interpretation of the learned prior scale s2d as a measure of variance
explained (Appendix J) and defined a ‘participation ratio’ for bGPFA, similar to the PCA participation
ratio considered above:

PRbGPFA =

(∑
d

s2d

)2

/
∑
d

(
s2d
)2
. (16)

Here we found a strong effect of shifting the M1 spike times, which reduced the dimensionality
from PRbGPFA = 6.16 ± 0.12 to PRbGPFA = 5.62 ± 0.06 (p = 0.001). Additionally, we note
that bGPFA explains the data with only a handful of latent dimensions (19 total dimensions; 6
when re-weighted as a participation ratio). This is much lower than the dimensionality of 127-129
estimated by the PCA participation ratio which generally infers higher dimensionalities for noisier
(more ‘spherical’) datasets.
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Figure 9: Neural dimensionality. (a) Participation ratio (Equation 15) as a function of temporal
offset added to M1 spike times in the primate dataset.

E Further validation of bGPFA on synthetic and biological data

In Figure 2a-b, we considered the performance of FA, GPFA and bGPFA on synthetic data with
Gaussian noise. To further validate our method in a non-Gaussian setting relevant to the study of
electrophysiological recordings, we also performed similar analyses on (i) synthetic data with Poisson
noise and (ii) experimental recordings from the primate reaching task. In both cases, we compared
FA, GPFA and bGPFA with Poisson noise, since such Poisson noise models are common in the
neuroscience literature [7, 11, 19, 21]. We note that these non-conjugate models are all readily
implemented within our inference framework as special cases of bGPFA.

Synthetic data In this section, we perform analyses similar to Figure 2b to validate bGPFA and its
capacity for automatic relevance determination on synthetic data. We first generated a dataset drawn
from the GPFA generative model but with a Poisson noise model after passing the activations through
a softplus nonlinearity

Y ∼ Poisson (log [1 + expCX]) (17)

We then fitted Factor analysis, GPFA, and bGPFA and without ARD to the resulting dataset, all
with Poisson observation models and exponential non-linearities (Appendix K; we denote these
Poisson models as ‘P-FA’ etc.). To quantify performance, we computed the cross-validated predictive
log likelihood Lpred =

∑
it log pPoisson(yit|fit), where i and t index neurons and time points in a

held-out test set (results were similar when considering MSEs). When considering Lpred as a function
of latent dimensionality, we found that both P-FA and P-GPFA exhibited a clear maximum at the
true dimensionality of D∗ = 3 while P-bGPFA without ARD was robust to overfitting, similar to our
findings for the Gaussian models (Figure 2b). Finally, bGPFA with ARD was capable of automatically
recovering this dimensionality as well as the maximum predictive performance achieved across the
other models.

Experimental data We then proceeded to perform an analysis as above on data from the self-paced
monkey reaching dataset [9]. For this analysis, we used a smaller subset of the data for computational
convenience, considering only 1000 timepoints but including all 200 neurons. We performed these
analyses in 10-fold cross-validation, averaging performance over folds and repeating the entire
analysis across 5 different random seeds. We again fitted P-FA and P-GPFA and found that these
models exhibited a clear maximum in their predictive log likelihoods. As for the synthetic data,
P-bGPFA without ARD was robust to overfitting, and the introduction of ARD allowed us to infer
the optimal latent dimensionality of D∗ ≈ 4 as well as achieving optimal performance without a
priori assumptions about the latent dimensionality. The robustness to overfitting of bGPFA both with
and without ARD suggests that it could also be a valuable tool in settings with large simultaneous
recordings of thousands of neurons, which are becoming increasingly relevant with recent advances
in neural recording technologies [10, 15].

Taken together, these results further validate the utility of bGPFA on both synthetic and biological data
with non-conjugate noise models. They also highlight the utility of automatic relevance determination
in practice, where it obviates the need to perform extensive cross-validation to select an appropriate
latent dimensionality for the experimental data.
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Figure 10: Bayesian GPFA applied to spike count data. (a) Cross-validated predictive log
likelihoods of factor analysis (yellow), GPFA (green), and Bayesian GPFA without ARD (blue) fitted
to synthetic data with a ground truth dimensionality of three for different model dimensionalities. All
methods used a Poisson observation model p(ynt|fnt). bGPFA with ARD recovered the performance
of the optimal non-ARD models without requiring a search over latent dimensionalities (black).
(b) As in (a), now for models applied to a subset of the monkey reaching data analyzed in Section 3.2.

F Parameterizations of the approximate GP posterior

In this section, we compare different forms of the variational posterior q(X) discussed in Section 2.2.
For factorizing likelihoods, the optimal posterior takes the form

q(xd) ∝ p(x)
∏
t

N (xt|gt, vt), (18)

where gt and vt are variational parameters [8]. Equation 18 might therefore seem to be an appropriate
form of the variational distribution q(X). However, this formulation is computationally expensive
and the likelihood p(Y |X) does not factorize across time in bGPFA.

Instead, we therefore consider approximate parameterizations of the form

q(xd) = N (µd,Σd) (19)

µd = K
1
2

d νd (20)

Σd = K
1
2

d ΛdΛ
T
dK

1
2

d , (21)

where K
1
2

d is a matrix square root of the prior covariance matrix Kd, and νd ∈ RT is a vector of
variational parameters. This formulation simplifies the KL divergence term for each latent dimension
in Equation 6 from

KL[q(xd)||p(xd|t)] =
1

2

(
Tr(K−1d Σd) + log |Kd| − log |Σd|+ µTdK−1d µd − T

)
(22)

to
KL[q(xd)||p(xd|t)] =

1

2

(
‖Λd‖2F − 2 log |Λd|+ ||νd||2 − T

)
. (23)

In the following, we drop the ·d subscript to remove clutter, and we use the notation Ψ =
diag(ψ1, ..., ψT ) with positive elements ψt > 0, to denote a positive definite diagonal matrix.

F.1 Square root of the prior covariance

For a stationary prior covarianceK, we can directly parameterizeK
1
2 by taking the square root of

k(·, ·) in the Fourier domain and computing the inverse Fourier transform. For the RBF kernel used
in this work we get

k(ti, tj) = exp

(
− (ti − tj)2

2τ2

)
(24)

k
1
2 (ti, tj) =

(
2

π

) 1
4
(
δt

τ

) 1
2

exp

(
− (ti − tj)2

τ2

)
. (25)
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In this expression, δt is the time difference between consecutive data points, we have assumed a
signal variance of 1 in the prior kernel, and we note that our parameterization only gives rise to the
exact matrix square root of the RBF kernel in the limit where T � τ . Note that this is the case
in the present work since T ≈ 30 minutes is much larger than the longest timescales learned by
bGPFA (τ ≈ 2 s). For most experiments in neuroscience, observations are binned such that time is
on a regularly spaced grid and our parameterization can be applied directly. In other cases, kernel
interpolation should first be used to construct a covariance matrix with Toeplitz structure [17, 18].

F.2 Parameterization of the posterior covariance

We now proceed to describe the various parameterizations of Λ whose performance is compared in
Figure 11. Other parameterizations are explored in [2].

Diagonal Λ We parameterize each latent dimension with Λ = Ψ. This gives rise to a KL term:

2KL[q(x)||p(x)] =
∑
t

ψ2
t + ||ν||2 − T − 2

∑
t

logψt. (26)

We can compute Λv in linear time since Λ is diagonal which allows for cheap differentiable sampling:

η ∼ N (0, I) (27)

sample = K
1
2 (Λη + ν), (28)

where the multiplication byK
1
2 is done in O(T log T ) time in the Fourier domain.

Circulant Λ We parameterize each latent dimension with Λ = ΨC. Here, C ∈ RT×T is a
positive definite circulant matrix with 1+ T

2 (integer division) free parameters, which we parameterize
directly in the Fourier domain as ĉ = rfft(c) ∈ R1+T/2, where c is the first column of C with ĉ ≥ 0
elementwise. We compute the KL as

2KL[q(x)||p(x)] =

(∑
t

c2t

)(∑
t

ψ2
t

)
+ ||ν||2 − T − 2

∑
t

logψt − 2 log |C| (29)

log |C| = log ĉ1 + log ĉT
2 +1 + 2

T
2∑
i=2

log ĉi (even T) (30)

log |C| = log ĉ1 + 2

T+1
2∑
i=2

log ĉi (odd T), (31)

where c = irfft(ĉ). We can sample differentiably in O(T log T ) time by computing

η ∼ N (0, I) (32)
Cη = irfft(ĉ� rfft(η)) (33)

sample = K
1
2 (ΨCη + ν), (34)

where � denotes the complex element-wise product.

Low-rank Λ We letQ ∈ Vr(RT ) such thatQTQ = Ir and write

Λ = IT −QΨQT , (35)

where we now constrain 0 < ψi < 1 to maintain the positive definiteness of Λ. In practice, we keep
Q on the Stiefel manifold (i.e. QTQ = Ir) by (differentiably) computing the QR decomposition of
a T × r matrix of free parameters.

Circulant inverse Λ We let C be a circulant positive definite matrix as above and parameterize

Λ = (I + ΨCΨ)
−1
. (36)

Computing Λv products is done using the conjugate gradient algorithm, taking advantage of fast
products with Ψ and C; the same algorithm is also used to stochastically estimate log |Λ| and its
gradient (see the appendix of 14).
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Figure 11: Comparisons of different forms
of the approximate posterior q(x). (a) Syn-
thetic data (orange dots) plotted together with
the exact posterior (black) as well as the vari-
ational posteriors inferred by each whitened
parameterization. The solid lines denote the
(approximate) posterior means, and shaded ar-
eas indicate ±1 posterior standard deviations.
(b) Slice through the posterior covariance
(Covx∼q(x)

[
xT/2, xt

]
) for the true posterior

(top and black dotted lines) and the approx-
imate methods. Each method has different
characteristics, and the circulant parameteri-
zation provides a good qualitative fit at very
low computational cost. (c) We defined the
‘ELBO gap’ of each method as ELBO− LL,
where LL is the true data log likelihood. We
plotted this against the time per gradient eval-
uation and found that the circulant parame-
terization achieved high accuracy with cheap
gradients.

Toeplitz inverse Λ This proceeds just as for the circulant inverse form, with the circulant matrix
C replaced by an arbitrary Toeplitz matrix (also exploiting fast Tv products):

Λ = (I + ΨTΨ)
−1
. (37)

F.3 Numerical comparisons between different parameterizations

To compare these parameterizations, we generated a synthetic dataset (Figure 11a, orange dots) over
T = 1000 time bins by drawing samples {y1, . . . , yT } as yt = xt + σtξt where ξ(t) ∼ N (0, 1)
with non-stationary σt growing linearly from 0.1 to 0.5 over the whole range 0 ≤ t < T , and
xi ∼ N (0,K1/2K1/2) withK1/2 given by Equation 25. We fixed these generative parameters to
their ground truth and optimized the ELBO w.r.t. the variational parameters in this simple regression
setting. We found that all of the parameterizations accurately recapitulated the GP posterior mean
(Figure 11a). However, the degree to which they captured the non-stationary posterior covariance
and data log likelihood varied between methods (Figure 11b-c). To quantify this, we computed the
difference between the asymptotic ELBO of each method and the exact log marginal likelihood.
This ELBO gap was small for the circulant parameterization, the inverse methods, and the low rank
parameterization with sufficiently high r. Although the circulant parameterization did not fully capture
the non-stationary aspect of the posterior variance, this did not affect the ELBO gap substantially.
Importantly, however, the circulant parameterization was more than an order of magnitude faster
per gradient evaluation than the other methods with comparable accuracy (Figure 11c). For these
reasons as well as the excellent performance in a latent variable setting (Section 3.1, Section 3.2,
Appendix E), we used the circulant parameterization for all experiments. However, repeating all
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analyses with a simple diagonal parameterization also lead to good performance and qualitatively
similar results.

G Relation between variational posterior over F and true posterior

Here we show that our parameterization of q(fn) includes the exact posterior in the case of Gaussian
noise.

When the noise model is Gaussian (i.e., p(yn|fn) = N (y|fn, σ2
nI)), we can compute the posterior

over f∗n = fn(X?) at locationsX? in closed form:

f∗n|X?,X,yn ∼ N (X?TS2XK̂−1yn,X
?TS(I −XK̂−1XT )SX?) (38)

where K̂ = XTS2X + σ2
nI . Note that the posterior is low-rank as the rank of I −XK̂−1XT is

at most D. This means that when we do variational inference, we can parameterize our approximate
posterior as:

q(f∗n) = N (f |X?TSνn,X
?TSLnL

T
nSX

?) (39)
where νn ∈ RD and Ln ∈ RD×D are the parameters of the approximate posterior (Section 2.2). We
see that this parameterization is exact when:

νn = SXK̂−1yn (40)

LnL
T
n = I −XK̂−1XT . (41)

Note that the right-hand side of Equation 41 is guaranteed to be positive definite because the true
posterior must be positive definite. Importantly, for this parameterization, the KL term in Equation 10
simplifies to

KL(q(fn|X)||p(fn|X)) = KL(N (νn,LnL
T
n )||N (0, I)), (42)

which is independent ofX and allows us to do efficient inference due to the low dimensionality of
νn and Ln.

H Relation between variational posterior over F and SVGP

For general non-Gaussian noise models, the parameterization in Appendix G will no longer be exact.
However, here we show that it is in this case equivalent to a stochastic variational Gaussian process
(SVGP; 3). In SVGP, we choose a variational distribution:

q(u) = N (u|ZTSµ,ZTSMMTSZ) (43)

at inducing points Z ∈ RD×m, where µ and M are the “whitened” parameters [4]. This gives an
approximate posterior:

q(f∗) = Eq(u) [p(f |u)] (44)

= N (f |X?TSΠzµ;X?TSΠz(MMT − I)ΠzSX
?) (45)

where Πz = SZ(ZTS2Z)−1ZTS. If we choose m = D inducing points such that Z ∈ RD×D
and make sure Z has full rank, then Πz = I and thus

q(f∗) = N (f |X?TSµ,X?TS(MMT − I)SX?). (46)

We recover the parameterization in Section 2.2 when

µ = ν and MMT − I = LLT . (47)

For these more general noise models, the whitened parameterization of q(f) still gives rise to a
computationally cheap KL divergence that is independent ofX as in Equation 42:

KL(q(fn|X)||p(fn|X)) = KL(N (νn,LnL
T
n )||N (0, I)). (48)

In summary, we have shown that (i) our parameterization of q(fn) has sufficient flexibility to learn the
true posterior when the noise model is Gaussian (Appendix G), and (ii) it is equivalent to performing
SVGP where the locations of the inducing points do not matter provided that their rank is at least as
high as the number of latent dimensions.
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I Automatic relevance determination

Here we briefly consider why introducing a prior over the factor matrix enables automatic relevance
determination. These ideas reflect results by Bishop [1] and our experiments in Section 3.1.

For simplicity, we will first consider the case of factor analysis where p(X) =
∏
d,tN (xdt; 0, 1).

This gives rise to a marginal likelihood (with Gaussian noise) equal to

log p(Y ) =
∑
t

logN (yt; 0,CCT + Σ), (49)

where Σ = diag(σ2
1 , ..., σ

2
N ) is a diagonal matrix of noise parameters. It is in this case quite clear that

the optimal marginal likelihood is a monotonically increasing function of the latent dimensionality,
since any marginal likelihood reachable with a certain rank D is also reachable with a larger rank
D′ > D; increasing D can only increase model flexibility. We could in this case threshold the
magnitude of the columns of C to subselect more ‘informative’ dimensions, but this is not inherently
different from putting an arbitrary cut-off on the variance explained in PCA, and there is no Bayesian
“Occam’s razor” built into the method [6].

Consider now the case where we put a unit Gaussian prior on cnd. In this case, {cnd} are no longer
parameters of the model but rather latent variables to be inferred, which intuitively should reduce the
risk of overfitting. To expand on this intuition, consider the ELBO (c.f. Section 2.1) that results from
introducing such a prior over cnd:

log p(Y ) ≥ Eq(X) [log p(Y |X)]−
∑
d,t

KL [q(xdt)||N (0, 1)] (50)

log p(Y |X) =
∑
n

logN (yn; 0,XTX + σnI). (51)

Here we see that if a dimension d is truly uninformative, it should have xdt = 0 ∀t to avoid
contributing noise to the likelihood term viaXTX . However, reducing this noise will increase the
prior KL term, driving it to infinity in the limit of zero noise since the variational posterior over the
dth latent at time t, q(xdt), is in this case a delta function at zero. Optimizing the ELBO therefore
involves a balance between mitigating the noise induced byXTX and reducing the KL penalty, with
both of these terms contributing to a decreased ELBO compared to the model without uninformative
dimensions. Thus the prior over cnd counteracts the overfitting that would normally occur when
increasing the latent dimensionality in classical factor analysis, and this Bayesian treatment will lead
to a decrease in the ELBO with increasing dimensionality beyond the optimal D? that is needed to
adequately explain the data.

Finally let us consider the case where we learn the prior scale of the factor matrix, such that
cnd ∼ N (0, s2d) with sd optimized w.r.t. the ELBO. Critically, the likelihood term now becomes:

log p(Y |X) =
∑
n

logN (yn; 0,XTS2X + σnI). (52)

with S = diag(s1, . . . , sD). In this case, adding uninformative dimensions beyond the optimal D?

still cannot increase the ELBO (in the limit of largeN ). However, letting sd → 0 for these superfluous
dimensions will prevent them from contributing to p(Y |X), thus allowing q(xdt) → N (0, 1) to
drive the prior KL term to zero for these dimensions. In this limit, we recover both the ELBO and the
posteriors associated with the D?- dimensional model. We thus have a built-in Occam’s razor which
will shave off any uninformative latent dimensions, and these will be identifiable as dimensions for
which sd ≈ 0 and q(xdt) ≈ N (0, 1).

These ideas generalize to GPFA where the posterior over latents will instead approach the GP prior
q(xd) ≈ N (0,K) for uninformative dimensions. This corresponds to the limit of ν → 0, C → I ,
and Ψ→ I in our circulant parameterization in Section 2.2 and Appendix F. In all of our simulations,
we found a clear clustering of dimensions after training with some clustered near zero sd, and others
clustered with much larger sd (Figure 2c and Figure 3b). Note that in practice we do not actively
truncate the model by discarding dimensions with sd ≈ 0 but merely use the terminology to indicate
that these dimensions have negligible contributions to the posterior predictive q(yn), as well as to the
latent posteriors q(xd) for the dimensions with large sd.
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J Most informative dimensions

In this work, we refer to the latent dimensions with the highest values of sd as the ‘most informative
dimensions’. We do this because (i) observing the value of the corresponding latent xd decreases
the variance of the expected distribution of neural activity more as sd increases, and (ii) the Fisher
information of xd increases as sd increases.

To show this, we consider how the distribution over fn (the activity of neuron n) given cn (the nth

row ofC) changes when xd (the value of the dth latent) is known, and how this varies with sd. In the
following, we omit the ·n subscript for notational simplicity, and we note that f , xd and cd are all
scalar values. With unknown xd, f is Gaussian with zero mean and variance Ep(x)

[
cTxxT c

]
= cT c.

Thus,
p(f |c) = N (f ; 0, cT c) (53)

In contrast, for known xd, we have

p(f |c, xd) = N (f ; cdxd, c
T
−dc−d), (54)

where c−d is c with the dth element removed. We thus see that the decrease in variance of f from
observing xd is c2d. Finally, we can approximate the process of averaging this quantity over neurons
by noting that cd ∼ N (0, s2d) and marginalising out c:

Ep(c)[σ2
f |c − σ

2
f |c,xd

] = Ep(c)[c2d] = s2d, (55)

where σ2
f |c is the variance of p(f |c). Thus, s2d can be interpreted as the expected decrease in the

variance of the denoised neural activity f when learning the value of the dth latent.

This can also be understood in information-theoretic terms by considering the Fisher information of
the dth latent dimension which is given by

I(xd|c) = −Ep(f |xd,c)

[
∂2

∂x2d
log p(f |xd, c)

]
(56)

=

∑
d′ 6=d

c2d′

−1 . (57)

To relate this quantity to our prior scale parameters {sd}, we consider the expectation of the inverse
Fisher information:

Ep(c)[I(xd|c)−1] =
∑
d′ 6=d

s2d′ . (58)

For a given set of latent dimensions [1, D] with corresponding {sd}D1 , we thus see that the expected
inverse Fisher information is minimized for the dimension with the highest value of sd. In Figure 2
and Figure 3 we use sd together with the posterior latent mean parameters νd to identify ‘discarded’
dimensions.

K Noise models and evaluation of their expectations

Gaussian The Gaussian noise model is given by

log p(ynt|fnt) = −1

2
log(2π)− 1

2
(ynt − fnt)2/σ2

n, (59)

where σn is a learnable parameter. In this case we can easily compute the expected log-density under
the approximate posterior analytically:

Eq(fnt|X) [log p(ynt|fnt)] = −1

2

(
log(2π) +

(ynt − µnt)2 + Σntt
σ2
n

)
, (60)

where q(fn|X) = N (fn;µn,Σn) and Σntt is the approximate posterior variance of neuron n at
time t (i.e., the tth diagonal element of Σn).
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Poisson The Poisson noise model is given by

log p(ynt|fnt) = ynt log g(fnt)− g(fnt)− log(ynt!), (61)

where g is a link function. If we choose an exponential link function (i.e., g(x) = exp(x)), we can
compute in closed-form the expected log-density of the approximate posterior as:

Eq(fnt|X) [log p(ynt|fnt)] = Eq(fnt|X) [yntfnt − exp(fnt)− log(ynt!)] (62)

= yntµnt − exp

(
µnt +

1

2
Σntt

)
− log(ynt!). (63)

For the analyses shown in Figure 2c-d, we use the exponential link function.

For general link functions g, we may not be able to evaluate the expected log-density in closed-form.
In this case, we approximate it with Gauss-Hermite quadrature:

Eq(fnt|X) [log p(ynt|fnt)] ≈
1√
π

kGH∑
i=1

ωi log p(ynt|f (i)nt ) (64)

where

ωi =
2kGH−1kGH!

√
π

kGH
2[HkGH−1(ri)]2

, (65)

f
(i)
nt =

(√
2Σntt

)
ri + µnt, (66)

Hk(r) are the physicist’s Hermite polynomials, and ri with i = 1, . . . , k are roots of Hk(r). For a
given order of approximation kGH, we can evaluate both ωi and ri using standard numerical software
packages such as Numpy. In practice, we find that kGH = 20 gives an accurate approximation
to the expected log-density under the approximate posterior. Note that we could also estimate
the expectation over q(fnt) for general link functions g using a Monte Carlo estimate, but we use
Gauss-Hermite quadrature in this work since it has a lower computational cost and lower variance.

Negative binomial The negative binomial noise model is given by

log p(ynt|fnt) = log

(
ynt + κn − 1

ynt

)
+ κn log (1− g(fnt)) + y log (g(fnt)) , (67)

where g(fnt) denotes the probability of success in a Bernoulli trial. Here, each success corresponds to
the emission of one spike in bin t, and thus p(ynt|fnt) is the distribution over the number of successful
trials (spikes) before reaching κn failed trials. The link function g(x) : R→ [0, 1) maps fnt to a real
number between 0 and 1. In practice we use a sigmoid link-function g(x) = 1/(1 + exp(−x)).

In this model, κn is a learnable parameter which effectively modulates the overdispersion of the
distribution since the mean and variance of p(ynt|fnt) are given by:

µNB =
g(fnt)κn

1− g(fnt)
(68)

σ2
NB = µNB

(
1 +

µNB
κn

)
. (69)

This is the parameter which we compare between the ground truth and trained models in Figure 2,
and we see that the Poisson model is recovered for neuron n as κn →∞.

For the negative binomial noise model we cannot compute the expected log-density in closed-form.
We instead approximate this expectation using Gauss-Hermite quadrature as described above.

L Implementation

In this section, we provide pseudocode for bGPFA (Algorithm 1) with the circulant parameterization
for q(X) and discuss other implementation details.
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Algorithm 1: Bayesian GPFA with automatic relevance determination

1 input: data Y ∈ RN×T , maximum latent dimensionality D, # of Monte Carlo samples M ,
learning rate γ

2 parameters: θ = {{sd}D1 , {τd}D1 , {νd}D1 , {c̃d}D1 , {Ψd}D1 , {Ln}N1 , {ν̂n}N1 , {σ̂n or κn}N1 }
3
4 while not converged do
5 ∇L ← 0
6 for batch in batches do
7
8 %For each of M Monte Carlo samples
9 for m = 1 : M do

10
11 % sample from approximate posterior q(X)
12 for d = 1 : D do
13 η

(m)
d ∼ N (0, IT )

14 k
1
2

d = σ 1
2 ,d

exp

(
− (t−t0)2

2τ2
1
2
,d

)
// single column of K

15 x
(m)
d = Toeplitz_mult(k

1
2

d ,νd +Cη
(m)
d ) // Appendix F

16 Xm = [x
(m)
1 ; . . . ;x

(m)
d ]

17
18 % compute q(F ) and Eq(F ) [p(Y |F )]

19 µ̂n = X>mν̂n // variational mean
20 σ̂2

n = diag
(
XT
mSLnL

>
nSXm

)
21 log p

(m)
Y F =

∑
n,t∈batch EN (fnt;µ̂nt,σ̂2

nt)
[log p(ynt|fnt)] // Appendix K

22
23 % compute KL terms
24 KLx = size(batch)

size(data)

∑
d KL[q(xd)||p(xd)] // Appendix F

25 KLf = size(batch)
size(data)

∑
n KL[q(fn)||p(fn)] // Appendix G

26
27 % update gradient with batch gradient
28 L̃ = 1

M

∑
m log p

(m)
Y F − KLx − KLf

29 ∇L ← ∇L+∇L̃
30

31 % update parameters based on total gradients (we use Adam in practice)
32 θ ← θ + γ∇L

Note that we need to sample the full trajectory xd before subsampling for each batch due to the
correlations introduced by K. In practice, we run the optimization for 2000 passes over the full
data which we found empirically lead to convergence of the ELBO. We used M = 20 Monte Carlo
samples for each update step when fitting synthetic data and M = 10 for the primate data. For
all models, q(X) was initialized at the prior p(X). The prior scale parameters were initialized as
sd = ρ||cd||22 where cd is the dth row of the factor matrixC found by factor analysis [12], and ρ = 3
was found empirically to give good convergence on the primate data. When using a Gaussian noise
model, noise variances were initialized as the σ2

n found by factor analysis. For negative binomial
noise models, we initialized κn = 1

T

∑
t ynt which matches the mean of the distribution to the data

for f = 0. Length scales τ were initialized at 200 ms for all latent dimensions for the primate
data and at ≈ 80% of the ground truth value for the synthetic data. Synthetic data was fitted on a
single GPU with 8GB RAM. Primate data was fitted on a single GPU with 12GB RAM and took
approximately 30 hours for a single model fit to the full dataset at 25 ms resolution. We also note that
when fitting data with a Gaussian noise model, we mean-subtracted the original data, whereas we
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include explicit mean parameters in the Poisson and negative binomial noise models since they are
non-linear (c.f. Appendix K).

Code availability A PyTorch implementation of bGPFA is provided on GitHub.

M Cross-validation and kinematic decoding

In this section, we describe the procedure for computing cross-validated errors in Figure 2, and
performing kinematic decoding analyses in Figure 3. In these analyses, expectations overX were
computed using the posterior mean of q(X) and expectations over F were computed using Monte
Carlo samples from q(F ).

Prediction errors To compute cross-validated errors, we divide the time points into a training and
a test set, Ttrain = {t1, t2, ..., tTtrain} and Ttest = {tTtrain+1, ..., T}, and similarly for the neurons
Ntrain and Ntest. We also define Ttot = Ttrain

⋃
Ttest and Ntot = Ntrain

⋃
Ntest. We first fit the

generative parameters θgen of each model to data from all the neurons at the training time points
using variational inference (taking θ to include the parameters φ of qφ(F )):

θgen = argmaxθgen [p(YNtot,Ttrain
|θgen)] . (70)

We then fix the generative parameters and infer a distribution over latents from the training neurons
recorded at all time points using a second pass of variational inference:

q(X1:D,Ttot |YNtrain,Ttot , θgen) ≈ p(X1:D,Ttot |YNtrain,Ttot , θgen). (71)

Finally we use the inferred latent states and generative parameters to predict the activity of the test
neurons at the test time points

ŶNtest,Ttest =

∫
Y p(YNtest,Ttest |X1:D,Ttest , θgen)q(X1:D,Ttest |YNtrain,Ttot , θgen)dX1:D,Ttest

(72)
This allows us to compute a cross-validated predictive mean squared error as

ε =
1

|Ntest| |Ttest|
||ŶNtest,Ttest − YNtest,Ttest ||22. (73)

Kinematic decoding For kinematic decoding analyses, we only considered the latents and behavior
prior to a period of approximately 5 minutes where the monkey disengaged from the task (the first
1430 seconds; Section 3.3). Cursor positions in the x and y directions were first fitted with cubic
splines and velocities extracted as the first derivative of these splines. To evaluate kinematic decoding
performance, we followed Keshtkaran et al. [5] and computed the expected activity of all neurons at
all time points under our model:

Ŷ =

∫
Y p(Y |F )q(F |X)q(X|t)dXdF . (74)

For non-Gaussian noise models, this can be viewed as the first non-linear step of a decoding model
from the latent statesX . We then performed 10-fold cross-validation where 90% of the data was used
to fit a ridge regression model which was tested on the held-out 10% of the data. The regularization
strength was determined using 10-fold cross-validation on the 90% training data. The predictive
performance was computed as the mean across the 10 folds. Models were fitted and evaluated
independently for the hand x and y velocities, and the final performance was computed as the mean
variance accounted for across these two dimensions. Results in Section 3.2 are reported as mean ±
standard error across 10 different splits of the data into folds used for cross-validation.

References
[1] Bishop, C. M. (1999). Bayesian PCA. Advances in neural information processing systems, pages

382–388.

[2] Challis, E. and Barber, D. (2013). Gaussian Kullback-Leibler approximate inference. Journal of
Machine Learning Research, 14(8).

14

https://github.com/tachukao/mgplvm-pytorch/tree/bgpfa


[3] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv
preprint arXiv:1309.6835.

[4] Hensman, J., Matthews, A. G. d. G., Filippone, M., and Ghahramani, Z. (2015). MCMC for
variationally sparse Gaussian processes. arXiv preprint arXiv:1506.04000.

[5] Keshtkaran, M. R., Sedler, A. R., Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L., Sohn,
H., Jazayeri, M., Miller, L. E., and Pandarinath, C. (2021). A large-scale neural network training
framework for generalized estimation of single-trial population dynamics. bioRxiv.

[6] MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge
university press.

[7] Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M. (2012).
Empirical models of spiking in neural populations. In Advances in Neural Information Processing
Systems 24: 25th conference on Neural Information Processing Systems (NIPS 2011), pages
1350–1358.

[8] Opper, M. and Archambeau, C. (2009). The variational Gaussian approximation revisited. Neural
computation, 21(3):786–792.

[9] O’Doherty, J. E., Cardoso, M., Makin, J., and Sabes, P. (2017). Nonhuman primate reaching
with multichannel sensorimotor cortex electrophysiology. Zenodo http://doi. org/10.5281/zenodo,
583331.

[10] Pachitariu, M., Stringer, C., Dipoppa, M., Schröder, S., Rossi, L. F., Dalgleish, H., Carandini, M.,
and Harris, K. D. (2017). Suite2p: beyond 10,000 neurons with standard two-photon microscopy.
BioRxiv.

[11] Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Trautmann,
E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., et al. (2018). Inferring single-trial neural
population dynamics using sequential auto-encoders. Nature methods, 15(10):805–815.

[12] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python.
the Journal of machine Learning research, 12:2825–2830.

[13] Recanatesi, S., Ocker, G. K., Buice, M. A., and Shea-Brown, E. (2019). Dimensionality in
recurrent spiking networks: global trends in activity and local origins in connectivity. PLoS
computational biology, 15(7):e1006446.

[14] Rutten, V., Bernacchia, A., Sahani, M., and Hennequin, G. (2020). Non-reversible Gaussian
processes for identifying latent dynamical structure in neural data. Advances in Neural Information
Processing Systems, 33.

[15] Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau, M.,
Bhagat, J., Böhm, C., Broux, M., et al. (2021). Neuropixels 2.0: A miniaturized high-density
probe for stable, long-term brain recordings. Science, 372(6539).

[16] Tosi, A., Hauberg, S., Vellido, A., and Lawrence, N. D. (2014). Metrics for probabilistic
geometries. arXiv preprint arXiv:1411.7432.

[17] Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured Gaussian
processes (KISS-GP). In International Conference on Machine Learning, pages 1775–1784.
PMLR.

[18] Wilson, A. G., Dann, C., and Nickisch, H. (2015). Thoughts on massively scalable Gaussian
processes. arXiv preprint arXiv:1511.01870.

[19] Wu, A., Roy, N. A., Keeley, S., and Pillow, J. W. (2017). Gaussian process based nonlinear latent
structure discovery in multivariate spike train data. Advances in neural information processing
systems, 30:3496.

15



[20] Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M. (2009).
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. Journal of neurophysiology, 102(1):614–635.

[21] Zhao, Y. and Park, I. M. (2017). Variational latent gaussian process for recovering single-trial
dynamics from population spike trains. Neural computation, 29(5):1293–1316.

16


