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A Proof of Theorem 1

For operator norm. Let M be obtained from the last step of the algorithm, then by [16, Theorem
2.1], A, satisfies

P([|Are = Mllop < vA1p) = 1= ny " (16)
By triangle inequality, we have
IV = Mlop < M~ Arellop + [[Are — M]lop- (17)

Now it remains to find the upper bound for [[M — A||op. We have

no r’ no
A =M= 0i(A)UiV] =3 0i(A)UiV] = Y 0i(A)UVT
i=1 i=1 =41
Therefore, ||M — Arcllop = 0r+1(Ar). Now it is sufficient to show that 0,1 (Ar) S /M1p
with high probability. Suppose ' = r, then 0,41 (M) = 0. Suppose ' = |nap], then applying
tr(M ™M) < ningp?,

UT/H(M)S\/U(MTM)S\/tr(MTM)Sm- s

r+1 nap

By Weyl’s inequality (Theorem 6), on the event || A, — M||op < /11D,
0'7"+1(Are) < 0'7"+1(M) + HAre - M”Op 5 vV 11D- (19)

with probability at least 1 — ny '. This completes the proof for [|M — M||o, < /71p with high
probability. For ||M — Mllop < \/ningp?, it is sufficient to show that IM —M]|r < /ninap?.
This will be proved as follows.

For Frobenius norm. Case 1: ' = r. Since M and M has at most rank r, rank(M — M) < 2r.
Thus,

M~ Ml < V2r[M ~ Moy < 2y/2n1p7,

which gives the desired result.
Case 2: 1" = |nap]. Let

/
r

T (M) =Y o(M)UV',

i=1
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then by triangle inequality,
IV~ M| < [ M = 7o (M| + |75 (M) — M.

For the first term, on the event | M — M|lo, < /71D, the first term on the right hand side of the
previous equation is bounded by

IV = T (M) [p < V7'M = T (M) [l op
< Vnap(|M — Mlop + [[M = T (M) lop)
S Vnep(y/nap + opp1 (M)
5 \V ’I’Llngpz.

where we have applied (18) in the last inequality. Now for the other term,

||7;/(M) — MHF < 2||M||F < 2\/tr(MTM) <2 nlngpQ.

Therefore, |[M — M||r < \/ningp? with probability at least 1 — n; .

B Proof of Theorem 2

We denote the output of Theorem | by M, and the output of Theorem 2 by M,. We will prove the
following result on the event ||A — M||op S /11D

For operator norm. To prove | My — Mo, < /71, it is sufficient to show that | M; — Ma||op <
+/n1p. Using the definition of these two estimators,

”Ml - MQHOp = Ur’+1(Are)~

Then the proof is complete by applying (19). Now we need to show || My — Mllop S v/ninap?
Since the operator norm is bounded by the Frobenius norm, we only need to prove | My — Mg <
v/ninsp?. See the following proof for this bound.

For Frobenius norm. Case 1: v’ = r. Applying (18), we have
My = My |le < 01’ S Vmapr.

Combining the result of Theorem 3, it shows HMg — M| < /nipr.

Case 2: 7/ = |ngp]. Since the inequality | My — M||op < +/n1p still holds, the proof is identical the
Case 2 for Frobenius norm of the proof of Theorem 1.

C Proof of Theorem 3

Firstly, we will prove (7). The proof is an application of Fano’s inequality. We assume n; > no
without loss of generality in this proof. We first derive the packing number of the parameter space
® = Oy (ny,na,p, r) equipped with Frobenius norm.

Lemma 1. For p € (0, 1] and positive integers ny,ng > r, there exists a finite subset of the parameter
space ©1(ny,na,p, ) satisfying

(a) The cardinality of this subset is at least exp (%)

(b) For every M and M in this subset, 7@1”)90(&)1””2) <M — 1\7I||,2: < B

(¢) For every M and M in this subset, M;; = 0 if and only lfM” = 0. That is, {(4,7) :

M;; =0} = {(4,5) : My; =0}

(d) For M in this subset, if M # 0, then M,;; € [122—517, %]
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Proof. Let us define random matrix

p 1
M= 5(1n1><(7["72/\%])7 O) + %p(Ua ) Ua O)

where U € R™'*" with i.i.d. rademacher entries and U is repeated | %2 A %j many times, and O
is a zero matrix with dimension n; x (ng —7[%2 A 2 ]). Let U be an independent copy of U, and

- N . . 12p 13
construct M by U as an 1ndepen(}ent copy of M. In particular, M;; € {0, 52, B
(c) and (d) satisfied. Then ||U — U||2 < 4n;r. Therefore,

}, so condition

~ 1 ») 1 d nipr
M-M|i= —p?|=A-|[lU-TU|E< .
IM =M = gl A JIU - O < G2
Hence, the upper bound of condition (b) is satisfied. On the other hand, since % /\% >1, L% A %J >
1(m2 AL). Thus,
~ 1 no 1 - 1 nap? -
M-M|2=—p?| 2= U—U2>—(/\ )U—UQ.
IM =M = g6’ 52 AU = O > s (04 78 ) U O
By Hoeffding’s inequality,
T2 I v = \2
P(IU -0 <mr) =B(- 33 (e — &) <7)
i=1 j=1
J R -\ ny(r — 2r)
:PGE:ZM%—Qﬁ—ﬂg——?—ﬁ
i=1 j=1
< ex <_ M)
= exp 5 )

Suppose ||U — U|[2 > ny7, then |[M — M]||Z > % gives the lower bound of condition

(b). Now we consider N = ¢™"/% jid. copies. Let M™) m e [N] be N independent copies of M,
then we have

2
]P’( mmN] MO — M) |2, > (napr) A (ningp )) >1- N2exp ( B M)

m,m/€| 5000 2
nir
21 exp (MY,
> exp 10
Therefore, we can draw NV i.i.d. copies of M to fulfill the requirements in the lemma with positive
probability. 0

Now we introduce the Fano’s inequality. We will use the version provided by [24] in our proofs.
Lemma 2 (Fano’s inequality). Assume N > 3 and suppose {61, ...,0n5} C O such that

(i) foralll1 <i<j <N, d(9¢,9j) > 2«, where d is a metric on ©;

(ii) let P; be the distribution with respect to parameter 0;, then for all i, j € [N], P; is absolutely
continuous with respect to P;;

(iii) for all i,j € N, the Kullback-Leibler divergence Dk (P;||P;) < Blog(N — 1) for some
0<p<1/8

, A N -1 'Y

Then
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Lemma 3. For random adjacency matrix model (1) with parameters M, M € [a, b]™1*"2, their
Kullback-Leibler divergence is upper bounded by
M — MJ7

D (Pml| Pyp) < a1 1)

Proof. We firstly consider entrywise KL-divergence. For p, g € [a, b],

1_
Dmmawmmmnzm%§+u—mmg_

_ p—4q _Pr—4q
—plog(l+ . )+( p)log(l —q>
p—q p—q
) _ _£ 4
_p< . )+(1 p)( 1_q>
_ =91 -9¢)—q( -p)p -9
q(1—q)
_ -9 _(-9*
q(1—q) ~ a(l-0)
By independence of each entry, we have Dxy (P || Pyy) < %71\;1“; O

Now we are ready to prove (7). Let © in Lemma 2 with N = exp (™" ). For distinct M, M € ©,

M — M| nipr o mr
DKL(PMHPM) < 713 13 3
( )(1 - %p) 625(25p)( %p) 144
Let 8 =1/24. Forn; > 10, log(N — 1) > nlr/6. Therefore,
< I —1).
1 4 Blog(N —1)

On the other hand, the lower bound on the Frobenius norm satisfies
~ A 2
IM = Rl > 20 1= (22 ()
5000

and Dy (Pu||Pgy) < Bnir/6 for every pair of distinct elements M and M in the subset. Then by
(20) and straightforward algebra,

. ~ A (ninap?) 1
£ osup PN MR P > =
M itz N (” IF = 20000 =3

D1 (Pwm|| Pyy) <

To verify (6), it suffices to observe that
M — M| > [|M — M]3,

for any M and M and consider a restriction on the submodel ® = ©, (n1,n2,p,1).

D Proof of Theorem 4

Lemma 4 (Davis-Kahan theorem for elgenspaces) For symmetric matrices M, M € R**™, suppose
M=U AlUT + U2A2U2 and M U A Ul + U2A2U2 where (Ul,UQ) (Ul,Ug)
R™*"2 gre orthogonal. Suppose the singular values of Ay are contained in the interval [a,b], and
the singular values of Ay are excluded from (a — 8,b+ 6), then

IM — M| + Az — As
0

O, Uy < 1)

Sor || - || is either Frobenius norm or operator norm.
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Proof. Since U] U; =Iand U, U; =0,
MU, = (U;AU{ +UyA,U; )U; = UjA,.
In the same way, we have fIQT M = AQIAJ; It follows that
U (M -M)U; = U; MU, - U; MU/ =A,U;U; - Uj UiA,. (22)
Since U; and ﬂg have orthonormal columns,
1(As — A)OT UL < [[As — Asf|[|OT Uy flp < /As — As. 23)
We combine (22) and (23), for any real number c,
1A2 = Azl + [[To(M = M)U|| > [[(A2 — A2) U5 Ui | + [|A2 U5 Uy — Us U A |
> A U] U, — U UsA,|
=|(Az — D)UJ Uy — UyU (A; — D) ||
> [|(A — cD)U; Uy|| — U5 Uy (Ag = ).

Now we let ¢ = (a + b)/2 and r = (b — a)/2, then the eigenvalues of A; — cI are contained in
[—r, r] and the eigenvalues of As — cI are excluded from (—r — §,7 + §). Therefore,

1

Ap—cDUJUY||>
(A =D Tl = g, ey,

105 ULl > (r + )05 U,

and
[T2U (A — )| < [[TUL || Ay = cI]lop < 7[[U2 UL .
Hence, we can conclude that

1A2 = As|| +[U2(M = M)UL|| > (r +6)||U5 Ui || = 703 Us |l = 6|05 Uy .

HIAJQ(M*M)Ulll < [[U2(M=M)(Uy, Up)| = [[Us(M~M)|, and similarly, || Up(M—-M)]| <
[[M — M]||. Hence (21) is obtained. O

Corollary 1 (Wedin’s Theorem). For real-valued matrices M, M € Rmaxnz, suppose that M =
U1A1V1T + U2A2V2T and M = IjljilVlT + ﬁgAQVJ are the singular value decompositions
so that (Uq, Uy), (fjl, ﬂg) € Rmxm™ (Vq,Vsy), (\71, \72) € R™2%™2 gre orthogonal, and A1, Ao
are diagonal. Suppose

0 < min(diag(A1)) < max(diag(A1)) < a < a+ 6 < min(diag(Az))
and As and Ao contain top-r singular values of M of M respectively, then

2|M — M|

max(||UU] — U,U] |,[[V2V, = Vo5 ||) < 5

(24)
Sor || - || is either Frobenius norm or operator norm.

Proof. We consider the symmetric dilation of M, given by

0 M
M — (MT ; ) . 25)
By Lemma 2(a) of [28], we let

_ U1 Ul o U2 U2 _ A1 0 _ A2 0
Wi = (V1 —V1> y W= (V2 —V2> y 1= ( 0 -A ) 22T 0 —a,
then we have the decomposition

1
M = 5[W121WT + Wy, Wo),
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and similarly,
. 1 o A . I
M = 5[wlzle + W33, W),
where

% Ijl -[jl % ﬂg ﬂg A Al 0 A AQ 0
W= (o' ), Wo=(22 22, 5= ), s, = © ),
: <V1 —Vl) ’ <V2 —Vg) ' ( 0 —A1> ’ ( 0 —Az)
It is easy to check that | Mt — M|, < [[M — M|, and [|[Z2 — Za|op < ||A — Aflop- Since A,
has eigenvalues contained in [0, a], the eigenvalues of 3 are contained in [—a, a]. By Lemma 4,
IV — M [Jop + (|32 — Bzl _ [IM — MlJop + [| A2 — Asllop

HWIWQHOP S 5 = 5

By Lemma 1 of [4],
1 P
HWIWQHOP 2 §HW2W; _W2W;||0p

_||[v.U3 - 0,05 0
0 VoVy = VoVi /|

= max(|[UsUg — UsU] |lop, [[V2V3 — VoV [lgp).

Hence we obtain
IM — Mlop + | A2 — Azllop
5 .
By Corollary 2, the right hand side is upper bounded by 2||M — M||op/6. This proves (24) for
operator norm. For Frobenius norm, we have |MT — M|z < v/2|M — Mg and |25 — Zy¢ <
V2||A — A||r. By Lemma 4,
IM! — Mg+ |22 — Zollp  v2|[M — M[p + v2[[As — Ao

W, W,k < —
|| 1 2||F — 5 5

By Wielandt-Hoffman Theorem [22], | Az — As | < |M — M||g. Therefore, the right hand side is
upper bounded by 2v/2|[M — M]||g/d. By Lemma 1 of [4] again,

max(|[UsU] — UoU3 |lop, [V2Vy = Vo V] [lop) <

1 .
W Wsp= EHWQW; - Wo W, ||k
3 U,UJ] — U,U] 0o
0 VoVl = VoVl )|

— /210U — G, UT |2 4 2| Vo V] - VoV |2
> V2max(|UU; — UoUJ ||k, [[V2 V3 = VoV |[[g).
This completes the proof of (24). O

Theorem 6 (Weyl’s inequality, Corollary I11.2.6 of [1]). Suppose A and B are n x n real symmetric
matrices and let 01(A) > 02(A) > ..., > 0,(A) and 61(B) > 02(B) > ..., > 0,(B) be the
eigenvalues of A and B respectively, then

max_[0,(A) — 0,(B)| < |A ~ B, 26)

1=1,...,n

Corollary 2. Suppose A and B are not necessarily symmetric and o;(A) and o;(B) are singular
values, the inequality (26) still holds.

Proof. We consider the symmetric dilation (25) of A and B, denoted by At and BT respectively.
Then A' has eigenvalues o1 (A) > g2(A) > --- > 0,(A) > 0> —0,(A) > --- > —09(A) >
—o1(A). The eigenvalues of BT are similar. Then we apply the fact that || A — B||op = || AT — BT||op
and Weyl’s inequality to obtain the result. O
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Now we are ready to prove Theorem 4. Let M = U;A; V1 + U2A2V2 and M =
U1A1V1 + U2A2V2 be singular value decomposmons of M and M respectively, where

diag(As) = (01(M),...,0,(M)) and diag(A3) = (01(M),...,o,(M)) contains top-r singular
values. By Corollary 2, we have

||A2 - A2||op < ”M - M”OP‘
By Corollary 1,
M — Mlop + [ Az — As]lop

max([UsU; — UaUj [|op, [|V2V3 = V2V [lop) < .
_ 2N - My
o
Now we apply Theorem 2.1 of [16],
P(M ~ Mo < y1p) =1 -0
On the event of |[M — Ml|op S y/71p, We have
. e 2| M — M|,
wax([ U2~ 0507 [, [VoV] VoV o) < AN Ml
< Vmp
~J 0’ *

For Frobenius norm, we have that || Ay — Aa[r < v/7||As — Asop
< /r|M — M||op by Corollary 2,

M — M|+ [|[Az — Alp
ag
< 2vrM = Mo

max(||UsUJ] — UoU] [[p, [V2V] — Vo V] [p) <

g
< ympr
~ o *

E Proof of Theorem 5

We firstly consider the case r > 1. Let integer k2 > 1, 0 > 0 and u € (0, 1) be given by

ko = [(10/p)%02/n1], 0% = nika(p/10)?, pu* = min{21/(2ksp),0.1}/2. 27)
Clearly 0, < 0 < V20,. As ro? < nynap?/Co, ky < 200n2/(rCo) < (n2 —1)/(2r — 2) for
sufficiently large Cyy. This allows the following construction. Let H € [—+/3, /3] *("=1) such that
(H,1,,)"(H,1,,)/n; =1I,.. Let U;,i = 1,..., N, be distinct matrices in {—1, 1} *("=1) with
N =2m0-"D "W, = /1 — u2H + pU; with 0 < p < 1, and

M _2 ny Xng 10(

where (W;, —W,) is repeated ky times. As [W;lloo < /(1 —p2)3 +p < 2, M; €
[0.3p,0.7p]" *™2. Let P; = Py, = MlM:r € R™ %™ be the orthogonal projection to the column
space of M; and X; = (W;,1,,) = (/1 — p?H + pU;, 1, ) € R™*". When rank(X;) = r, X;
has the same column space as M; and P; = X; (X, X;) 71X/ . Let

V”<UZUj/n1 0) A (~/1— 2UH | U >
1,7 — 1 9 177’1/1 O 9

0 |

W7,7 W“...,Wi,—wz',o), (28)

and A;; = A; + AJ + p?(Vii — 1) I;—jy. By algebra, we have

' X)X, = {Ir + A+ A (Vi — L), i# 7,

2
L+ A, 1= . 29)
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Thus, rank(X;) = r when ||A; ;|lop < 1. Let 0,.(-) denote the r-th largest singular value. We have

02(M.) > (p/10)y bl — 202AL — (2A] — (1+ 1/92) (AL ),
by Lemma 6, where A, = [[U/H/(nip)|op, A = U/ U;/ny —L_1]lop, and A} =
107 10, /(1) -

Let &,, satisfying 0 < &, < 1/(8?) to be determined later and Q* = {i < N : Aé\/A;’\/A;” <en}.
As [|Allop < p? AL+ p?AY and |V ; — Lo |lop = AV, we have ||A; ;||lop < Su’e,, fori € Q* and

{ie ¥} = {M,; €[0.3p,0.7p]"*"2,0,(M;) > 0 > 0, rank(X;) =r}. (30)
as 02(M;) > (p/10)?n12k2(1 — 4p2e,) 4+ > (p/10)%n1ke = 02 > 02 by (27) for i € Q*.
Moreover, for {7, j} in Q*, |A;jllop < (4 + Ifi—j3)u*en, so that inserting (29) into tr(P;P;) =
(X7 X)X X, (X X,) 71X X,) yields
tr(P;P;) <7+ (Cr — VpiPepr + p2(1 — ) e(Vij + Vi — 2L) 4 (Vi Vi — 1)

<r+Crplenr + pP(1—pu(Vij+ Vi = Vii— V)

=7+ C1pPe,r — p?(1 — 1) U; — Uy |13 /na, Vi, jeNt 3D
where (' is a numerical constant. We provide the details of this calculation in Lemma 7.
Let U, M, P be random matrices with the uniform prior distribution 7(-),

7(i) = Pr(U=U;,M =M,;,Py = P;) =1/N =271,

so that the elements of U are i.i.d. Rademacher variables under P,. Let i/* = {U; : i € Q*}, 7* be
the uniform prior on Q* and P« the corresponding joint probability so that [P« is the conditional
probability given U € U* under P,.. By (30), P« {U € O3(ny,na,p, 7, U)} = 1 and (12) holds.

It remains to prove (14). By (31) and the details given in Lemma 8, the Frobenius risk of the Bayes
estimator under P~ is bounded by

RS — K. [|15* - PMH%} > 12 (1— p?)ng "By {Hfj* - UH%} — CypiPe,r (32)

where P* and U* are respectively the posterior mean of Py; and U under P-. Moreover, ||[U*||2 v
|lU||I2 < rny always holds, so that

Eq [||U* — U] + Pr(Q)dnir > E[|U* — U|}] > E[|U - U], (33)

where U is the Bayes estimator of U under P, due to the optimality of U under P;.

Under P, the elements of A are independent conditionally on U and the elements of U are i.i.d.
Rademacher. Moreover, as (W;, — W) is repeated k5 times, conditionally on U the k5 i.i.d. copies of
(Ai j, Ai j+r—1) are sufficient statistics for the estimation of the (¢, j) element U, ; of U such that A; ;
and A; ;4,_1 are independent Bernoulli variables with probabilities p; ;+ (1p/10)U; ; € [0.3p, 0.7p]
and ¢; ; — (up/10)U; ; € [0.3p, 0.7p] respectively for some p; ; and ¢, ; satisfying the constraints.
Thus, by Lemma 9, the risk of the Bayes estimator is bounded by

E, [(Uzg — Ui ;)% =1 = 2ka(pp/10)%/(0.3p(1 — 0.3p)) > 1 — 24 kop/21.

By (27) u? = {(21/(2k2p)) A0.1}/2, so that (1 — u?2kgp/21) > 1/2 and 1 — p? > 0.95. Thus, by
(32) and (33), it follows that

RBWS > 2(1 — %) (ny 'Ex [||fJ — U|f] = Pr(Q*)4r) — C1p’re,,
> 0.475u%r — (4]P’TF(Q*C) + Clsn)/fr.
This gives (14) when 4P, (Q*¢) + C1&,, < 0.075 = 3/40. To this end, we pick
€n, = max {\/40771“02/(71%1)) + \/1601‘002/(n%p), 4/ (3r + xo)/nl}

with 79 = log(320) satisfying 16e =20 = 0.05 As 02 < 202 < 2n1ngp?r—1/Cp and Cor < njy.

€n < max {\/807rp/C0 + /320z0p/Co, 44/ (3 + xo)/Co}.
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Thus, ;ﬂsn < 1/8 and C1e,, < 1/40 for sufficiently large Cy. Moreover, Lemma 5 provides
AP {0} < 16" < 1/20,
so that 4P, (Q*¢) + C1&,, < 3/40 indeed holds. Consequently, by (27)

R2¥® > 0.4rp® = 0.2min{21/(2ksp), 0.1} = 0.2min{0.105n,p/c?,0.1}.
This gives (14) and completes the proof for r > 1.

The proof for » = 1 is simpler but the construction is slightly different. Let u; € {—1,1}",
= (p/2)1,, + (p/10)u;, and M; = w;1 . For 1/Cy < 0.16, we have

M; € [0.4p,0.6p]" "2, o (M;) > (0.4p)?ning > o2, rank(M;) = 1.
Let Py, = wyw,| /||wil|3 and T} ; = w w; /n1. We have
P, — P, [l = 21T — T25) / T0i T
Let Q* = {i: [u]1,,/(un1)| < e, }. For {i,j} C Q*,

Ty g =ni (s + V1= p21,,) T (g + /1 — p21,,)
=ny (= gl — w3 + py/1 — p2(w +uy) T1,,) + 1,
so that |T; ; — 1| < 2ue,,.

ElTJ] Tz]

=207 2wy — w13 = g2t — w5 = pf (1= ) (i = ) L, /na)?
0yl — w3/ — g2 (a +ay) 1,

> ny P — w32 — 4% — 2pPe,) — Apt (1 - el

We omit the rest of the proof as they are almost identical to the case of r > 1.

Lemma 5. Let H € {—1,1}" >~V guch that (H,1,,,)" (H,1,,)/n1 = I,. Letr > 2 and
U € {—1,1}Y*0=1 with i.i.d. Rademacher entries. Then,

o IUTB oy U, frall < V20— D+ VR |
IUTU/ny —L_qlop < \/ (r—1)+z)/m - '

Suppose n1p < o2, Let u? = (n1p/o?)/20. Then, for

€n, = max {\/40777“02/(71%1)) + \/16Ox<72/(n%p)7 4/ (3r+a)/n1 },

P{A/V ATV AY <ep}>1— de®.

Proof. Let U = (uy,...,u,,)" and ||v]2 = 1. As E(v'u;)?™ < E(N(0,1))?™ for all m, for
t<1/2

—t

< G:BW < exp (£2/(1 —2t))

Eexp (t((v w;)? — 1)) < Eexp (((N(0,1))* — 1))
AsE(1 — (vTu)?)? =E(v w)* -
Eexp (¢(1 — (v uy) )) <1+42(e' —1—1t) <exp (?/(1—2t))
By the Bernstein inequality,
IP’{‘VT(IT,l - UTU/nl)v’ > 2\/z/ny + dz/n} < 2e°
Lete = 0.12and N. < (1 + 2/£)"~! be the e-covering number for the unit ball in R"~!. We have

(1-29)[UTU/n1 =T alop < max [v;(UTU/n1 =T, _1)vy]
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with certain v; with [|v; |l = 1. Thus, as 1/(1 — 2¢) < 4/3 and log(1 + 2/¢) < 3,

P{UTU/n — L_1llop = (8/3)\/(3(r — 1) + ) /n1 + 16(3(r — 1) + 2)/(3n1) } < 2e™ .

When 4,/(3(r — 1) + 2)/n1 < 1, this implies

IP{HUTU/nl ~ L 1llop > 4V/(B3(r — 1) + z)/ni} < 2e 7.

Let f(U) = [[UTH/n}"?(|lop. As HTH/ny = I,_y, f(-) is a unit-Lipschitz function, so that
P{f(U) > Ef(U) +t} <e /5.
Let Z be a standard Gaussian matrix. By the Sudakov-Fernique inequality
E[IN(O,)Ef(U) <Ef(Z) <2vr -1
The proof is complete as the proof for H also applies with H is replaced by 1,,, . O
Lemma 6. Let M; be as in (28), A, = |[UJH/(n1p)|,p A7 = U] U;/ny —1_1||,p and

A” = |UM1,,/(nip)|la. Then, the r-th singular value of M; is bounded by o.(M;) >
(p/10) /2Rl — 22N, = A7 — (1 + 1/92) A (A7)

Proof. Write H = (H, —H), M; = Mﬁ + 51, x(2r—2) and U, = (U;, —U;). We have
o (M) /n1 = o, (M M) /n1 > ka(p/10)%0, (M1 + pU,) T (My + pU;) /na ).
LetT,_; = (I,_1,~L,_1) and @ = U, 1, /n1. As [T, Ui/ng =T, T,_1]lep = 247,
or (M1 + p0;) ' (M + p05) /m)
> o, (MIMl/nl + ﬂ2ﬁjﬁi/n1+5mi1;,2 + 5,u127«,2ﬁ;r)
— T F/my +H T/mi]op
> o, (M{ My /ny + M21:711r71+5liﬁi1;72 +5uly oW; ) — 20" A — 4 A
by Weyl’s inequality.
Assume |[0;]|2 = V2uAY > 0. As M{ M, /n; = (1 — pHI T+ 251 (2, —2)x (2r—2)

=T = _ _
M, M, /ny + p?T, 1,1 +5pt;ly, o + 5ulo, oW,
S L S 2u;u; +< lyrp W )( B \/Bs) ( lyr—p W )T
T w3 V2r =27 |[uillz ) \vBe 2 V2r =27 a2

with B = 25(2r — 2) > 50 and ¢ = p?||u;||3 = 2p*(A))2 As T:_lfr_l/Q is an orthogonal
projection with @; /||a;||2 as an eigenvector, the r-th eigenvalue of the above matrix is

o, =(B+2—+/(B+2)?-4(2B - Be)) /2.

Fore < 1,/(B+2)2—-2B(4—2¢) = \/(B—2+2¢)2+4(2c —¢2) < B — 2 + ¢ + 4¢/46,
which implies
2B(2 —¢)

ol > SIS e Ew P > (2—e)(1—(25/46)/B) > 2 — (14 1/92)e.

Hence, the conclusion holds. The conclusion holds automatically when € > 1. The proof for e = 0 is
simpler and omitted. O
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