
Rate-Optimal Subspace Estimation on Random
Graphs

Zhixin Zhou1, Fan Zhou2, Ping Li2, and Cun-Hui Zhang3

1Department of Management Sciences, City University of Hong Kong
2Cognitive Computing Lab, Baidu Research

3Department of Statistics, Rutgers University
1zhixzhou@cityu.edu.hk, 2{zfyyde001, pingli98}@gmail.com, 3cunhui@stat.rutgers.edu

A Proof of Theorem 1

For operator norm. Let M̂ be obtained from the last step of the algorithm, then by [16, Theorem
2.1], Are satisfies

P(‖Are −M‖op .
√
n1p) ≥ 1− n−1

1 . (16)

By triangle inequality, we have

‖M̂−M‖op ≤ ‖M̂−Are‖op + ‖Are −M‖op. (17)

Now it remains to find the upper bound for ‖M̂−Are‖op. We have

Are − M̂ =

n2∑
i=1

σi(Are)UiV
>
i −

r′∑
i=1

σi(Are)UiV
>
i =

n2∑
i=r′+1

σi(Are)UV>

Therefore, ‖M̂−Are‖op = σr′+1(Are). Now it is sufficient to show that σr′+1(Are) .
√
n1p

with high probability. Suppose r′ = r, then σr′+1(M) = 0. Suppose r′ = bn2pc, then applying
tr(M>M) ≤ n1n2p

2,

σr′+1(M) ≤

√
tr(M>M)

r′ + 1
≤

√
tr(M>M)

n2p
≤ √n1p. (18)

By Weyl’s inequality (Theorem 6), on the event ‖Are −M‖op .
√
n1p,

σr′+1(Are) ≤ σr′+1(M) + ‖Are −M‖op .
√
n1p. (19)

with probability at least 1 − n−1
1 . This completes the proof for ‖M̂−M‖op .

√
n1p with high

probability. For ‖M̂−M‖op .
√
n1n2p2, it is sufficient to show that ‖M̂−M‖F .

√
n1n2p2.

This will be proved as follows.

For Frobenius norm. Case 1: r′ = r. Since M̂ and M has at most rank r, rank(M̂ −M) ≤ 2r.
Thus,

‖M̂−M‖F ≤
√

2r‖M̂−M‖op . 2
√

2n1pr,

which gives the desired result.
Case 2: r′ = bn2pc. Let

Tr′(M) =

r′∑
i=1

σi(M)UV>,
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then by triangle inequality,

‖M̂−M‖F ≤ ‖M̂− Tr′(M)‖F + ‖Tr′(M)−M‖F.

For the first term, on the event ‖M̂−M‖op .
√
n1p, the first term on the right hand side of the

previous equation is bounded by

‖M̂− Tr′(M)‖F ≤
√
r′‖M̂− Tr′(M)‖op

≤ √n2p(‖M̂−M‖op + ‖M− Tr′(M)‖op)

.
√
n2p(
√
n1p+ σr′+1(M))

.
√
n1n2p2.

where we have applied (18) in the last inequality. Now for the other term,

‖Tr′(M)−M‖F ≤ 2‖M‖F ≤ 2
√

tr(M>M) ≤ 2
√
n1n2p2.

Therefore, ‖M̂−M‖F .
√
n1n2p2 with probability at least 1− n−1

1 .

B Proof of Theorem 2

We denote the output of Theorem 1 by M̂1 and the output of Theorem 2 by M̂2. We will prove the
following result on the event ‖Are −M‖op .

√
n1p.

For operator norm. To prove ‖M̂2 −M‖op .
√
n1p, it is sufficient to show that ‖M̂1 − M̂2‖op .√

n1p. Using the definition of these two estimators,

‖M̂1 − M̂2‖op = σr′+1(Are).

Then the proof is complete by applying (19). Now we need to show ‖M̂2 −M‖op .
√
n1n2p2.

Since the operator norm is bounded by the Frobenius norm, we only need to prove ‖M̂2 −M‖F .√
n1n2p2. See the following proof for this bound.

For Frobenius norm. Case 1: r′ = r. Applying (18), we have

‖M̂1 − M̂2‖F ≤ σr′+1r
′ .
√
n1pr.

Combining the result of Theorem 3, it shows ‖M̂2 −M‖F .
√
n1pr.

Case 2: r′ = bn2pc. Since the inequality ‖M̂2 −M‖op .
√
n1p still holds, the proof is identical the

Case 2 for Frobenius norm of the proof of Theorem 1.

C Proof of Theorem 3

Firstly, we will prove (7). The proof is an application of Fano’s inequality. We assume n1 ≥ n2

without loss of generality in this proof. We first derive the packing number of the parameter space
Θ = Θ1(n1, n2, p, r) equipped with Frobenius norm.

Lemma 1. For p ∈ (0, 1] and positive integers n1, n2 ≥ r, there exists a finite subset of the parameter
space Θ1(n1, n2, p, r) satisfying

(a) The cardinality of this subset is at least exp
(
n1r
5

)
.

(b) For every M and M̃ in this subset, (n1pr)∧(n1n2p
2)

5000 ≤ ‖M− M̃‖2F ≤
n1pr
625 .

(c) For every M and M̃ in this subset, Mij = 0 if and only if M̃ij = 0. That is, {(i, j) :

Mij = 0} = {(i, j) : M̃ij = 0}

(d) For M in this subset, if M 6= 0, then Mij ∈
[

12p
25 ,

13p
25

]
.
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Proof. Let us define random matrix

M =
p

2
(1n1×(rbn2

r ∧
1
p c)
,O) +

1

50
p(U, . . . ,U,O)

where U ∈ Rn1×r with i.i.d. rademacher entries and U is repeated bn2

r ∧
1
pc many times, and O

is a zero matrix with dimension n1 ×
(
n2 − rbn2

r ∧
1
pc
)
. Let Ũ be an independent copy of U, and

construct M̃ by Ũ as an independent copy of M. In particular, Mij ∈
{

0, 12p
25 ,

13p
25

}
, so condition

(c) and (d) satisfied. Then ‖U− Ũ‖2F ≤ 4n1r. Therefore,

‖M− M̃‖2F =
1

2500
p2bn2

r
∧ 1

p
c‖U− Ũ‖2F ≤

n1pr

625
.

Hence, the upper bound of condition (b) is satisfied. On the other hand, since n2

r ∧
1
p ≥ 1, bn2

r ∧
1
pc ≥

1
2

(
n2

r ∧
1
p

)
. Thus,

‖M− M̃‖2F =
1

2500
p2bn2

r
∧ 1

p
c‖U− Ũ‖2F ≥

1

5000

(
p ∧ n2p

2

r

)
‖U− Ũ‖2F.

By Hoeffding’s inequality,

P
(
‖U− Ũ‖2F ≤ n1r

)
= P

( 1

n1

n1∑
i=1

r∑
j=1

(εij − ε̃ij)2 ≤ r
)

= P
(1

2

n1∑
i=1

r∑
j=1

[(εij − ε̃ij)2 − 2] ≤ n1(r − 2r)

2

)
≤ exp

(
− n1r

2

)
.

Suppose ‖U− Ũ‖2F > n1r, then ‖M− M̃‖2F >
(n1pr)∧(n1n2p

2)
5000 gives the lower bound of condition

(b). Now we consider N = en1r/5 i.i.d. copies. Let M(m), m ∈ [N ] be N independent copies of M,
then we have

P
(

min
m,m′∈[N ]

‖M(m) −M(m′)‖2F >
(n1pr) ∧ (n1n2p

2)

5000

)
≥ 1−N2 exp

(
− n1r

2

)
≥ 1− exp

(
− n1r

10

)
.

Therefore, we can draw N i.i.d. copies of M to fulfill the requirements in the lemma with positive
probability.

Now we introduce the Fano’s inequality. We will use the version provided by [24] in our proofs.
Lemma 2 (Fano’s inequality). Assume N ≥ 3 and suppose {θ1, . . . , θN} ⊂ Θ such that

(i) for all 1 ≤ i < j ≤ N , d(θi, θj) ≥ 2α, where d is a metric on Θ;

(ii) let Pi be the distribution with respect to parameter θi, then for all i, j ∈ [N ], Pi is absolutely
continuous with respect to Pj;

(iii) for all i, j ∈ N , the Kullback-Leibler divergence DKL(Pi‖Pj) ≤ β log(N − 1) for some
0 < β < 1/8.

Then

inf
θ̂

sup
θ∈Θ

P(d(θ̂, θ) ≥ α) ≥
√
N − 1

1 +
√
N − 1

(
1− 2β −

√
2β

log(N − 1)

)
. (20)
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Lemma 3. For random adjacency matrix model (1) with parameters M, M̃ ∈ [a, b]n1×n2 , their
Kullback-Leibler divergence is upper bounded by

DKL(PM‖PM̃) ≤ ‖M− M̃‖2F
a(1− b)

.

Proof. We firstly consider entrywise KL-divergence. For p, q ∈ [a, b],

DKL(Ber(p)‖Ber(q)) = p log
p

q
+ (1− p) log

1− p
1− q

= p log
(

1 +
p− q
q

)
+ (1− p) log

(
1− p− q

1− q

)
≤ p
(p− q

q

)
+ (1− p)

(
− p− q

1− q

)
=
p(p− q)(1− q)− q(1− p)(p− q)

q(1− q)

=
(p− q)2

q(1− q)
≤ (p− q)2

a(1− b)
.

By independence of each entry, we have DKL(PM‖PM̃) ≤ ‖M−M̃‖2F
a(1−b) .

Now we are ready to prove (7). Let Θ in Lemma 2 with N = exp
(
n1r
5

)
. For distinct M, M̃ ∈ Θ,

DKL(PM‖PM̃) ≤ ‖M− M̃‖2F(
12
25p
)(

1− 13
25p
) ≤ n1pr

625
(

12
25p
)(

1− 13
25p
) ≤ n1r

144
.

Let β = 1/24. For n1 ≥ 10, log(N − 1) ≥ n1r/6. Therefore,

DKL(PM‖PM̃) ≤ n1r

144
≤ β log(N − 1).

On the other hand, the lower bound on the Frobenius norm satisfies

‖M− M̃‖F ≥ 2α :=

√
(n1pr) ∧ (n1n2p2)

5000
.

and DKL(PM‖PM̃) ≤ βn1r/6 for every pair of distinct elements M and M̃ in the subset. Then by
(20) and straightforward algebra,

inf
M̂

sup
i=1,2,...N

P
(
‖M̂−M‖2F ≥

(n1pr) ∧ (n1n2p
2)

20000

)
≥ 1

2
.

To verify (6), it suffices to observe that

‖M̂−M‖2F ≥ ‖M̂−M‖2op.

for any M̂ and M and consider a restriction on the submodel Θ = Θ1(n1, n2, p, 1).

D Proof of Theorem 4

Lemma 4 (Davis-Kahan theorem for eigenspaces). For symmetric matrices M, M̂ ∈ Rn×n, suppose
M = U1Λ1U

>
1 + U2Λ2U

>
2 and M̂ = Û1Λ̂1Û

>
1 + Û2Λ̂2Û

>
2 where (U1,U2), (Û1, Û2) ∈

Rn1×n2 are orthogonal. Suppose the singular values of Λ1 are contained in the interval [a, b], and
the singular values of Λ̂2 are excluded from (a− δ, b+ δ), then

‖Û>2 U1‖ ≤
‖M̂−M‖+ ‖Λ̂2 −Λ2‖

δ
(21)

for ‖ · ‖ is either Frobenius norm or operator norm.
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Proof. Since U>1 U1 = I and U>2 U1 = 0,

MU1 = (U1Λ1U
>
1 + U2Λ2U

>
2 )U1 = U1Λ1.

In the same way, we have Û>2 M̂ = Λ̂2Û
>
2 . It follows that

Û>2 (M̂−M)U1 = Û>2 M̂U1 − Û>2 MU>1 = Λ̂2Û
>
2 U1 − Û>2 U1Λ1. (22)

Since U1 and Û2 have orthonormal columns,

‖(Λ2 − Λ̂2)Û>2 U1‖ ≤ ‖Λ2 − Λ̂2‖‖Û>2 U1‖op ≤ ‖Λ2 − Λ̂2‖. (23)

We combine (22) and (23), for any real number c,

‖Λ2 − Λ̂2‖+ ‖Û2(M̂−M)U1‖ ≥ ‖(Λ2 − Λ̂2)Û>2 U1‖+ ‖Λ̂2Û
>
2 U1 − Û2U1Λ1‖

≥ ‖Λ2Û
>
2 U1 − Û>2 U1Λ1‖

= ‖(Λ2 − cI)Û>2 U1 − Û2U1(Λ1 − cI)‖
≥ ‖(Λ2 − cI)Û>2 U1‖ − ‖Û2U1(Λ1 − cI)‖.

Now we let c = (a + b)/2 and r = (b − a)/2, then the eigenvalues of Λ1 − cI are contained in
[−r, r] and the eigenvalues of Λ̂2 − cI are excluded from (−r − δ, r + δ). Therefore,

‖(Λ2 − cI)Û>2 U1‖ ≥
1

‖(Λ2 − cI)−1‖op
‖Û>2 U1‖ ≥ (r + δ)‖Û>2 U1‖,

and

‖Û2U1(Λ1 − cI)‖ ≤ ‖Û2U1‖‖Λ1 − cI‖op ≤ r‖Û2U1‖.

Hence, we can conclude that

‖Λ2 − Λ̂2‖+ ‖Û2(M̂−M)U1‖ ≥ (r + δ)‖Û>2 U1‖ − r‖Û>2 U1‖ ≥ δ‖Û>2 U1‖.

‖Û2(M̂−M)U1‖ ≤ ‖Û2(M̂−M)(U1,U2)‖ = ‖Û2(M̂−M)‖, and similarly, ‖Û2(M̂−M)‖ ≤
‖M̂−M‖. Hence (21) is obtained.

Corollary 1 (Wedin’s Theorem). For real-valued matrices M, M̂ ∈ Rn1×n2 , suppose that M =

U1Λ1V
>
1 + U2Λ2V

>
2 and M̂ = Û1Λ̂1V̂

>
1 + Û2Λ̂2V̂

>
2 are the singular value decompositions

so that (U1,U2), (Û1, Û2) ∈ Rn1×n1 , (V1,V2), (V̂1, V̂2) ∈ Rn2×n2 are orthogonal, and Λ1,Λ2

are diagonal. Suppose

0 ≤ min(diag(Λ1)) ≤ max(diag(Λ1)) ≤ a < a+ δ ≤ min(diag(Λ2))

and Λ2 and Λ̂2 contain top-r singular values of M of M̂ respectively, then

max(‖U2U
>
2 − Û2Û

>
2 ‖, ‖V2V

>
2 − V̂2V̂

>
2 ‖) ≤

2‖M̂−M‖
δ

(24)

for ‖ · ‖ is either Frobenius norm or operator norm.

Proof. We consider the symmetric dilation of M, given by

M† =

(
0 M

M> 0

)
. (25)

By Lemma 2(a) of [28], we let

W1 =

(
U1 U1

V1 −V1

)
, W2 =

(
U2 U2

V2 −V2

)
, Σ1 =

(
Λ1 0
0 −Λ1

)
, Σ2 =

(
Λ2 0
0 −Λ2,

)
then we have the decomposition

M† =
1

2
[W1Σ1W

> + W2Σ2W2],
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and similarly,

M̂† =
1

2
[Ŵ1Σ̂1Ŵ

> + Ŵ2Σ̂2Ŵ2],

where

Ŵ1 =

(
Û1 Û1

V̂1 −V̂1

)
, Ŵ2 =

(
Û2 Û2

V̂2 −V̂2

)
, Σ̂1 =

(
Λ̂1 0

0 −Λ̂1

)
, Σ̂2 =

(
Λ̂2 0

0 −Λ̂2

)
,

It is easy to check that ‖M̂† −M†‖op ≤ ‖M̂−M‖op and ‖Σ̂2 −Σ2‖op ≤ ‖Λ̂−Λ‖op. Since Λ2

has eigenvalues contained in [0, a], the eigenvalues of Σ2 are contained in [−a, a]. By Lemma 4,

‖W>
1 W2‖op ≤

‖M̂† −M†‖op + ‖Σ̂2 −Σ2‖op

δ
=
‖M̂−M‖op + ‖Λ̂2 −Λ2‖op

δ
.

By Lemma 1 of [4],

‖W>
1 W2‖op ≥

1

2
‖W2W

>
2 − Ŵ2Ŵ

>
2 ‖op

=

∥∥∥∥(U2U
>
2 − Û2Û

>
2 0

0 V2V
>
2 − V̂2V̂

>
2

)∥∥∥∥
op

= max(‖U2U
>
2 − Û2Û

>
2 ‖op, ‖V2V

>
2 − V̂2V̂

>
2 ‖op).

Hence we obtain

max(‖U2U
>
2 − Û2Û

>
2 ‖op, ‖V2V

>
2 − V̂2V̂

>
2 ‖op) ≤

‖M̂−M‖op + ‖Λ̂2 −Λ2‖op

δ
.

By Corollary 2, the right hand side is upper bounded by 2‖M̂−M‖op/δ. This proves (24) for
operator norm. For Frobenius norm, we have ‖M̂† −M†‖F ≤

√
2‖M̂−M‖F and ‖Σ̂2 −Σ2‖F ≤√

2‖Λ̂−Λ‖F. By Lemma 4,

‖W>
1 W2‖F ≤

‖M̂† −M†‖F + ‖Σ̂2 −Σ2‖F

δ
=

√
2‖M̂−M‖F +

√
2‖Λ̂2 −Λ2‖F

δ
.

By Wielandt-Hoffman Theorem [22], ‖Λ̂2 −Λ2‖F ≤ ‖M̂−M‖F. Therefore, the right hand side is
upper bounded by 2

√
2‖M̂−M‖F/δ. By Lemma 1 of [4] again,

‖W>
1 W2‖F =

1√
2
‖W2W

>
2 − Ŵ2Ŵ

>
2 ‖F

=
√

2

∥∥∥∥(U2U
>
2 − Û2Û

>
2 0

0 V2V
>
2 − V̂2V̂

>
2

)∥∥∥∥
F

=

√
2‖U2U>2 − Û2Û>2 ‖2F + 2‖V2V>2 − V̂2V̂>2 ‖2F

≥
√

2 max(‖U2U
>
2 − Û2Û

>
2 ‖F, ‖V2V

>
2 − V̂2V̂

>
2 ‖F).

This completes the proof of (24).

Theorem 6 (Weyl’s inequality, Corollary III.2.6 of [1]). Suppose A and B are n× n real symmetric
matrices and let σ1(A) ≥ σ2(A) ≥ . . . ,≥ σn(A) and σ1(B) ≥ σ2(B) ≥ . . . ,≥ σn(B) be the
eigenvalues of A and B respectively, then

max
i=1,...,n

|σi(A)− σi(B)| ≤ ‖A−B‖op. (26)

Corollary 2. Suppose A and B are not necessarily symmetric and σi(A) and σi(B) are singular
values, the inequality (26) still holds.

Proof. We consider the symmetric dilation (25) of A and B, denoted by A† and B† respectively.
Then A† has eigenvalues σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0 ≥ −σn(A) ≥ · · · ≥ −σ2(A) ≥
−σ1(A). The eigenvalues of B† are similar. Then we apply the fact that ‖A−B‖op = ‖A† −B†‖op
and Weyl’s inequality to obtain the result.
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Now we are ready to prove Theorem 4. Let M = U1Λ1V
>
1 + U2Λ2V

>
2 and M̂ =

Û1Λ̂1V̂
>
1 + Û2Λ̂2V̂

>
2 be singular value decompositions of M and M̂ respectively, where

diag(Λ2) = (σ1(M), . . . , σr(M)) and diag(Λ̂2) = (σ1(M̂), . . . , σr(M̂)) contains top-r singular
values. By Corollary 2, we have

‖Λ̂2 −Λ2‖op ≤ ‖M̂−M‖op.

By Corollary 1,

max(‖U2U
>
2 − Û2Û

>
2 ‖op, ‖V2V

>
2 − V̂2V̂

>
2 ‖op) ≤

‖M̂−M‖op + ‖Λ̂2 −Λ2‖op

σ

≤
2‖M̂−M‖op

σ
.

Now we apply Theorem 2.1 of [16],

P(‖M̂−M‖op .
√
n1p) ≥ 1− n−1.

On the event of ‖M̂−M‖op .
√
n1p, we have

max(‖U2U
>
2 − Û2Û

>
2 ‖op, ‖V2V

>
2 − V̂2V̂

>
2 ‖op) ≤

2‖M̂−M‖op

σ

.
√
n1p

σ
.

For Frobenius norm, we have that ‖Λ̂2 −Λ2‖F ≤
√
r‖Λ̂2 −Λ2‖op

≤
√
r‖M̂−M‖op by Corollary 2,

max(‖U2U
>
2 − Û2Û

>
2 ‖F, ‖V2V

>
2 − V̂2V̂

>
2 ‖F) ≤ ‖M̂−M‖F + ‖Λ̂2 −Λ‖F

σ

≤
2
√
r‖M̂−M‖op

σ

.
√
n1pr

σ
.

E Proof of Theorem 5

We firstly consider the case r > 1. Let integer k2 ≥ 1, σ > 0 and µ ∈ (0, 1) be given by

k2 = d(10/p)2σ2
∗/n1e, σ2 = n1k2(p/10)2, µ2 = min{21/(2k2p), 0.1}/2. (27)

Clearly σ∗ ≤ σ ≤
√

2σ∗. As rσ2
∗ ≤ n1n2p

2/C0, k2 ≤ 200n2/(rC0) ≤ (n2 − 1)/(2r − 2) for
sufficiently large C0. This allows the following construction. Let H ∈ [−

√
3,
√

3]n1×(r−1) such that
(H,1n1

)>(H,1n1
)/n1 = Ir. Let Ui, i = 1, . . . , N , be distinct matrices in {−1, 1}n1×(r−1), with

N = 2n1(r−1), Wi =
√

1− µ2H + µUi with 0 < µ < 1, and

Mi =
p

2
1n1×n2

+
p

10
(Wi,−Wi, . . . ,Wi,−Wi,O), (28)

where (Wi,−Wi) is repeated k2 times. As ‖Wi‖∞ ≤
√

(1− µ2)3 + µ ≤ 2, Mi ∈
[0.3p, 0.7p]n1×n2 . Let Pi = PMi

= MiM
†
i ∈ Rn1×n1 be the orthogonal projection to the column

space of Mi and Xi = (Wi,1n1
) = (

√
1− µ2H + µUi,1n1

) ∈ Rn1×r. When rank(Xi) = r, Xi

has the same column space as Mi and Pi = Xi(X
>
i Xi)

−1X>i . Let

Vi,j =

(
U>i Uj/n1 0

0> 1

)
, ∆i =

µ

n1

( √
1− µ2U>i H U>i 1n1

0> 0

)
,

and ∆i,j = ∆i + ∆>j + µ2(Vi,i − Ir)I{i=j}. By algebra, we have

n−1
1 X>i Xj =

{
Ir + ∆i,j + µ2(Vi,j − Ir), i 6= j,

Ir + ∆i,i, i = j.
(29)
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Thus, rank(Xi) = r when ‖∆i,i‖op < 1. Let σr(·) denote the r-th largest singular value. We have

σr(Mi) ≥ (p/10)
√
n12k2(1− 2µ2∆′i − µ2∆′′i − (1 + 1/92)µ4(∆′′′i )2)+

by Lemma 6, where ∆′i = ‖U>i H/(n1µ)‖op, ∆′′i = ‖U>i Ui/n1 − Ir−1‖op, and ∆′′′i =

‖U>i 1n1
/(n1µ)‖2.

Let εn satisfying 0 < εn ≤ 1/(8µ2) to be determined later and Ω∗ = {i ≤ N : ∆′i∨∆′′i ∨∆′′′i ≤ εn}.
As ‖∆i‖op ≤ µ2∆′i + µ2∆′′′i and ‖Vi,i − Ir‖op = ∆′′i , we have ‖∆i,i‖op ≤ 5µ2εn for i ∈ Ω∗ and

{i ∈ Ω∗} ⇒
{
Mi ∈ [0.3p, 0.7p]n1×n2 , σr(Mi) ≥ σ ≥ σ∗, rank(Xi) = r

}
. (30)

as σ2
r(Mi) ≥ (p/10)2n12k2(1− 4µ2εn)+ ≥ (p/10)2n1k2 = σ2 ≥ σ2

∗ by (27) for i ∈ Ω∗.

Moreover, for {i, j} in Ω∗, ‖∆i,j‖op ≤ (4 + I{i=j})µ
2εn, so that inserting (29) into tr(PiPj) =

tr((X>i Xi)
−1X>i Xj(X

>
j Xj)

−1X>j Xi) yields

tr(PiPj) ≤ r + (C1 − 1)µ2εnr + µ2(1− µ2)tr(Vi,j + Vj,i − 2Ir) + µ4tr(Vi,jVj,i − Ir)

≤ r + C1µ
2εnr + µ2(1− µ2)tr(Vi,j + Vj,i −Vi,i −Vj,j)

= r + C1µ
2εnr − µ2(1− µ2)‖Ui −Uj‖2F/n1, ∀ i, j ∈ Ω∗, (31)

where C1 is a numerical constant. We provide the details of this calculation in Lemma 7.

Let U, M, P be random matrices with the uniform prior distribution π(·),

π(i) = Pπ(U = Ui,M = Mi,PM = Pi) = 1/N = 2−n1(r−1),

so that the elements of U are i.i.d. Rademacher variables under Pπ . Let U∗ = {Ui : i ∈ Ω∗}, π∗ be
the uniform prior on Ω∗ and Pπ∗ the corresponding joint probability so that Pπ∗ is the conditional
probability given U ∈ U∗ under Pπ . By (30), Pπ∗

{
U ∈ Θ2(n1, n2, p, r, σ)

}
= 1 and (12) holds.

It remains to prove (14). By (31) and the details given in Lemma 8, the Frobenius risk of the Bayes
estimator under Pπ∗ is bounded by

RBayes
π∗ = Eπ∗

[
‖P̂∗ −PM‖2F

]
≥ µ2(1− µ2)n−1

1 Eπ∗
[
‖Û∗ −U‖2F

]
− C1µ

2εnr (32)

where P̂∗ and Û∗ are respectively the posterior mean of PM and U under Pπ∗ . Moreover, ‖Û∗‖2F ∨
‖U‖2F ≤ rn1 always holds, so that

Eπ∗
[
‖Û∗ −U‖2F

]
+ Pπ(Ω∗c)4n1r ≥ Eπ

[
‖Û∗ −U‖2F

]
≥ Eπ

[
‖Û−U‖2F

]
, (33)

where Û is the Bayes estimator of U under Pπ , due to the optimality of Û under Pπ .

Under Pπ, the elements of A are independent conditionally on U and the elements of U are i.i.d.
Rademacher. Moreover, as (Wi,−Wi) is repeated k2 times, conditionally on U the k2 i.i.d. copies of
(Ai,j , Ai,j+r−1) are sufficient statistics for the estimation of the (i, j) elementUi,j of U such thatAi,j
andAi,j+r−1 are independent Bernoulli variables with probabilities pi,j+(µp/10)Ui,j ∈ [0.3p, 0.7p]
and qi,j − (µp/10)Ui,j ∈ [0.3p, 0.7p] respectively for some pi,j and qi,j satisfying the constraints.
Thus, by Lemma 9, the risk of the Bayes estimator is bounded by

Eπ
[
(Ûi,j − Ui,j)2

]
≥ 1− 2k2(µp/10)2/(0.3p(1− 0.3p)) ≥ 1− 2µ2k2p/21.

By (27) µ2 = {(21/(2k2p))∧ 0.1}/2, so that (1− µ22k2p/21) ≥ 1/2 and 1− µ2 ≥ 0.95. Thus, by
(32) and (33), it follows that

RBayes
π∗ ≥ µ2(1− µ2)

(
n−1

1 Eπ
[
‖Û−U‖2F

]
− Pπ(Ω∗c)4r

)
− C1µ

2rεn

≥ 0.475µ2r −
(
4Pπ(Ω∗c) + C1εn

)
µ2r.

This gives (14) when 4Pπ(Ω∗c) + C1εn ≤ 0.075 = 3/40. To this end, we pick

εn = max
{√

40πrσ2/(n2
1p) +

√
160x0σ2/(n2

1p), 4
√

(3r + x0)/n1

}
with x0 = log(320) satisfying 16e−x0 = 0.05 As σ2 ≤ 2σ2

∗ ≤ 2n1n2p
2r−1/C0 and C0r ≤ n1.

εn ≤ max
{√

80πp/C0 +
√

320x0p/C0, 4
√

(3 + x0)/C0

}
.
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Thus, µ2εn ≤ 1/8 and C1εn ≤ 1/40 for sufficiently large C0. Moreover, Lemma 5 provides

4Pπ
{

Ω∗c
}
≤ 16e−x0 ≤ 1/20,

so that 4Pπ(Ω∗c) + C1εn ≤ 3/40 indeed holds. Consequently, by (27)

RBayes
π∗ ≥ 0.4rµ2 = 0.2 min{21/(2k2p), 0.1} = 0.2 min{0.105n1p/σ

2, 0.1}.

This gives (14) and completes the proof for r > 1.

The proof for r = 1 is simpler but the construction is slightly different. Let ui ∈ {−1, 1}n1 ,
wi = (p/2)1n1

+ (p/10)ui, and Mi = wi1
>
n2

. For 1/C0 ≤ 0.16, we have

Mi ∈ [0.4p, 0.6p]n1×n2 , σ2
1(Mi) ≥ (0.4p)2n1n2 ≥ σ2

∗, rank(Mi) = 1.

Let PMi = wiw
>
i /‖wi‖22 and Ti,j = w>i wj/n1. We have

‖PMi −PMj‖2F = 2(Ti,iTj,j − T 2
i,j)/Ti,iTj,j .

Let Ω∗ = {i : |u>i 1n1/(µn1)| ≤ εn}. For {i, j} ⊂ Ω∗,

Ti,j = n−1
1 (µui +

√
1− µ21n1

)>(µuj +
√

1− µ21n1
)

= n−1
1

(
− µ2‖ui − uj‖22 + µ

√
1− µ2(ui + uj)

>1n1

)
+ 1,

so that |Ti,i − 1| ≤ 2µ2εn.

Ti,iTj,j − T 2
i,j

= 2n−1
1 µ2‖ui − uj‖22 − n−2

1 µ4‖ui − uj‖42 − µ2(1− µ2)((ui − uj)
>1n1/n1)2

+ n−2
1 µ2‖ui − uj‖22µ

√
1− µ2(ui + uj)

>1n1

≥ n−1
1 µ2‖ui − uj‖22(2− 4µ2 − 2µ2εn)− 4µ4(1− µ2)ε2

n.

We omit the rest of the proof as they are almost identical to the case of r > 1.

Lemma 5. Let H ∈ {−1, 1}n1×(r−1) such that (H,1n1
)>(H,1n1

)/n1 = Ir. Let r ≥ 2 and
U ∈ {−1, 1}n1×(r−1) with i.i.d. Rademacher entries. Then,

P

{
‖U>H/n1‖op ∨ ‖U>1n1/n1‖2 ≤

√
2π(r − 1)/n1 +

√
8x/n1

‖U>U/n1 − Ir−1‖op ≤ 4
√

(3(r − 1) + x)/n1

}
≥ 1− 4e−x.

Suppose n1p ≤ σ2. Let µ2 = (n1p/σ
2)/20. Then, for

εn = max
{√

40πrσ2/(n2
1p) +

√
160xσ2/(n2

1p), 4
√

(3r + x)/n1

}
,

P{∆′i ∨∆′′i ∨∆′′′i ≤ εn} ≥ 1− 4e−x.

Proof. Let U = (u1, . . . ,un1
)> and ‖v‖2 = 1. As E(v>ui)

2m ≤ E(N(0, 1))2m for all m, for
t < 1/2

E exp
(
t((v>ui)

2 − 1)
)
≤ E exp

(
t(N(0, 1))2 − 1)

)
≤ e−t

(1− 2t)1/2
≤ exp

(
t2/(1− 2t)

)
As E(1− (v>ui)

2)2 = E(v>ui)
4 − 1 ≤ 2,

E exp
(
t(1− (v>ui)

2)
)
≤ 1 + 2(et − 1− t) ≤ exp

(
t2/(1− 2t)

)
By the Bernstein inequality,

P
{∣∣v>(Ir−1 −U>U/n1)v

∣∣ ≥ 2
√
x/n1 + 4x/n1

}
≤ 2e−x

Let ε = 0.12 and Nε ≤ (1 + 2/ε)r−1 be the ε-covering number for the unit ball in Rr−1. We have

(1− 2ε)‖U>U/n1 − Ir−1‖op ≤ max
j≤Nε

∣∣vj(U>U/n1 − Ir−1)vj
∣∣
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with certain vj with ‖vj‖2 = 1. Thus, as 1/(1− 2ε) ≤ 4/3 and log(1 + 2/ε) ≤ 3,

P
{
‖U>U/n1 − Ir−1‖op ≥ (8/3)

√
(3(r − 1) + x)/n1 + 16(3(r − 1) + x)/(3n1)

}
≤ 2e−x.

When 4
√

(3(r − 1) + x)/n1 < 1, this implies

P
{
‖U>U/n1 − Ir−1‖op ≥ 4

√
(3(r − 1) + x)/n1

}
≤ 2e−x.

Let f(U) = ‖U>H/n
1/2
1 ‖op. As H>H/n1 = Ir−1, f(·) is a unit-Lipschitz function, so that

P
{
f(U) > Ef(U) + t

}
≤ e−t

2/8.

Let Z be a standard Gaussian matrix. By the Sudakov-Fernique inequality

E[|N(0, 1)|]Ef(U) ≤ Ef(Z) ≤ 2
√
r − 1

The proof is complete as the proof for H also applies with H is replaced by 1n1 .

Lemma 6. Let Mi be as in (28), ∆′i = ‖U>i H/(n1µ)‖op, ∆′′i = ‖U>i Ui/n1 − Ir−1‖op and
∆′′′i = ‖U>i 1n1

/(n1µ)‖2. Then, the r-th singular value of Mi is bounded by σr(Mi) ≥
(p/10)

√
n12k2(1− 2µ2∆′i − µ2∆′′i − (1 + 1/92)µ4(∆′′′i )2)+.

Proof. Write H = (H,−H), M1 =
√

1− µ2 H + 51n1×(2r−2) and Ui = (Ui,−Ui). We have

σ2
r(Mi)/n1 = σr(M

>
i Mi)/n1 ≥ k2(p/10)2σr

(
(M1 + µUi)

>(M1 + µUi)/n1

)
.

Let Ir−1 = (Ir−1,−Ir−1) and ui = U
>
i 1n1/n1. As ‖U>i Ui/n1 − I

>
r−1Ir−1‖op = 2∆′′i ,

σr
(
(M1 + µUi)

>(M1 + µUi)/n1

)
≥ σr

(
M>

1 M1/n1 + µ2U
>
i Ui/n1+5µui1

>
2r−2 + 5µ12r−2u

>
i

)
− µ‖U>i H/n1 + H

>
Ui/n1‖op

≥ σr
(
M>

1 M1/n1 + µ2I
>
r−1Ir−1+5µui1

>
2r−2 + 5µ12r−2u

>
i

)
− 2µ2∆′′i − 4µ2∆′i

by Weyl’s inequality.

Assume ‖ui‖2 =
√

2µ∆′′′i > 0. As M>
1 M1/n1 = (1− µ2)I

>
r−1Ir−1 + 251(2r−2)×(2r−2),

M>
1 M1/n1 + µ2I

>
r−1Ir−1 + 5µui1

>
2r−2 + 5µ12r−2u

>
i

= I
>
r−1Ir−1 −

2uiu
>
i

‖ui‖22
+

(
12r−2√
2r − 2

,
ui
‖ui‖2

)(
B

√
Bε√

Bε 2

)(
12r−2√
2r − 2

,
ui
‖ui‖2

)>
with B = 25(2r − 2) ≥ 50 and ε = µ2‖ui‖22 = 2µ4(∆′′′i )2. As I

>
r−1Ir−1/2 is an orthogonal

projection with ui/‖ui‖2 as an eigenvector, the r-th eigenvalue of the above matrix is

σ′r =
(
B + 2−

√
(B + 2)2 − 4(2B −Bε)

)/
2.

For ε ≤ 1,
√

(B + 2)2 − 2B(4− 2ε) =
√

(B − 2 + 2ε)2 + 4(2ε− ε2) ≤ B − 2 + ε + 4ε/46,
which implies

σ′r ≥
2B(2− ε)

B + 2 +B − 2 + ε+ 4ε/46
≥ (2− ε)(1− (25/46)ε/B) ≥ 2− (1 + 1/92)ε.

Hence, the conclusion holds. The conclusion holds automatically when ε > 1. The proof for ε = 0 is
simpler and omitted.
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