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A APPENDIX

B NUMERICAL RESULTS PARAMETERS

All experiments were done on a computer with 32gb of RAM, a CPU Intel Core i9-9900K
@3.60GHz x 16, a GPU GeForce RTX 2080 Ti/PCIe/SSE2, and Ubuntu 18.04.4 LTS.

B.1 RECOMMENDATION SYSTEM

We split the dataset with 90% for the training set, and 10% for the testing set, and we run 20
independent random partitions. For the optimizer, we used 5 samples for the batch size, and ADAM
algorithm Kingma & Ba (2015), with learning rate 0.005, β1 = 0.9, β2 = 0.999, and without
learning rate decay. For the loss, we used the smooth L1 loss. For the GNN, we used ReLU as
non-linearity, we considered F = 32 features, K = 5 filter taps, and L = 1 layers.

We used the graph neural networks library available online at https://github.com/alelab-upenn/graph-
neural-networks/blob/master/examples/movieGNN.py and implemented with PyTorch.

B.2 DECENTRALIZED CONTROL

We run the system for T = 2s, and used 400 samples for training, 20 for validation, and 20 for the
test set. For the optimizer, we used 20 samples for the batch size, and ADAM algorithm Kingma &
Ba (2015) with learning rate 0.0005, β1 = 0.9, β2 = 0.999, without learning rate decay. We used
a one layer Graph Neural Networks with F = 64 hidden units and K = 3 filter taps, and used the
hyperbolic tangent as non-linearity ρ. We run 10 independent realizations of each experiment.

We used the graph neural networks library available online at https://github.com/alelab-upenn/graph-
neural-networks/blob/master/examples/flockingGNN.py and implemented with PyTorch.
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C PROOF OF THEOREM 1

Definition 2 (Template graphs). Let {ui}ni=1 be the regular n-partition of [0, 1], i.e.,

ui =
i− 1

n
(19)

for 1 ≤ i ≤ n. The n-node template graph Gn, whose GSO we denote Sn, is obtained from W as

[Sn]ij = W(ui, uj) (20)

for 1 ≤ i, j ≤ n.

Definition 3 (Graphon spectral representation of convolutional filter response). As the graphon
W is bounded and symmetric, TW is a self adjoint Hilbert-Schmidt operator, which allows to use
the operator’s spectral basis W(u, v) =

∑
i∈Z{0} λiψi(u)ψi(v). Eigenvalues λi are ordered in

decreasing order of absolute value i.e., 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0 ≥ · · · ≥ λ−2 ≥ λ−1 ≥ −1, and
their only accumulation point is 0 (Lax, 2002, Theorem 3, Chapter 28). Thus, we define the spectral
representation of the convolutional filter TH (cf. (6)) as,

h(λ) =

K−1∑
k=0

hkλ
k (21)

Definition 4 (c-band cardinality of W). The c-band cardinality, denoted BcW, is the number of
eigenvalues whose absolute value is larger than c.

BcW = #{λi : ‖λi‖ ≤ c} (22)

Definition 5 (c-eigenvalue margin of W - Wn). The c-eigenvalue margin of W - Wn is defined as
the minimum distance between two different eigenvalues of the integral operator applied to W, and
to Wn as follows,

δcWWn
= min
i,j 6=i
{‖λi(TW)− λi(TWn)‖ : ‖λi(TWn)‖ ≥ c} (23)

Definition 6 (Graphon Convolutional Filter). Given a graphon W, a graphon signal X , and filter
coefficients h = [h0, . . . , hK−1] the graphon filter TH : L2([0, 1])→ L2([0, 1]) is defined as,

(THX)(v) =

K−1∑
k=0

hk(T
(k)
W X)(v). (24)

Proposition 1. Let X ∈ L2([0, 1]) be a normalized Lipschitz graphon signal, and let Xn be the
graphon signal induced by the graph signal xn obtained from X on the template graph Gn [cf.
Definition 2], i.e., [xn]i = X((i− 1)/n) for 1 ≤ i ≤ n. It holds that

‖X −Xn‖L2 ≤
1

n
. (25)

Proof. Let Ii = [(i− 1)/n, i/n) for 1 ≤ i ≤ n− 1 and In = [(n− 1)/n, 1]. Since the graphon is
normalized Lipschitz, for any u ∈ Ii, 1 ≤ i ≤ n, we have

‖X(u)−Xn(u)‖ ≤ max

(∣∣∣∣u− i− 1

n

∣∣∣∣ , ∣∣∣∣ in − u
∣∣∣∣) ≤ 1

n
. (26)

We can then write

‖X −Xn‖2 =

∫ 1

0

|X(u)−Xn(u)|2du (27)

≤
∫ 1

0

(
1

n

)2

du =

(
1

n

)2

, (28)

which completes the proof.
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Proposition 2. Let W : [0, 1]2 → [0, 1] be a normalized Lipschitz graphon, and let Wn := WGn

be the graphon induced by the template graph Gn generated from W as in Definition 2. It holds
that

‖W −Wn‖ ≤
2

n
. (29)

Proof. Let Ii = [(i− 1)/n, i/n) for 1 ≤ i ≤ n− 1 and In = [(n− 1)/n, 1]. Since the graphon is
Lipschitz, for any u ∈ Ii, v ∈ Ij , 1 ≤ i, j ≤ n, we have

‖W(u, v)−Wn(u, v)‖ ≤ max

(∣∣∣∣u− i− 1

n

∣∣∣∣ , ∣∣∣∣ in − u
∣∣∣∣) (30)

+ max

(∣∣∣∣v − j − 1

n

∣∣∣∣ , ∣∣∣∣ jn − v
∣∣∣∣) (31)

≤ 1

n
+

1

n
=

2

n
. (32)

We can then write

‖W −Wn‖2 =

∫ 1

0

|W(u, v)−Wn(u, v)|2dudv (33)

≤
∫ 1

0

(
2

n

)2

dudv =

(
2

n

)2

(34)

which concludes the proof.

Proposition 3. Consider the L-layer WNN given by Y = Φ(X;H,W), where F0 = FL = 1 and
F` = F for 1 ≤ ` ≤ L− 1. Let c ∈ (0, 1] and assume that the graphon convolutions in all layers of
this WNN have K filter taps [cf. (6)]. Under Assumptions 1 through 3, the norm of the gradient of
the WNN with respect to its parametersH = {Hlk}l,k can be upper bounded by,

‖∇HΦ(X;H,W)‖ ≤ F 2L
√
K. (35)

Proof. We will find an upper bound for any element [Hl†k† ]g†f† of the tensor H. We start by the
last layer of the WNN, applying the definition given in equation (8),

‖∇[H
l†k† ]g†f†

Φ(X;H,W)‖ =

∥∥∥∥∇[H
l†k† ]g†f†

Xf
L

∥∥∥∥ (36)

=

∥∥∥∥∇[H
l†k† ]g†f†

ρ

Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[HLk]gf

∥∥∥∥. (37)

By Assumption 3, the non-linearity ρ is normalized Lipschitz , i.e. ∇ρ(·)(u) ≤ 1 for all u. Thus,
aplying the chain rule for the derivative, and the Cauchy-Schwartz inequality, the right hand side of
the previous expression can be rewritten as,

‖∇[H
l†k† ]g†f†

Φ(X;H,W)‖ =

∥∥∥∥∇ρ
Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[HLk]gf

∥∥∥∥
∥∥∥∥∇[H

l†k† ]g†f†

Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[HLk]gf

∥∥∥∥ (38)

≤
∥∥∥∥∇[H

l†k† ]g†f†

Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[HLk]gf

∥∥∥∥ (39)

Note that the a larger bound will occur if l† < L− 1, then by linearity of derivation, and the triangle
inequality we obtain,

‖∇[H
l†k† ]g†f†

Φ(X;H,W)‖ ≤
Fl−1∑
g=1

∥∥∥∥K−1∑
k=1

T
(k)
W (∇[H

l†k† ]g†f†
Xg
l−1)[HLk]gf

∥∥∥∥ (40)
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By Assumption 2, the convolutional filters are non-amplifying, thus it holds that,

‖∇[H
l†k† ]g†f†

Φ(X;H,W)‖ ≤
Fl−1∑
g=1

∥∥∥∥∇[H
l†k† ]g†f†

Xg
l−1

∥∥∥∥ (41)

Now note that as filters are non-amplifying, the maximum difference in the gradient will be attained
at the first layer (l = 1) of the WNN. Also note that the derivative of a convolutional filter TH [cf.
Definition 6] at coefficient k† = i, is itself a convolutional filter with coefficients hi. The values of
hi are [hi]j = 1 if j = i and 0 otherwise. Thence,

‖∇[H
l†k† ]g†f†

Φ(X;H,W)‖ ≤ FL−1

∥∥∥∥hi∗WX0

∥∥∥∥ (42)

≤ FL−1‖X0‖. (43)

To complete the proof note that tensor H has FL−1K elements, and each individual gradient is
upper bounded by (43), and ‖X‖ is normalized by Assumption 1.

Lemma 1. Let Φ(X;H,W) be a WNN with F0 = FL = 1, and Fl = F for 1 ≤ l ≤ L − 1. Let
c ∈ (0, 1], and assume that the graphon convolutions in all layers of this WNN have K filter taps
[cf. (6)]. Let Φ(xn;H,Sn) be a GNN sampled from Φ(X;H,W) as in (9). Under assumptions
(1),(2),(3), and (5) with probability 1− ξ it holds that,

‖Φ(X;H,W)−Φ(Xn;H,Wn)‖ ≤LFL−1

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
1

n
+ 4LFL−1c (44)

The fixed constants BcW and δcWWn
are the c-band cardinality and the c-eigenvalue margin of W

and Wn respectively [cf. Definitions 4,5].

Proof. We start by writing the expression on the left hand side, using the definition of WNN [cf.
(8)] we can write,

‖Φ(X;H,W)−Φ(Xn;H,Wn)‖ = ‖XL −XnL‖ (45)

=

∥∥∥∥∥∥ρ
FL−1∑

g=1

K−1∑
k=1

(T
(k)
W Xg

L−1)[HLk]gf

− ρ
FL−1∑

g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nL−1)[HLk]gf

∥∥∥∥∥∥ .
Since the non-linearity ρ is normalized Lipschitz by Assumption 3, using the triangle inequality, we
obtain

‖XL −XnL‖ ≤
FL−1∑
g=1

∥∥∥∥∥
K−1∑
k=1

(T
(k)
W Xg

L−1)[HLk]gf −
K−1∑
k=1

(T
(k)
Wn

Xg
nL−1)[HLk]gf

∥∥∥∥∥ . (46)

Using the triangle inequality once again, we split the last inequality into two terms as follows,

‖XL −XnL‖ ≤
FL−1∑
g=1

∥∥∥∥∥
K−1∑
k=1

T
(k)
W (Xg

L−1 −X
g
nL−1)[HLk]gf

∥∥∥∥∥ (1)

+

FL−1∑
g=1

∥∥∥∥∥
K−1∑
k=1

(T
(k)
W − T (k)

Wn
)Xg

L−1[HLk]gf

∥∥∥∥∥ (2). (47)

Where we have split (47) into terms (1), and (2). On the one hand, by assumption 2, convolutional
filters h are non-amplifying, thus using Cauchy-Schwartz inequality, term (1) can be bounded by,

FL−1∑
g=1

∥∥∥∥∥
K−1∑
k=1

T
(k)
W (Xg

L−1 −X
g
nL−1)[HLk]gf

∥∥∥∥∥ ≤
FL−1∑
g=1

∥∥Xg
L−1 −X

g
nL−1

∥∥ . (48)
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To bound term (2), denoting hLgf the spectral representation of the convolutional filter applied to
Xg
L−1 at feature f of layer L [cf. Definition 3], we will decompose the filter as follows,

h≥cLgf (λ)

{
0 if |λ| < c

hLgf (λ)− hLgf (c) if |λ| ≥ c (49)

h<cLgf (λ)

{
hLgf (λ) if |λ| < c

hLgf (c) if |λ| ≥ c. (50)

Note that hLgf = h≥cLgf + h<cLgf . Let T<c[HL]gf
and T<c[HnL]gf

, be the graphon convoutional filters
with filter function h<cLgf on graphons W, and Wn respectively [cf. Definition 6]. Note that filter
h<cLgf , varies only in the interval [0, c), and since filters are normalized Lipschitz by Assumption 2,
it verifies∥∥∥T<c[HL]gf

Xg
L−1 − T

<c
[HnL]gf

Xg
L−1

∥∥∥ ≤ ∥∥(hLgf (c) + c)− (hLgf (c)− c)‖‖Xg
L−1

∥∥ (51)

≤ 2c‖Xg
L−1‖. (52)

Now we need to upper bound the difference in the high frequencies h≥cLgf . Let T≥c[HL]gf
and T≥c[HnL]gf

,

be the graphon filters with filter function h≥cLgf on graphons W, and Wn respectively. Let Sn
denote the template graph sampled from the graphon W [cf. definition 2]. We denote Wn, the
induced graphon by template graph Sn as in (10). By introducing T≥c[HnL]gf

, the graph filter with

filter function h≥cLgf on graphon Wn, we can use the triangle inequality to obtain,∥∥∥T≥c[HL]gf
Xg
L−1 − T

≥c
[HnL]gf

Xg
L−1

∥∥∥ ≤ ∥∥∥T≥c[HL]gf
Xg
L−1 − T

≥c
[HnL]gf

Xg
L−1

∥∥∥ (2.1)

+
∥∥∥T≥c[HnL]gf

Xg
L−1 − T

≥c
[HnL]gf

Xg
L−1

∥∥∥ (2.2). (53)

Under assumptions 1–5, to bound term (2.1) we can use (Ruiz et al., 2020a, Theorem 1), and to
bound term (2.2) we can use (Ruiz et al., 2020d, Lemma 2). Thus, with probability 1 − ξ, the
previous expression can be bounded by,

∥∥∥T≥c[HL]gf
Xg
L−1 − T

≥c
[HnL]gf

Xg
L−1

∥∥∥ ≤ (1 +
πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

∥∥Xg
L−1

∥∥ . (54)

Where the fixed constants BcW and δcWWn
are the c-band cardinality and the c-eigenvalue margin

of W and Wn respectively [cf. Definitions 4,5]. Hence, coming back to (47), we can use (48) to
upper bound (1), and we can use (52), and (54), to upper bound (2) as follows,

‖XL −XnL‖ ≤
FL−1∑
g=1

∥∥Xg
L−1 −X

g
nL−1

∥∥+ 2c‖Xg
L−1‖

+

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

∥∥Xg
L−1

∥∥ . (55)

Now, we arrive at a recursive equation that we can compute for the L layers, with F features per
layer, to obtain,

‖XL −XnL‖ ≤F0 ‖X0 −Xn0‖+ 2LFL−1c‖X0‖

+ LFL−1

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

‖X0‖ . (56)

Using Proposition 1, noting that F0 = 1 by construction, and using Assumption 1, concludes the
proof.

18



Under review as a conference paper at ICLR 2022

Lemma 2. Let Φ(X;H,W) be a WNN with F0 = FL = 1, and Fl = F for 1 ≤ l ≤ L − 1. Let
c ∈ (0, 1], and assume that the graphon convolutions in all layers of this WNN have K filter taps
[cf. (6)]. Let Φ(xn;H,Sn) be a GNN sampled from Φ(X;H,W) as in (9). Under assumptions
(1),(2),(3), and (5) with probability 1− ξ it holds that,

‖∇HΦ(X;H,W)−∇HΦ(Xn;H,Wn)‖

≤
√
KFL−1

(
2L2F 2L−2

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
2FL−1L

n
+ 8L2F 2L−2c

)
.

Proof. We will first show that the gradient with respect to any arbitrary element [Hl†k† ]g†f† ∈ R
of H can be uniformly bounded. Note that the maximum is attained if l† = 1. Without loss of
generality, assuming l† > l − 1, we can begin by using the definition given in equation (8) of the
output of the WNN as follows,

‖∇[H
l†k† ]g†f†

Φ(X;H,W)−∇[H
l†k† ]g†f†

Φ(Xn;H,Wn)‖

= ‖∇[H
l†k† ]g†f†

Xf
L −∇[H

l†k† ]g†f†
Xf
nL‖ (57)

=

∥∥∥∥∇[H
l†k† ]g†f†

ρ

Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf


−∇[H

l†k† ]g†f†
ρ

Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

∥∥∥∥. (58)

Taking derivatives by applying the chain rule, and applying the triangle inequality it yields,

‖∇[H
l†k† ]g†f†

Xf
L −∇[H

l†k† ]g†f†
Xf
nL‖

≤
∥∥∥∥(∇ρ( Fl−1∑

g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf

)
−∇ρ

( Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

))

∇[H
l†k† ]g†f†

( Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf

)∥∥∥∥ (59)

+

∥∥∥∥∇ρ( Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

)
(60)

(
∇[H

l†k† ]g†f†

Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf −∇[H
l†k† ]g†f†

Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

)∥∥∥∥.
We can now use Cauchy-Schwartz inequality, Assumptions 3, 4, and Proposition 3 to bound the
terms regarding the gradient of the non-linearity ρ, the loss function `, and the WNN respectively,
as follows,

‖∇[H
l†k† ]g†f†

Xf
L −∇[H

l†k† ]g†f†
Xf
nL‖ (61)

≤
∥∥∥∥ Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf −
Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

∥∥∥∥FL−1‖X0‖

+

∥∥∥∥ Fl−1∑
g=1

∇[H
l†k† ]g†f†

K−1∑
k=1

(
(T

(k)
W Xg

l−1)[Hlk]gf − (T
(k)
Wn

Xg
nl−1)[Hlk]gf )

)∥∥∥∥.
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We can now apply the triangle inequality on the second term of the previous bound to obtain,

‖∇[H
l†k† ]g†f†

Xf
L −∇[H

l†k† ]g†f†
Xf
nL‖ (62)

≤
∥∥∥∥ Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf −
Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

∥∥∥∥FL−1‖X0‖

+

∥∥∥∥ Fl−1∑
g=1

∇[H
l†k† ]g†f†

K−1∑
k=1

(
(T

(k)
W )[Hlk]gf − (T

(k)
Wn

)[Hlk]gf )

)
Xg
nl−1

∥∥∥∥
+

Fl−1∑
g=1

∥∥∥∥∇[H
l†k† ]g†f†

K−1∑
k=1

T
(k)
Wn

(
Xg
l−1 −X

g
nl−1

)
[Hlk]gf )

∥∥∥∥.
Now note that as we are considering the case in which l† < l−1, using Cauchy-Schwartz inequality,
we can use the same bound for the first and second term of the right hand side of the previous
inequality. Since filters are non-expansive by Assumption 3, it yields

‖∇[H
l†k† ]g†f†

Xf
L −∇[H

l†k† ]g†f†
Xf
nL‖ (63)

≤ 2

∥∥∥∥ Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf −
Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

∥∥∥∥FL−1‖X0‖

+

Fl−1∑
g=1

∥∥∥∥∇[H
l†k† ]g†f†

(
Xg
l−1 −X

g
nl−1

)∥∥∥∥.
Now notice, that the only term that remains to bound is the exact same bound we obtained in equation
(57), but on the previous layer L − 2. Hence, we conclude that by applying the same steps L − 2
times, as the WNN has L layers, we will obtain a bound for any element [Hl†k† ]g†f† of tensorH.

‖∇[H
l†k† ]g†f†

Xf
L −∇[H

l†k† ]g†f†
Xf
nL‖ (64)

≤ 2LFL−2

∥∥∥∥ Fl−1∑
g=1

K−1∑
k=1

(T
(k)
W Xg

l−1)[Hlk]gf −
Fl−1∑
g=1

K−1∑
k=1

(T
(k)
Wn

Xg
nl−1)[Hlk]gf

∥∥∥∥FL−1‖X0‖

+

Fl−1∑
g=1

∥∥∥∥∇[H
l†k† ]g†f†

(
Xg

1 −X
g
1

)∥∥∥∥.
Note that the derivative of a convolutional filter TH at coefficient k† = i, is itself a convolutional
filter with coefficients hi [cf. Definition 6]. The values of hi are [hi]j = 1 if j = i and 0 otherwise.
As hi is itself a filter that verifies Assumption 2, as graphons are normalized. Thus, considering l† =
0, and using Propositions 1, 2, (Chung & Radcliffe, 2011, Theorem 1) and the triangle inequality,
we obtain,∥∥∥∥hi∗Wn

Xn0 − hi∗WX0

∥∥∥∥ ≤ (‖W −Wn‖+ ‖Wn −Wn‖
)
‖X0‖+ ‖Xn0 −X0‖ (65)

≤
(

1 +
πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
1

n
(66)

with probability 1 − ξ. In the previous expression, Wn is the template graphon [cf. Definition 2].
Now, substituting (64) into (65), and using Lemma 1, with probability 1− ξ, it holds that,

‖∇[H
l†k† ]g†f†

Xf
L −∇[H

l†k† ]g†f†
Xf
nL‖ ≤2L2F 2L−2

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
2FL−1L

n
+ 8L2F 2L−2c. (67)

To achieve the final result, note that tensorH has KFL−1 elements, and each individual gradient is
upper bounded by (67).

20



Under review as a conference paper at ICLR 2022

Lemma 3. Let Φ(X;H,W) be a WNN with F0 = FL = 1, and Fl = F for 1 ≤ l ≤ L − 1. Let
c ∈ (0, 1], and assume that the graphon convolutions in all layers of this WNN have K filter taps
[cf. (6)]. Let Φ(xn;H,Sn) be a GNN sampled from Φ(X;H,W) as in (9). Under Assumptions
(1)–(5) with probability 1− ξ it holds that,

‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖

≤
√
KFL−1

(
3L2F 2L−2

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

)
Proof. In order to analyze the norm of the gradient with respect to the tensor H, we can start by
taking the derivative with respect to a single element of the tensor, [Hl†k† ]g†f† . By deriving the loss
function ` using the chain rule it yields,

‖∇[H
l†k† ]g†f†

`(Y,Φ(X;H,W))−∇[H
l†k† ]g†f†

`(Yn,Φ(Xn;H,Wn))‖
=‖∇`(Y,Φ(X;H,W))∇[H

l†k† ]g†f†
Φ(X;H,W)

−∇`(Yn,Φ(Xn;H,Wn))∇[H
l†k† ]g†f†

Φ(Xn;H,Wn)‖. (68)

By Cauchy-Schwartz, and the triangle inequality it holds,

‖∇[H
l†k† ]g†f†

`(Y,Φ(X;H,W))−∇[H
l†k† ]g†f†

`(Yn,Φ(Xn;H,Wn))‖
≤‖∇`(Y,Φ(X;H,W))−∇`(Yn,Φ(Xn;H,Wn))‖‖∇[H

l†k† ]g†f†
Φ(X;H,W)‖ (69)

+ ‖∇`(Yn,Φ(Xn;H,Wn))‖‖∇[H
l†k† ]g†f†

Φ(X;H,W)−∇[H
l†k† ]g†f†

Φ(Xn;H,Wn)‖.

By the triangle inequality and Assumption 4 it follows,

‖∇[H
l†k† ]g†f†

`(Y,Φ(X;H,W))−∇[H
l†k† ]g†f†

`(Yn,Φ(Xn;H,Wn))‖
≤ ‖∇`(Y,Φ(X;H,W))−∇`(Y,Φ(Xn;H,Wn))‖‖∇[H

l†k† ]g†f†
Φ(X;H,W)‖ (70)

‖∇`(Yn,Φ(Xn;H,Wn))−∇`(Y,Φ(Xn;H,Wn))‖‖∇[H
l†k† ]g†f†

Φ(X;H,W)‖ (71)

+ ‖∇[H
l†k† ]g†f†

Φ(X;H,W)−∇[H
l†k† ]g†f†

Φ(Xn;H,Wn)‖
≤ (‖Yn − Y ‖+ ‖Φ(Xn;H,Wn))−Φ(X;H,W))‖)‖∇[H

l†k† ]g†f†
Φ(X;H,W)‖ (72)

+ ‖∇[H
l†k† ]g†f†

Φ(X;H,W)−∇[H
l†k† ]g†f†

Φ(Xn;H,Wn)‖.

Now we can use Lemmas 1–2, Propositions 1, and 3, and Assumption 1 to obtain,

‖∇[H
l†k† ]g†f†

`(Y,Φ(X;H,W))−∇[H
l†k† ]g†f†

`(Yn,Φ(Xn;H,Wn))‖ (73)

≤
(

3L2F 2L−2

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

)
Noting that tensor H has KFL−1 elements, and each individual term can be bounded by (73), the
desired result is attained.

Definition 7. We define the constant γ as,

γ = 12
√
KFL−1L2F 2L−2, (74)

where K is the number of features, L is the number of layers, and K is the number of filter taps of
the GNN.
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We will present a more comprehensive statement of Theorem 1, where we include all the smaller
order terms in (15). Notice that the statement of Theorem 1 in the main body of the paper omits
these terms in order to simplify the exposition of the main result. In practice, these smaller order
terms vanish faster as n increases.
Theorem 1. Consider the ERM problem in (12) and let Φ(X;H,W) be an L-layer WNN with
F0 = FL = 1, and Fl = F for 1 ≤ l ≤ L − 1. Let c ∈ (0, 1] and assume that the graphon
convolutions in all layers of this WNN have K filter taps [cf. (6)]. Let Φ(xn;H,Sn) be a GNN
sampled from Φ(X;H,W) as in (9). Under assumptions AS1–AS5, it holds that

E[‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖]

≤
√
KFL−1

(
6L2F 2L−2

(
1 +

πBcWn

δcWWn

)(1 +
√
n log(2n3/2)

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

)
+

2F 2L
√
K√

n
(75)

where Yn is the graphon signal induced by [yn]i = Y (ui), ui = (i− 1)/n for 1 ≤ i ≤ n [cf. (10)].
The fixed constants BcW and δcWWn

are the c-band cardinality and the c-eigenvalue margin of W
and Wn respectively [cf. Definitions 4,5 in the supplementary material].

Proof of Theorem 1. We begin by considering the event An such that,

An =

(
‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖ (76)

≤
√
KFL−1

(
3L2F 2L−2

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

))
.

Thus, by considering the disjoint events An, and Acn, and denoting 1(·) the indicator function, the
expectation can be separated as follows,

E[‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖]
= E[‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖1(An)]

+ E[‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖1(Acn)] (77)
We can bound the term regardingAcn using the chain rule, Cauchy-Schwartz inequality, Assumption
4, and Proposition 3 as follows,

‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖
≤ ‖∇H`(Y,Φ(X;H,W))‖+ ‖∇H`(Yn,Φ(Xn;H,Wn))‖ (78)
≤ ‖∇`(Y,Φ(X;H,W))‖‖∇HΦ(X;H,W)‖

+ ‖∇`(Yn,Φ(Xn;H,Wn))‖‖∇HΦ(Xn;H,Wn)‖ (79)
≤ ‖∇HΦ(X;H,W)‖+ ‖∇HΦ(Xn;H,Wn)‖ (80)

≤ 2F 2L
√
K (81)

Returning to equation (77), we can substitute the bound obtained in equation (81), and by taking
P (An) = 1− ξ, and using Lemma 3, it yields,

E[‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖]

≤ (1− ξ)
√
KFL−1

(
3L2F 2L−2

(
1 +

πBcWn

δcWWn

)2

(
1 +

√
n log( 2n

ξ )

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

)
+ ξ2F 2L

√
K (82)

To complete the proof, set ξ = 1√
n

.

22



Under review as a conference paper at ICLR 2022

E[‖∇H`(Y,Φ(X;H,W))−∇H`(Yn,Φ(Xn;H,Wn))‖]

∇H`(Yn,Φ(Xn;H,Wn))

Figure 3: In order to satisfy the property that the inner product between the gradient on the GNN
∇H`(Yn,Φ(Xn;H,Wn)) and the gradient on the graphon ∇H`(Y,Φ(X;H,W)) is positive, we rely on
the condition provided in Theorem 2.

D PROOF OF THEOREM 2

Definition 8 (Stopping time). We define the stopping time k∗ as,

k∗ = min
k≥0
{‖∇HΦ(X;Hk,Wn)‖ ≤

√
KFL−112L2F 2L−2c}. (83)

Definition 9 (Constant ψ).
Lemma 4. Under Assumptions 4, 5, and 6, the gradient of the loss function ` with respect to the
parameters of the GNNH is A∇`-Lipschitz,

‖∇H`(Y,Φ(X;A,W))−∇H`(Y,Φ(X;B,W))‖ ≤ A∇`‖A − B‖ (84)

where A∇` = (A∇Φ +AΦF
2L
√
K).

Proof. To begin with, we can apply the chain rule to obtain,

‖∇H`(Y,Φ(X;A,W))−∇H`(Y,Φ(X;B,W))‖
= ‖∇`(Y,Φ(X;A,W))∇HΦ(X;A,W)−∇`(Y,Φ(X;B,W))∇HΦ(X;B,W)‖ (85)

By applying the triangle inequality, and Cauchy-Schwartz it yields,

‖∇H`(Y,Φ(X;A,W))−∇H`(Y,Φ(X;B,W))‖
≤ ‖∇`(Y,Φ(X;A,W))‖‖∇HΦ(X;A,W)−∇HΦ(X;B,W)‖
+ ‖∇H`(Y,Φ(X;A,W))− `(Y,Φ(X;B,W))‖‖∇HΦ(X;B,W)‖ (86)

We can now use Assumptions 1, 4, 5, and 6 as well as Proposition 3, to obtain

‖∇H`(Y,Φ(X;A,W))−∇H`(Y,Φ(X;B,W))‖ ≤ (A∇Φ +AΦF
2L
√
K‖A − B‖) (87)

Completing the proof.

Lemma 5. Consider the ERM problem in (12) and let Φ(X;H,W) be an L-layer WNN with
F0 = FL = 1, and Fl = F for 1 ≤ l ≤ L − 1. Let c ∈ (0, 1] and assume that the graphon
convolutions in all layers of this WNN have K filter taps [cf. (6)]. Let Φ(xn;H,Sn) be a GNN
sampled from Φ(X;H,W) as in (9). Under assumptions AS1–AS6, let the following condition be
satisfied for every k,

√
KLL−1

(
6L2F 2L−2

(
1 +

πBcWn

δcWWn

)(1 +
√
n log(2n3/2)

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

)
+

2F 2L
√
K√

n
<

1−A∇`ηk
2

‖∇H`(Yn,Φ(Xn;Hk,Wn)‖. (88)

then the first k∗ iterates generated by equation (14), 1(k ≤ k∗)`(Y,Φ(X;Hk,Wn)) form a positive
super-martingale with respect to the filtrationFk generated by the history of the Algorithm up to step
k [i.e., {X,Y,Xn, Yn,Wn}k, {X,Y,Xn, Yn,Wn}k−1, . . . , {X,Y,Xn, Yn,Wn}0]. Where k∗ is
the stopping time defined in Definition 8, and 1(·) is the indicator function.
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Proof. To begin with, 1(k < k∗)`(Y,Φ(X;Hk,W)) ∈ Fk, where Fk is the filtration generated by
the history of the Algorithm up to k. Note that the loss function ` is positive by Assumption 4. It
remains to be shown the inequality expression of the super-martingale. For k > k∗, the inequality
is trivially verified as the indicator function 1(k ≤ k∗) = 0 for k > k∗. For k ≤ k∗, as in Bertsekas
& Tsitsiklis (2000), we define a continuous function g(ε) that takes the value of the loss function on
the Graphon data on iteration k + 1 at ε = 1, and on iteration k on ε = 0 as follows,

g(ε) = `(Y,Φ(X;Hk − εηk∇H`(Yn,Φ(Xn;Hk,Wn)),W)). (89)

Note that function g(ε), is evaluated on the graphon data Y,X,W, but the steps are controlled by
the induced graphon data Yn, Xn,Wn. Applying the chain rule, the derivative of g(ε) with respect
to ε can be obtain as follows,

∂

∂ε
g(ε) = (90)

−∇H`(Y,Φ(X;Hk − εηk∇H`(Yn,Φ(Hk; Wn;Xn)),W))ηk∇H`(Yn,Φ(Xn;Hk; Wn)).

Now note that the difference in the loss function ` between iterations k + 1 and k can be written as
the difference between g(ε = 1) and g(ε = 0) as follows,

g(1)− g(0) = `(Y,Φ(X;Hk+1,W))− `(Y,Φ(X;Hk,W)). (91)

Computing the integration of the derivative of g(ε) between [0, 1] it yields

`(Y,Φ(X;Hk+1,W))− `(Y,Φ(X;Hk,W)) = g(1)− g(0) =

∫ 1

0

∂

∂ε
g(ε)dε (92)

=

∫ 1

0

∇H`(Y,Φ(X;Hk − εηk∇H`(Yn,Φ(Xn;Hk,Wn)),W))

(−)ηk∇H`(Yn,Φ(Xn;Hk,Wn))dε. (93)

Note that the last term of the previous integral does not depend on ε. Besides, we can sum and
subtract∇H`(Y,Φ(Hk,W, X)) inside the integral, to obtain,

`(Y,Φ(X;Hk+1,W))− `(Y,Φ(X;Hk,W))

= (−)ηk∇H`(Yn,Φ(Xn;Hk,Wn))∫ 1

0

∇H`(Y,Φ(X;Hk − εηk∇H`(Yn,Φ(Xn;Hk,Wn)),W))

+∇H`(Y,Φ(X;Hk,W))−∇H`(Y,Φ(X;Hk,W))dε (94)

= −ηk∇H`(Yn,Φ(Xn;Hk,Wn))∇H`(Y,Φ(X;Hk,W))

∫ 1

0

dε

− ηk∇H`(Yn,Φ(Xn;Hk,Wn))

∫ 1

0

∇H`(Y,Φ(Hk − εηk∇H`(Yn,Φ(Xn;Hk,Wn)),W, X))

−∇H`(Y,Φ(X;Hk,W))dε. (95)

We can now apply the Cauchy-Schwartz inequality to the last term on the previous inequality, and
take the norm of the integral, which is smaller that the integral of the norm to obtain,

`(Y,Φ(X;Hk+1,W))− `(Y,Φ(X;Hk,W))

≤ −ηk∇H`(Yn,Φ(Hk; Wn;Xn))∇H`(Y,Φ(Hk,W, X))

+ ηk‖∇H`(Yn,Φ(Hk; Wn;Xn))‖
∫ 1

0

∥∥∥∥∇H`(Y,Φ(Hk − εηk∇H`(Yn,Φ(Hk; Wn;Xn)),W, X))

−∇H`(Y,Φ(Hk,W, X))

∥∥∥∥dε. (96)

24



Under review as a conference paper at ICLR 2022

Under Lemma 4, we can take the Lipschitz bound on the gradient on the loss function with respect
to the parameters, using A∇`, to obtain,

`(Y,Φ(X;Hk+1,W))− `(Y,Φ(X;Hk,W))

≤ −ηk∇H`(Yn,Φ(Xn;Hk,Wn))∇H`(Y,Φ(X;Hk,W))

+A∇`ηk‖∇H`(Yn,Φ(Xn;Hk,Wn))|
∫ 1

0

∥∥∥∥ηk∇H`(Yn,Φ(Xn;Hk,Wn))

∥∥∥∥εdε (97)

≤ −ηk∇H`(Yn,Φ(Xn;Hk,Wn))∇H`(Y,Φ(X;Hk,W))

+
η2
kA∇`

2
‖∇H`(Yn,Φ(Xn;Hk,Wn))‖2. (98)

Instead of evaluating the internal product between the gradient on the graphon, and induced graphon,
we will use Theorem 1, to bound their expected difference (cf. Figure 3 for intuition). We can add
and subtract the gradient of the loss function on the induced graphon ∇H`(Yn,Φ(Hk; Wn;Xn)),
and use the Cauchy-Schwartz inequality to obtain,

`(Y,Φ(X;Hk+1,W))− `(Y,Φ(X;Hk,W))

≤ −ηk∇H`(Yn,Φ(Xn;Hk,Wn))

(∇H`(Y,Φ(X;Hk,W)) +∇H`(Yn,Φ(Xn;Hk,Wn))−∇H`(Yn,Φ(Xn;Hk,Wn)))

+
η2
kA∇Φ

2
‖∇H`(Yn,Φ(Xn;Hk,Wn))‖2 (99)

≤ −ηk‖∇H`(Yn,Φ(Xn;Hk,Wn))‖2

+ ηk‖∇H`(Yn,Φ(Xn;Hk,Wn)‖‖∇H`(Y,Φ(X;Hk,W))−∇H`(Yn,Φ(Xn;Hk,Wn))‖

+
η2
kA∇Φ

2
‖∇H`(Yn,Φ(Xn;Hk,Wn))‖2. (100)

We can rearrange the previous expression, to obtain,

ηk‖∇H`(Yn,Φ(Xn;Hk,Wn)‖2
(

1− A∇`ηk
2

− ‖∇H`(Y,Φ(X;Hk,W))−∇H`(Yn,Φ(Xn;Hk,Wn))‖
‖∇H`(Yn,Φ(Xn;Hk,Wn)‖

)
≤ `(Y,Φ(X;Hk,W))− `(Y,Φ(X;Hk+1,W)). (101)

We can now take the conditional expectation with respect to the filtration Fn to obtain,

E[`(Y,Φ(X;Hk+1,W))|Fk]

≤ ηk‖∇H`(Yn,Φ(Xn;Hk,Wn)‖2
(

1− A∇`ηk
2

− E
[
‖∇H`(Y,Φ(X;Hk,W))−∇H`(Yn,Φ(Xn;Hk,Wn))‖

‖∇H`(Yn,Φ(Xn;Hk,Wn)‖

∣∣∣∣Fk])
+ `(Y,Φ(X;Hk,W)). (102)

As step size ηk > 0, and by definition norms are non-negative, using Theorem 1, as condition (88)
holds for k ≤ k∗, then

E[`(Y,Φ(X;Hk+1,W))|Fk] ≤ `(Y,Φ(X;Hk,W)). (103)

By definition of super-martingale as in Durrett (2019), we complete the proof.

Lemma 6. Consider the ERM problem in (12) and let Φ(X;H,W) be an L-layer WNN with
F0 = FL = 1, and Fl = F for 1 ≤ l ≤ L − 1. Let c ∈ (0, 1] and assume that the graphon
convolutions in all layers of this WNN have K filter taps [cf. (6)]. Let Φ(xn;H,Sn) be a GNN
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sampled from Φ(X;H,W) as in (9). Under assumptions AS1–AS6, for any ε ∈ (0, 1 − A∇`η), if
the iterates generated by (14), satisfy,

√
KLL−1

(
6L2F 2L−2

(
1 +

πBcWn

δcWWn

)(1 +
√
n log(2n3/2)

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

)
+

2F 2L
√
K√

n
<

1−A∇`ηk − ε
2

‖∇H`(Yn,Φ(Xn;Hk,Wn)‖. (104)

then the expected value of the stopping time k∗ [cf. Definition 8], is finite, i.e.,

E[k∗] = O(1/ε) (105)

Proof. Given the iterates at k = k∗, and the initial values at k = 0, we can express the expected
difference between the loss `, as the summation over the difference of iterates as follows,

E[`(Y,Φ(X;H0,W))− `(Y,Φ(X;Hk∗ ,W))] =

E

[
k∗∑
k=1

`(Y,Φ(X;Hk−1,W))− `(Y,Φ(X;Hk,W)

]
(106)

Taking the expected value with respect to the final iterate k = k∗, we get,

E
[
`(Y,Φ(X;Hk0))− `(Y,Φ(X;Hk∗))

]
= Ek∗

[
E
[ k∗∑
k=1

`(Y,Φ(X;Hk−1,W))− `(Y,Φ(X;Hk,W)

]∣∣∣∣k∗] (107)

=

∞∑
t=0

E
[ t∑
k=1

`(Y,Φ(X;Hk−1,W))− `(Y,Φ(X;Hk,W)

]
P (k∗ = t)

(108)

Using condition (104), and Lemma 5 for any k ≤ k∗, it verifies

E
[
`(Y,Φ(X;Hk−1,W))− `(Y,Φ(X;Hk,W))

]
≥ η(
√
KFL−112L2F 2L−2c)2ε (109)

Thus, coming back to (108),

E
[
`(Y,Φ(X;Hk0 ,W))− `(Y,Φ(X;Hk∗ ,W))

]
≥ η(
√
KFL−112L2F 2L−2c)2ε

∞∑
t=0

tP (k∗ = t)

(110)

≥ η(
√
KFL−112L2F 2L−2c)2εE[k∗] (111)

Note that as the loss function ` is non-negative,

E
[
`(Y,Φ(X;Hk0 ,W))

]
η(
√
KFL−112L2F 2L−2c)2ε

≥ E[k∗] (112)

Thus concluding that k∗ = O(1/ε).

Theorem 2. Consider the ERM problem in (12) and let Φ(X;H,W) be an L-layer WNN with
F0 = FL = 1, and Fl = F for 1 ≤ l ≤ L − 1. Let c ∈ (0, 1] and assume that the graphon
convolutions in all layers of this WNN have K filter taps [cf. (6)]. Let Φ(xn;H,Sn) be a GNN
sampled from Φ(X;H,W) as in (9). Consider the iterates generated by equation (14). Under
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Assumptions AS1-AS6, for any fixed ε ∈ (0, 1 − A∇`η), if at each step k the number of nodes n is
picked such that it verifies

√
KLL−1

(
6L2F 2L−2

(
1 +

πBcWn

δcWWn

)(1 +
√
n log(2n3/2)

)
n

+
4FL−1L

n
+ 12L2F 2L−2c

)
+

2F 2L
√
K√

n
<

1−A∇`ηk − ε
2

‖∇H`(Yn,Φ(Xn;Hk,Wn)‖. (113)

then in finite time we will achieve an iterate k∗ such that the coefficientsHk∗ satisfy

E[‖∇H`(Y,Φ(X;Hk∗ ,W))‖] ≤ 24
√
KFL−1L2F 2L−2c with probability 1 (114)

where A∇`ηk = (A∇Φ +AΦF
2L
√
K).

Proof. We can use Lemma 6, to conclude that it must be the case that P (k∗ = ∞) = 0, which
implies that, P (k∗ < ∞) = 1. Using stopping time k∗ condition [cf. Definition 8] and the triangle
inequality, it yields,

E[‖∇H`(Y,Φ(X;Hk∗ ,W))‖] ≤‖∇H`(Yn,Φ(Xn;Hk∗ ,Wn))‖ (115)
+E[‖∇H`(Yn,Φ(X;Hk∗ ,Wn))−∇H`(Y,Φ(Xn;Hk∗ ,Wn))‖]

Note that the iterates are constructed such that, for every k

E[‖∇H`(Yn,Φ(X;Hk,Wn))−∇H`(Y,Φ(Xn;Hk,Wn))‖] ≤ ‖∇H`(Yn,Φ(X;Hk,Wn))‖.
(116)

Using the stopping time condition, the final result is attained as follows

E[‖∇H`(Y,Φ(X;Hk∗ ,W))‖] ≤2‖∇H`(Yn,Φ(X;Hk∗ ,Wn))‖ (117)

≤24
√
KFL−1L2F 2L−2c. (118)
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