
I Background in Linear Algebra

In this section we state some elementary results that we will use for our main proofs.

I.1 Johnson-Lindenstrauss and subspace embeddings

A useful definition for our proofs is the JL moment property, which bounds the moments of the length
of Sx.
Definition 3 (JL moment property, [30]). A distribution D on matrices S ∈ Rk×d has the (ε, δ, l)-JL

moment property if given S ∼ D, for all x ∈ Rd with ‖x‖2 = 1 it holds that E
[∣∣‖Sx‖2 − 1

∣∣l] ≤ εlδ.
We mention a corollary from [40] which states that JLTs also preserve pairwise angles, which is an
important by-product that we will use in our proofs.
Corollary 2 ([40]). If S is an (ε, δ, n)-JLT, then for any fixed n-element set V ⊂ Rd, with probability
at least 1− δ it holds that 〈u, v〉 − ε‖u‖‖v‖ ≤ 〈Su, Sv〉 ≤ 〈u, v〉+ ε‖u‖‖v‖, for all pairs u, v ∈ V .

The next Lemma is part of the proof of [44, Lemma 4.2], which we state here as a separate result to
save some space from the longer proofs that follow later.
Lemma 4. Let S be a (ε, δ)-OSE for a d × k matrix Uk with orthonormal columns, k < d. Then
there exists a k × k invertible matrix C such that (SUk)† = C−1(SUk)> and ‖C−1‖ ≤ 1

1−ε with
probability at least 1− δ.

Proof. This is part of the proof of [44, Lemma 4.2].

We also repeat here Lemma 4.2 from [44] regarding low-rank approximations as it will be used in
upcoming proofs.
Lemma 5 (Restatement Lemma 4.2 in [44]). Let S be an (1/3, δ)-OSE for a fixed k-dimensional
subspace and let S also satisfy the (

√
ε/k, δ, l)-JL moment property for some l ≥ 2. Then the

rowspace of SA, for some A, contains a (1 + ε) rank-k approximation to A, that is, there exists a
k-dimensional subspace M within rowspace(SA) with an orthogonal projector matrix Πk such that

‖A(I −Πk)‖2F ≤ (1 +O(ε))‖A−Ak‖2F .

I.2 Properties of Gaussian matrices

In this section we specialize the definitions to the case of Gaussian matrices. In our analysis we will
use the following restatement of JLTs, addressing the error as a function of the rows of G.
Corollary 3. Let G ∈ Rr×d with i.i.d. elements from N (0, 1/

√
r) and ε ∈ (0, 1/2). For a set

X ⊂ Rd of n vectors and for δ ∈ (0, 1/2), as long as r > 32 log(2n/δ), then with probability at
least 1− δ for all x ∈ X it holds that∣∣‖x‖2 − ‖Gx‖2∣∣ ≤√8 log(2n/δ)

r
‖x‖2.

Proof. From Lemma 1 we have that

Pr
[∣∣‖x‖2 − ‖Gx‖2∣∣ > ε‖x‖2

]
≤ 2 exp

(
− r(ε

2−ε3)
4

)
.

From ε ∈ (0, 1/2) it follows that

exp
(
− r(ε

2−ε3)
4

)
= exp

(
− rε

2(1−ε)
4

)
≤ exp

(
− rε

2

8

)
As long as r > 32 log(2n/δ), we can set ε =

√
8 log(2n/δ)

r and then replace ε in the exponent to
obtain

exp
(
− r(ε

2)
8

)
= exp (− log(2n/δ)) = δ/(2n).
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Applying a union bound we find that, as long as r > 32 log(2n/δ), for all x ∈ X simultaneously, it
holds that ∣∣‖x‖2 − ‖Gx‖2∣∣ ≤√8 log(2n/δ)

r
‖x‖2

with probability at least 1− δ.

Next, we also state the required dimension for a scaled Gaussian matrix to satisfy the (ε, δ, 2)-JL
moment property and the (ε, δ)-OSE property.

Lemma 6. Let G be a r × d matrix with i.i.d elements from N (0, 1/
√
r), and ε, δ ∈ (0, 1/2). If

r ≥ 2/(ε2δ), then G satisfies the (ε, δ, 2)-JL moment property.

Proof. From Definition 3, it must be shown that E(‖Gx‖22− 1)2 = E‖Gx‖42− 2E‖Gx‖22 + 1 ≤ ε2δ.
From the rotation invariance property of the Gaussian distribution, Gx can be replaced with a vector
g ∈ Rr with i.i.d elements from N (0, 1/

√
r). We then calculate

E‖g‖22 = E
r∑
i=1

|gi|2 =

r∑
i=1

E|gi|2 =

r∑
i=1

1

r
= 1,

as well as

E‖g‖42 = E(

r∑
i=1

|gi|2)2 = E(

r∑
i=1

|gi|4) + E
r∑
i=1

∑
j 6=i

|gi|2|gj |2

=

r∑
i=1

E(|gi|4) +

r∑
i=1

∑
j 6=i

E|gi|2|gj |2

=

r∑
i=1

3/r2 +

r∑
i=1

∑
j 6=i

1/r2

= 3/r + (r − 1)/r = (r + 2)/r.

Putting everything together we obtain

(r + 2)/r − 2 + 1 ≤ ε2δ ⇔ r ≥ 2/(ε2δ).

The next theorem from [44] states the required dimension for a Gaussian matrix to provide an
(ε, δ)-OSE for a fixed k-dimensional subspace.

Theorem 4 (Thm. 2.3 in [44]). LetG ∈ Rr×d with i.i.d elements fromN (0, 1√
r
), and ε, δ ∈ (0, 1/2).

If r = Θ
(
k+log(1/δ)

ε2

)
, then G is an (ε, δ)-OSE for any fixed k-dimensional subspace.

I.3 Basic inequalities

The next lemma gives a bound on powers of logarithms which we will use to simplify the terms in
several proofs.

Lemma 7. Let n ≥ 1 be an integer, and δ ∈ (0, 1/2). Then for any constant c ≥ 2 it holds that

log(c(n/δ)) ≤ (1 + log2 c) log(n/δ).

Proof. log(cnδ ) = log(2log2 c(nδ )) ≤ log(( 1
δ )log2 c(nδ )) = log( n

δ1+log2 c
) ≤ log((nδ )1+log2 c).
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II Limitations of low-rank projections

We give a “problematic” example to demonstrate the limitations of low-rank projection based methods.
Let A = Id and assume we want to use a rank-k approximation to estimate the norms of the rows
of A for some k < d. That is, we want to find a matrix Qk with k orthonormal columns such that
the quantities ‖e>i (A − AQkQ>k )‖22 are small. More formally, Qk should be a minimizer for the
maximum norm of all i ∈ [d],

Qk = arg min
Q∈Rd×k
Q>Q=Ik

max
i∈[d]
‖e>i (A−AQQ>)‖22.

Since the maximum is larger than or equal to the average, then for every Q we have that

max
i∈[d]
‖e>i (A−AQQ>)‖2 ≥ 1

d

d∑
i=1

‖e>i (A−AQQ>)‖2 =
‖A−AQQ>‖2F

d
= (d− k)/d,

where the last equality comes from the fact that A = Id by assumption and therefore ‖I−QQ>‖F =√
d− k since I −QQ> is an orthogonal projector on a (d− k)-dimensional subspace. Subsequently,

min
Q∈Rd×k
Q>Q=Ik

max
i∈[d]
‖e>i (A−AQQ>)‖22 ≥ (d− k)/d.

If there exists a Q that satisfies this lower bound, then it is also a minimizer. For simplicity let us
assume that k divides d exactly. We can construct Qk as d/k copies of a k × k orthogonal matrix
H , that is, Q>k =

(
H> H> H> ... H>

)
. This way QkQ>k is a matrix with d/k diagonals

in equally spaced positions. We can also scale QkQ>k by k/d to ensure that it is an orthogonal
projector. All rows of AQkQ>k have the same length, equal to ‖e>i QkQ>k ‖2 = k/d. Therefore,
‖e>i (I −QkQ>k )‖2 = 1− k/d = (d− k)/d, for all i ∈ [d], meaning that Qk is indeed a minimizer.

It is evident that we need k to be almost equal to d in order for this quantity to be small. Specifically,
if we want to achieve ‖e>i (I −QkQ>k )‖2 ≤ ε, then we need (d− k)/d ≤ ε⇔ d− k ≤ εd⇔ k ≥
d(1 − ε). Hence, to obtain a small ε-accuracy k must be set almost as large as d. We can finally
conclude that there exist corner cases where O(d) samples are needed to achieve ε-accuracy for
element-wise Euclidean norm estimation based on low rank projections.

III Projecting rows on randomly chosen subspaces

We state the following main lemma regarding projections on randomly chosen low-rank subspaces.

Lemma 8 (Oblique projection from rowspace(A) on rowspace(SA>A)). Let A ∈ Rn×d,
ε, δ, ε′, δ′ ∈ (0, 1/2) be input parameters, and S have the following properties:

• S ∼ D, where D is an (ε, δ)-OSE for any fixed k-dimensional subspace;

• S is an (ε′, δ′, 2n)-JLT.

Then there exists a rank-k projection matrix Πk within rowspace(SA>A) such that for all i ∈ [n]
simultaneously, it holds that

‖e>i A(I −Πk)‖2 ≤ ‖e>i (A−Ak)‖2 +
ε′

1− ε
σ2
k+1(A)

σ2
k(A)

‖e>i Ak‖‖e>i (A−Ak)‖,

with probability at least 1− δ − δ′.

Proof. Let Ak = UkΣkV
>
k be the compact SVD of Ak. The existence of Πk is proved by construc-

tion, that is, we consider the matrix Πk = Vk(SVkΣ2
k)†SA>A. Clearly, this Πk is a rank-k matrix
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within rowspace(SA>A). It is also straightforward to verify that it is a projector matrix, since

Π2
k = Vk(SVkΣ2

k)†S

=VkΣ2
k︷ ︸︸ ︷

A>AVk(SVkΣ2
k)†SA>A

= Vk

=Ik×k︷ ︸︸ ︷
(SVkΣ2

k)†SVkΣ2
k(SVkΣ2

k)†SA>A

= Vk(SVkΣ2
k)†SA>A

= Πk.

Clearly, I −Πk is also a projector since (I −Πk)2 = I − 2Πk + Π2
k = I − 2Πk + Πk = I −Πk.

We can then prove the lemma by starting from the left-hand-side of the target inequality. We write

‖e>i A(I −Πk)‖2 = tr(e>i A(I −Πk)(I −Πk)A>ei)

= tr(e>i A(I −Πk)A>ei)

= tr(e>i AA
>ei)− tr(e>i AΠkA

>ei) (by linearity of the trace)

= tr(A>eie
>
i A)− tr(A>eie

>
i AΠk) (by the trace cyclic property)

= tr(A>eie
>
i A)− tr

(
A>eie

>
i AVk(SVkΣ2

k)†SA>A
)

= tr(A>eie
>
i A)− tr

A>eie>i AVk(SVkΣ2
k)†S

=A>A︷ ︸︸ ︷
(VkΣ2

kV
>
k + V̄kΣ̄2

kV̄
>
k )


= tr(A>eie

>
i A)− tr

A>eie>i AVk
=Ik×k︷ ︸︸ ︷

(SVkΣ2
k)†SVkΣ2

k V
>
k

− . . .
. . . − tr

(
A>eie

>
i AVk(SVkΣ2

k)†SV̄kΣ̄2
kV̄
>
k

)
= tr(A>eie

>
i A)− tr(A>eie

>
i AVkV

>
k )− . . .

. . . − tr
(
A>eie

>
i AVk(SVkΣ2

k)†SV̄kΣ̄2
kV̄
>
k

)
= tr

(
A>eie

>
i A(I − VkV >k )

)
− tr

(
A>eie

>
i AVk(SVkΣ2

k)†SV̄kΣ̄2
kV̄
>
k

)
= ‖e>i (A−Ak)‖2 − tr

(
A>eie

>
i AVk(SVkΣ2

k)†SV̄kΣ̄2
kV̄
>
k

)
= ‖e>i (A−Ak)‖2 − e>i AVk(SVkΣ2

k)†SV̄kΣ̄2
kV̄
>
k A

>ei (by cyclic property)

≤ ‖e>i (A−Ak)‖2 +
∣∣e>i AVk(SVkΣ2

k)†SV̄kΣ̄2
kV̄
>
k A

>ei
∣∣

≤ ‖e>i (A−Ak)‖2 +
∣∣e>i AVkΣ−2

k (SVk)†SV̄kΣ̄2
kV̄
>
k A

>ei
∣∣

= ‖e>i (A−Ak)‖2 +
∣∣e>i AVkΣ−2

k C−1V >k S
>SV̄kΣ̄2

kV̄
>
k A

>ei
∣∣ ,

where the last equality comes from Lemma 4. To conclude the proof, it suffices to determine a
bound for the rightmost term. To do this, notice that |e>i AVkΣ2

kC
−1V >k S

>SV̄kΣ̄2
kV̄
>
k A

>ei| is the
absolute value of the inner product 〈S(VkC

−1V >k A
>)ei, S(V̄kV̄

>
k A

>)ei〉, which can be written in a
simplified form as 〈Sxk, Sx̄k〉. Therefore, we must bound the inner products between vectors from a
specific set. We consider the following set of vectors:

V =
{
e>i AVkΣ2

kC
−1V >k |i ∈ [n]

}⋃{
e>i AV̄kΣ̄2

kV̄
>
k |i ∈ [n]

}
.

Clearly, |V | = 2n. Recall that by assumption S is an (ε′, δ′, 2n)-JLT. Therefore, by Corollary 2, S
preserves all inner products between all pairs of vectors in V with probability at least 1− δ′. We have
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∣∣e>i AVkΣ−2
k C−1V >k S

>SV̄kΣ̄2
kV̄
>
k A

>ei
∣∣ ≤ e>i AVkΣ−2

k C−1

orthogonal︷ ︸︸ ︷
V >k V̄k Σ̄2

kV̄
>
k A

>ei + . . .

. . . + ε′‖e>i AVkΣ−2
k C−1V >k ‖‖V̄kΣ̄2

kV̄
>
k A

>ei‖
= ε′‖e>i AVkΣ2

kC
−1V >k ‖‖V̄kΣ̄2

kV̄
>
k A

>ei‖
≤ ε′‖e>i AVk‖‖Σ−2

k ‖‖C
−1‖‖Σ̄2

k‖‖e>i (A−Ak)‖

≤ ε′

1− ε
σ2
k+1(A)

σ2
k(A)

‖e>i Ak‖‖e>i (A−Ak)‖.

Combining the two inequalities we find that

‖e>i A(I −Πk)‖2 ≤ ‖e>i (A−Ak)‖2 +
ε′

1− ε
σ2
k+1(A)

σ2
k(A)

‖e>i Ak‖‖e>i (A−Ak)‖.
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A Proofs for Section 2 (Analysis of Algorithm 1)

Lemma 2. Let A ∈ Rn×d. If we use Algorithm 1 with m matrix-vector queries to estimate the
Euclidean lengths of the rows e>i A, i ∈ [n], then as long as m ≥ l ≥ 32 log(4n/δ) it holds that∣∣x̃i − ‖e>i A‖2∣∣ ≤√ 8 log( 2n

δ )

l ‖e>i A(I −QQ>)‖2, for all i ∈ [n],

with probability at least 1− δ for all i ∈ [n] simultaneously.

Proof. We start by noting that

|x̃i −‖ e>i A‖2
∣∣ =

∣∣‖e>i AQ‖2 + ‖e>i A(I −QQ>)G‖2 − ‖e>i A‖2
∣∣

=
∣∣‖e>i AQ‖2 + ‖e>i A(I −QQ>)G‖2 − ‖e>i AQQ>‖2 − ‖e>i A(I −QQ>)‖2

∣∣
=
∣∣‖e>i A(I −QQ>)G‖2 − ‖e>i A(I −QQ>)‖2

∣∣ .
Since G is a scaled Gaussian matrix with l columns, we can use Corollary 3, which implies that as
long as l ≥ 32 log(4n/δ) it holds that

∣∣‖e>i A(I −QQ>)G‖2 − ‖e>i A(I −QQ>)‖2
∣∣ ≤

√
8 log(2n

δ )

l
‖e>i A(I −QQ>)‖2, (2)

with probability at least 1− δ for all i ∈ [n].

Corollary 1 (Projection on rowspace(SA>A)). Let δ ∈ (0, 1
2 ), Āk = A−Ak, and S be such that

(i) S ∼ D, where D is an (1/3, δ)-OSE for any fixed k-dimensional subspace;

(ii) S is a (1/3, δ, 2n)-JLT.

If Q is a matrix that forms an orthonormal basis for rowspace(SA>A), then, with probability at
least 1− 2δ, for all i ∈ [n] simultaneously, it holds that

‖e>i A(I −QQ>)‖2 ≤ ‖e>i (Āk)‖2 + 1
2

σ2
k+1(A)

σ2
k(A)

‖e>i Ak‖‖e>i Āk‖ ≤ 3
2‖e
>
i A‖‖e>i Āk‖.

Proof. From Lemma 8 we have that inside rowspace(SA>A) there exists a subspace with the desired
properties. An orthogonal projection on that subspace via QQ> is sufficient to satisfy the results of
Lemma 8 for ε = ε′ = 1/3. The second part comes from the fact that ‖e>i (A−Ak)‖ ≤ ‖e>i A‖ and
‖e>i Ak‖ ≤ ‖e>i A‖, as well as the fact that σk+1(A) ≤ σk(A). With a union bound we have that
both Lemma 4 and Corollary 2 hold at the same time with probability at least 1− 2δ.

Theorem 1. Let A ∈ Rn×d and n ≥ d. If we use Algorithm 1 with m matrix-vector queries to
estimate the Euclidean lengths of the rows of A, then there exists a global constant C such that, as
long as

(i) m ≥ l ≥ O(log(n/δ)), such that G satisfies Lemma 1 and S forms an (1/3, δ, 2n)-JLT,

(ii) m ≥ O(k + log(1/δ)), such that S forms an (1/3, δ)-OSE for a k-dimensional subspace,

then it holds that∣∣x̃i − ‖e>i A‖2∣∣ ≤ C√ log(nδ )

l ‖e>i (A−Ak)‖‖e>i A‖ ≤ C
√

log(nδ )

lk ‖Ak‖F ‖e
>
i A‖,

for all i ∈ [n] with probability at least 1− 3δ.

Proof. For the first inequality, we start directly from Lemma 2, which gives a first bound for the
approximated values. We can then use Corollary 1 to bound the rightmost term. By assumption, S
satisfies the conditions of Corollary 1, which implies that

‖e>i A(I −QQ>)‖ ≤ 3

2
‖e>i A‖‖e>i (A−Ak)‖
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with probability at least 1− 2δ. Combining this with Equation (2) we have that

∣∣‖e>i A(I −QQ>)G‖2 − ‖e>i A(I −QQ>)‖2
∣∣ ≤

√
8 log(2n

δ )

l
· 3

2
‖e>i A‖‖e>i (A−Ak)‖.

We then recall Lemma 7 to move the constants outside the logarithms. There are three random events
and each of them fails with probability at most δ. Therefore, by taking a union bound we find that the
algorithm succeeds with probability at least 1− 3δ. The last inequality of the theorem comes from
Lemma 3, which gives bounds for ‖e>i (A−Ak)‖.

Theorem 2. In Algorithm 1, for some absolute constants c, C, if l > c log(1/δ), it holds that∣∣∣X̃ − ‖A‖2F ∣∣∣ ≤ C√ log( 1
δ )

lk ‖A‖
2
F ,

where X̃ is the sum of the returned approximations. For l = k = O

(√
log( 1

δ )

ε

)
, where ε ∈ (0, 1/2),

setting m ≥ O(k/δ + log( 1
δ )), it follows that∣∣∣X̃ − ‖A‖2F ∣∣∣ ≤ ε‖A‖2F .

Proof. The proof is a direct application of [34, Theorem 3.1]. We state it for completeness. Let
Ã,∆, Q,G, S be as in Algorithm 1, that is, Ã = AQQ>, ∆ = A(I−QQ>), andQ is an orthonormal
basis for range(A>AS). Because

X̃ =

d∑
i=1

x̃i =

d∑
i=1

(
‖e>i Ã‖2 + ‖e>i ∆G‖2

)
= ‖Ã‖2F + ‖∆G‖2F ,

we can then write∣∣∣X̃ − ‖A‖2F ∣∣∣ =
∣∣∣‖Ã‖2F + ‖∆G‖2F − ‖A‖2F

∣∣∣
=
∣∣(‖AQQ>‖2F + ‖A(I −QQ>)G‖2F )− (‖AQQ>‖2F + ‖A(I −QQ>)‖2F )

∣∣
=
∣∣‖A(I −QQ>)G‖2F − ‖A(I −QQ>)‖2F

∣∣
=
∣∣tr (G>(I −QQ>)A>A(I −QQ>)G

)
− tr

(
(I −QQ>)A>A(I −QQ>)

)∣∣ .
This is identical to using the Hutch++ Algorithm [34] on A>A instead of A. Note that A>A is
always symmetric and positive semi-definite. It can be shown that the following two conditions hold,
which allows to apply [34, Theorem 3.1]:

tr(A>A) = tr(Ã>Ã) + tr(∆>∆), (3)

and

‖∆>∆‖F ≤ 2‖A>A− (A>A)k‖F . (4)

The first condition, Equation 3, is straightforward to prove

tr(Ã>Ã) + tr(∆>∆) = tr(QQ>A>AQQ>) + tr((I −QQ>)A>A(I −QQ>))

= tr(A>AQQ>) + tr(A>A(I −QQ>)) (by the trace cyclic property)

= tr(A>A(QQ> + I −QQ>))

= tr(A>A).

For the second condition, we have

‖∆>∆‖F = ‖(I −QQ>)A>A(I −QQ>)‖F ≤ ‖I −QQ>‖2‖A>A(I −QQ>)‖F
= ‖A>A(I −QQ>)‖F .
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From Lemma 5, we know that as long as Q has Ω(k/δ + log(1/δ)) columns, then

‖A>A(I −QQ>)‖F ≤ 2‖A>A− (A>A)k‖F
holds with probability at least 1−δ. Therefore, both conditions of [34, Theorem 3.1] are satisfied with
probability at least 1− δ, which implies that there exist constants c, C such that, if l > c log(1/δ),
the quantity

Z = tr(Ã>Ã) + tr(G>∆>∆G) = ‖Ã‖2F + ‖∆G‖2F = X̃ (5)

satisfies: ∣∣Z − tr(A>A)
∣∣ ≤ 2C

√
log(1/δ)

kl
· tr(A>A)

⇔∣∣∣X̃ − ‖A‖2F ∣∣∣ ≤ 2C

√
log(1/δ)

kl
· ‖A‖2F .

With a trivial union bound both events of the proof hold with probability at least 1− 2δ. Rescaling δ
concludes the proof.

B Proofs for Section 3 (Euclidean distances)

Theorem 5. Let A ∈ Rt×d, t ≥ d, for which we want to estimate the distances between pairs of rows.
Let B ∈ Rn×t be a matrix such that each row of B is equal to (ei − ej)>, meaning that (ei − ej)>A
gives the distance vector between the i-th and the j-th row of A which we want to estimate. Let
M = BA. If we apply Algorithm 2 with m matrix-vector queries to estimate the Euclidean lengths
of rows of M by the values x̃i, i ∈ [n], then there exists a global constant C such that, as long as

(i) m ≥ l ≥ O(log(n/δ)), such that G satisfies Lemma 1 and S forms an (1/3, δ, 2n)-JLT,

(ii) m ≥ O(k + log(1/δ)), such that S forms an (1/3, δ)-OSE for a k-dimensional subspace,

then it holds that∣∣x̃i − ‖e>i M‖2∣∣ ≤ C√ log(nδ )

l ‖e>i (M −Mk)‖‖e>i M‖ ≤ C
√

log(nδ )

lk ‖Mk‖F ‖e>i M‖,

for all i ∈ [n], with probability at least 1 − 3δ. In addition, for some absolute constants c, C, if
l > c log(1/δ), it holds that ∣∣∣X̃ − ‖M‖2F ∣∣∣ ≤ C

√
log(1/δ)

lk
‖M‖2F ,

where X̃ is the sum of the approximations. For l = k = O

(√
log( 1

δ )

ε

)
, where ε ∈ (0, 1/2), setting

m ≥ O(k/δ + log( 1
δ )), it follows that∣∣∣X̃ − ‖M‖2F ∣∣∣ ≤ ε‖M‖2F .

Proof. The bounds are a direct application of Theorems 1 and 2 on BA instead of A.
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