
A Appendix

A.1 Results of other ViTAE variants
To make a fair comparison of our ViTAE model and other methods, we further design three more
ViTAE variants and present their results in Table 6. As can be seen, our ViTAE-T model achieves
75.3% Top-1 accuracy on ImageNet [37] with 4.8M parameters, which outperforms other transformer
methods with even more than 5M parameters. With 6.5M parameters, ViTAE obtains 77.9% Top-1
accuracy, outperforming ResNet-50 [26] with 1.2% absolute improvement and 3/4 less parameters.
These results demonstrate the potential of transformers with intrinsic IBs. Among vision transformers
models, ViTAE-T outperforms DeiT-T⚗ [75] with similar parameters, while ViTAE-T does not
require extra teacher models. Similarly, with 6.5M parameters, ViTAE-6M outperforms both trans-
formers with learned IB [15] and transformers with intrinsic IB in a serial manner [91]. Similar
phenomena can also be observed with the size of models increase, e.g., the ViTAE-S model achieves
state-of-the-art performance with fewer parameters.

Besides, the classic vision transformer design is not well suited for downstream tasks like detection,
segmentation, pose estimation and etc. The stage-wise design can better adapt to the popular vision
backbones for these tasks. To fully explore the potential of the proposed RC and NC modules, we
also design the stage-wise variants of ViTAE model as shown in Table 7 and their classification
performances are summarized in Table 6. The “NC Arrangement” means the number of NCs arranged
after each RC. We follow the ResNet [26] and Swin [46] experience to design ViTAE’s stage variants,
where the spatial size are downsampled by 4, 2, 2, 2 in each stage, except for the ViTAE-T-Stage
model, where we only adopts the first three stages since the network is shallow. As shown in Table 6,
the stage-wise design can further improve the performance with fewer parameters.

A.2 Performance on downstream tasks
We further validate the performance of the proposed ViTAE models on detection, segmentation, pose
estimation, and video object segmentation.

A.3 Object detection
To evaluate ViTAE’s performance on object detection and instance segmentation tasks, we adopt
Mask RCNN [24] and Cascade RCNN [5] as the detection framework, and finetune the models on
COCO 2017 dataset, which contains 118K training, 5K validation and 20K test-dev images. We
adopt exactly the same training setting used in Swin [46], i.e., multi-scale training and AdamW
optimizer. We compare the performance of ViTAE with the classic CNN backbone, i.e., ResNet [26],
and the transformer structure, i.e., Swin [46]. The comparisons are conducted by simply replacing the
backbone while keeping other configurations unchanged. The results are summarized in Table 8. It
can be concluded that the ViTAE-S-Stage model can obtain the best performance on object detection
and instance segmentation, with both frameworks.

A.4 Semantic segmentation
We evaluate the semantic segmentation performance of the ViTAE model on ADE20K [97, 98].
The ADE20K dataset covers 150 semantic categories with 20K images for training and 2K images
for validation. We follow Swin’s [46] training and testing setting. We adopt UperNet [84] as the
segmentation framework and train the models for 160K iterations, with default setting used in
mmsegmentation [12]. The results can be found in Table 8. It can be concluded that the ViTAE
backbone using 10M fewer parameters achieves better performance than ResNet-50 [26] and Swin-
T [46] on segmentation.

A.5 Pose estimation
For human pose estimation, we adopt the simple baseline [83] as the pose estimation framework and
test the ViTAE models’ performance on the COCO dataset. The experiment are conducted following
the default settings used in mmpose [13]. As shown in Table 8, the ViTAE-based model obtains an
absolute 2% mAP gain than ResNet [26] models with 7M parameters fewer.

A.6 Video object segmentation
For VOS tasks, the STM [53] framework is adopted and we replace the backbone network with the
ViTAE-T-Stage model. Davis-2016 [58] and Davis-2017 [59] are used as the benchmark datasets. The
first dataset contains 20 videos annotated with masks each for a single target object. The Davis-2017
dataset is a multi-object extension of Davis-2016, with 59 objects in 30 videos. The training and
testing setting are the same as in STM [53]. With 29M parameters fewer, the ViTAE-based STM
achieves an absolute 0.5 J&F scores improvement on Davis 2016 and 0.7 J&F scores improved on
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Table 6: Comparison with SOTA methods.

Type Model
Params MACs Input ImageNet Real

(M) (G) Size Top-1 Top-5 Top-1

CNN

ResNet-18 [26] 11.7 3.6 224 70.3 86.7 77.3
ResNet-50 [26] 25.6 7.6 224 76.7 93.3 82.5
ResNet-101 [26] 44.5 15.2 224 78.3 94.1 83.7
ResNet-152 [26] 60.2 22.6 224 78.9 94.4 84.1
EfficientNet-B0 [72] 5.3 0.8 224 77.1 93.3 83.5
EfficientNet-B4 [72] 19.3 8.4 380 82.9 96.4 88.0
MobileNetV1 [30] 4.3 0.6 224 72.3 - -
MobileNetV2(1.4) [64] 6.9 0.6 224 74.7 - -
RegNetY-600M [61] 6.1 1.2 224 75.5 - -
RegNetY-4GF [61] 20.6 8.0 224 80.0 - 86.4
RegNetY-8GF [61] 39.2 16.0 224 81.7 - 87.4

Transformer

DeiT-T [75] 5.7 2.6 224 72.2 91.1 80.6
DeiT-T⚗ [75] 5.7 2.6 224 74.5 91.9 82.1
LocalViT-T [42] 5.9 2.6 224 74.8 92.6 -
LocalViT-T2T [42] 4.3 2.4 224 72.5 - -
ConT-Ti [88] 5.8 1.6 224 74.9 - -
PiT-Ti [28] 4.9 1.4 224 73.0 - -
T2T-ViT-7 [92] 4.3 1.2 224 71.7 90.9 79.7
ViTAE-T 4.8 1.5 224 75.3 92.7 82.9
ViTAE-T-Stage 4.8 2.3 224 76.8 93.5 84.0

CeiT-T [91] 6.4 2.4 224 76.4 93.4 83.6
ConViT-Ti [15] 6.0 2.0 224 73.1 - -
CrossViT-Ti [6] 6.9 3.2 224 73.4 - -
ViTAE-6M 6.5 2.0 224 77.9 94.1 84.9

PVT-T [79] 13.2 3.8 224 75.1 - -
LocalViT-PVT [42] 13.5 9.6 224 78.2 94.2 -
ConViT-Ti+ [15] 10.0 4.0 224 76.7 - -
PiT-XS [28] 10.6 2.8 224 78.1 - -
ConT-M [88] 19.2 6.2 224 80.2 - -
ViTAE-13M 13.2 3.4 224 81.0 95.4 86.8

DeiT-S [75] 22.1 9.8 224 79.9 95.0 85.7
DeiT-S⚗ [75] 22.1 9.8 224 81.2 95.4 86.8
PVT-S [79] 24.5 7.6 224 79.8 -
Conformer-Ti [57] 23.5 5.2 224 81.3 - -
Swin-T [46] 29.0 9.0 224 81.3 - -
CeiT-S [91] 24.2 9.0 224 82.0 95.9 87.3
CvT-13 [82] 20.0 9.0 224 81.6 - 86.7
ConViT-S [15] 27.0 10.8 224 81.3 - -
CrossViT-S [6] 26.7 11.2 224 81.0 - -
PiT-S [28] 23.5 4.8 224 80.9 - -
TNT-S [23] 23.8 10.4 224 81.3 95.6 -
Twins-PCPVT-S[10] 24.1 7.4 224 81.2 - -
Twins-SVT-S [10] 24.0 5.6 224 81.7 - -
T2T-ViT-14 [92] 21.5 5.2 224 81.5 95.7 86.8
ViTAE-S 23.6 5.6 224 82.0 95.9 87.0
ViTAE-S-Stage 19.2 6.0 224 82.2 96.0 87.4

ViT-B/16 [19] 86.5 18.7 384 77.9 - -
ViT-L/16 [19] 304.3 65.8 384 76.5 - -
DeiT-B [75] 86.6 34.6 224 81.8 95.6 86.7
PVT-M [79] 44.2 13.2 224 81.2 - -
PVT-L [79] 61.4 19.6 224 81.7 - -
Conformer-S [57] 37.7 10.6 224 83.4 - -
Swin-S [46] 50.0 17.4 224 83.0
ConT-B [88] 39.6 12.8 224 81.8 - -
CvT-21 [82] 32.0 14.2 224 82.5 - 87.2
ConViT-S+ [15] 48.0 20.0 224 82.2 - -
ConViT-B [15] 86.0 34.0 224 82.4 - -
ConViT-B+ [15] 152.0 60.0 224 82.5 - -
PiT-B [28] 73.8 25.0 224 82.0 - -
TNT-B [23] 65.6 28.2 224 82.8 96.3 -
T2T-ViT-19 [92] 39.2 8.9 224 81.9 95.7 86.9
ViTAE-B-Stage 48.5 13.8 224 83.6 96.4 87.9
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Table 7: Model details of ViTAE variants.

Model
Reduction Cell Normal Cell NC Params Macs
dilation cells heads embed cells Arrangement (M) (G)

ViTAE-T [1, 2, 3, 4] ↓ 3 4 256 7 0, 0, 7 4.8 1.5
ViTAE-6M [1, 2, 3, 4] ↓ 3 4 256 10 0, 0, 10 6.5 2.0

ViTAE-13M [1, 2, 3, 4] ↓ 3 4 320 11 0, 0, 11 13.2 3.4
ViTAE-S [1, 2, 3, 4] ↓ 3 6 384 14 0, 0, 14 23.6 5.6

ViTAE-T-Stage [1, 2, 3, 4] ↓ 3 4 256 7 1, 1, 5 4.8 2.3
ViTAE-S-Stage [1, 2, 3, 4] ↓ 4 8 512 14 1, 1, 11, 1 19.2 6.0
ViTAE-B-Stage [1, 2, 3, 4] ↓ 4 8 768 17 1, 1, 14, 1 48.5 13.8

Table 8: ViTAE on downstream tasks.

Detection-COCO
Backbone Method Lr Schd box mAP mask mAP params (M)
ResNet-50 [26] Mask RCNN [24] 1x 38.2 34.7 44
Swin-T [46] Mask RCNN [24] 1x 43.7 39.8 48
ViTAE-S-Stage Mask RCNN [24] 1x 44.6 40.2 37
ResNet-50 [26] Cascade RCNN [5] 1x 41.2 35.9 82
Swin-T [46] Cascade RCNN [5] 1x 48.1 41.7 86
ViTAE-S-Stage Cascade RCNN [5] 1x 48.9 42.0 75

Segmentation-ADE20K
Backbone Method Lr Schd mIoU mIoU(ms+flip) params (M)
Swin-T [46] UPerNet [84] 160K 44.5 45.8 60
ViTAE-S-Stage UPerNet [84] 160K 45.4 47.8 49

Pose-COCO
Backbone Method InputSize mAP mAR params (M)
ResNet-50 [26] SimpleBaseline [83] 256x192 71.8 77.3 34
ViTAE-S-Stage SimpleBaseline [83] 256x192 73.7 79.0 27

VOS-Davis2017
Backbone Method J F J&F params (M)
ResNet-50 [26] STM [53] 79.2 84.3 81.8 39
ViTAE-T-Stage STM [53] 79.4 85.5 82.5 19

VOS-Davis2016
Backbone Method J F J&F params (M)
ResNet-50 [26] STM [53] 88.7 89.9 89.3 39
ViTAE-T-Stage STM [53] 89.2 90.4 89.8 19

Davis 2017 dataset. It can be concluded that the intrinsic IB introduced by the RC and NC module
indeed improves the generalization ability of backbone networks for various downstream tasks.
A.7 More comparisons of data efficiency and training efficiency.
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Figure 5: Comparisons of DeiT, T2T-ViT and
ViTAE in terms of data efficiency and training
efficiency on ImageNet.

Besides T2T-ViT [92] for the evaluation of the data
efficiency and training efficiency, we further train
DeiT [75] with 20%, 60% and 100% data for 100
epochs and train it with 100% data for 100, 200, and
300 epochs. Its results can be viewed in Figure 5. It
can be observed that, with inductive bias introduced,
T2T-ViT achieves better performance with less data
when compared with DeiT. Without loss of general-
ity, T2T-ViT outperforms DeiT with fewer training
epochs, e.g., T2T-ViT with 20% data can perform
comparably to DeiT with 100% data. With more
intrinsic inductive bias introduced, ViTAE outper-
forms T2T-ViT with fewer data and fewer epochs.
Such observation confirms that with proper intrinsic
inductive bias, the training of transformer models
can be both data efficiency and training efficiency.

A.8 Analysis of position embedding Table 9: ViTAE with different PE.
Sinusoid No Learnable

Top-1 75.3 75.3 75.1As CNN can encode position information with
padding [11], we further disable the position em-
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Figure 6: Different structures used in the ablation study. (a) Origin ViTAE structure. (b) Adding
another BN in the PCM. (c) Replacing SiLU with GeLU in the PCM. (d) Replacing PCM with PRM.
(e) Replacing GeLU with SiLU in the PRM.

bedding and train the ViTAE model without position embedding for 300 epochs. The results are
summarized in Table 9. It can be seen that removing position embedding (PE) in the ViTAE model
does not downgrade its performance. Such phenomena show that the PCM and PRM modules utilized
in the ViTAE can aid the model in making sense of location information.

A.9 More Ablation Studies
Table 10: More ablation studies. (a), (b), (c), (d),
(e) correspond to different structures in Figure 6.

(a) (b) (c) (d) (e)
Top-1 72.6 69.6 72.3 71.9 72.4

To further analyze the structure of our ViTAE
model, we conduct more ablation studies related
to the proposed reduction cells and normal cells.
As shown in Table 10 and Figure 6, we first add
another batch normalization [33] in the PCM mod-
ule to make the PCM module has three exactly same convolution layers. However, such a structure
downgrades the performance by 3%. As there is layer normalization [2] before the input to the
FFN module, the combination of batch normalization and layer normalization may conflict with
each other, resulting in performance degradation. Another design choice we tried is replacing the
PCM with PRM modules (Figure 6 (d)) to introduce both scale-invariance and locality in the parallel
branch. However, such a design shows a small drop in the performance, indicating that not only
introducing inductive bias is important in transformers, but also the way in which these inductive
biases are introduced also matters. What’s more, we test the activation function used in the PCM and
PRM modules. By default, we adopt SiLU in PCM, following the design choice in pioneering CNN
networks and GeLu in PRM following previous transformers’ design. By replacing the SiLU with
GeLU (Figure 6 (c)), the performance drops a little. Similar phenomena can be observed when all
PCM and PRM modules adopt SiLU as activation functions (Figure 6 (e)).

A.10 More visual results.
We also provide more visual inspection results of ViTAE using Grad-CAM [65] in Figure 7 8 9 10 and
compare it with T2T-ViT [92] in Figure 11. It can be seen that our ViTAE can cover the targets more
precisely and compress the noise introduced by the complex background. Such phenomena confirm
that with the introduced inductive bias, the ViTAE model can better adapt to targets in different
situations and thus achieves better performance on the vision tasks.
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Input ViTAE Input ViTAE Input ViTAE

Figure 7: More visual results of ViTAE.
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Input ViTAE Input ViTAE Input ViTAE

Figure 8: More visual results of ViTAE.
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Input ViTAE Input ViTAE Input ViTAE

Figure 9: More visual results of ViTAE.
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Input ViTAE Input ViTAE Input ViTAE

Figure 10: More visual results of ViTAE.
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Input T2T-ViT ViTAE Input T2T-ViT ViTAE

Figure 11: Visual comparison between ViTAE and T2T-ViT.
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