
MobILE: Model-Based Imitation Learning From
Observation Alone

Rahul Kidambi∗
Amazon Search & AI
Berkeley CA 94704.
rk773@cornell.edu

Jonathan D. Chang
CS Department, Cornell University

Ithaca NY 14853.
jdc396@cornell.edu

Wen Sun
CS Department, Cornell University

Ithaca NY 14853.
ws455@cornell.edu

Abstract

This paper studies Imitation Learning from Observations alone (ILFO) where the
learner is presented with expert demonstrations that consist only of states visited
by an expert (without access to actions taken by the expert). We present a provably
efficient model-based framework MobILE to solve the ILFO problem. MobILE in-
volves carefully trading off strategic exploration against imitation - this is achieved
by integrating the idea of optimism in the face of uncertainty into the distribu-
tion matching imitation learning (IL) framework. We provide a unified analysis
for MobILE, and demonstrate that MobILE enjoys strong performance guaran-
tees for classes of MDP dynamics that satisfy certain well studied notions of
structural complexity. We also show that the ILFO problem is strictly harder
than the standard IL problem by presenting an exponential sample complexity
separation between IL and ILFO. We complement these theoretical results with
experimental simulations on benchmark OpenAI Gym tasks that indicate the ef-
ficacy of MobILE. Code for implementing the MobILE framework is available at
https://github.com/rahulkidambi/MobILE-NeurIPS2021.

1 Introduction

This paper considers Imitation Learning from Observation Alone (ILFO). In ILFO, the learner is
presented with sequences of states encountered by the expert, without access to the actions taken by
the expert, meaning approaches based on a reduction to supervised learning (e.g., Behavior cloning
(BC) [49], DAgger [50]) are not applicable. ILFO is more general and has potential for applications
where the learner and expert have different action spaces, applications like sim-to-real [56, 14] etc.

Recently, [59] reduced the ILFO problem to a sequence of one-step distribution matching problems
that results in obtaining a non-stationary policy. This approach, however, is sample inefficient for
longer horizon tasks since the algorithm does not effectively reuse previously collected samples
when solving the current sub-problem. Another line of work considers model-based methods to infer
the expert’s actions with either an inverse dynamics [63] or a forward dynamics [16] model; these
recovered actions are then fed into an IL approach like BC to output the final policy. These works
rely on stronger assumptions that are only satisfied for Markov Decision Processes (MDPs) with
injective transition dynamics [68]; we return to this in the related works section.

∗Work initiated when RK was a post-doc at Cornell University; work done outside Amazon.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.

https://github.com/rahulkidambi/MobILE-NeurIPS2021


Figure 1: Expert performance normalized
scores of ILFO algorithms averaged across
5 seeds in environments with discrete action
spaces (Reacher-v2) and continuous action
spaces (Hopper-v2 and Walker2d-v2).

We introduce MobILE—Model-based Imitation
Learning and Exploring, a model-based framework,
to solve the ILFO problem. In contrast to existing
model-based efforts, MobILE learns the forward tran-
sition dynamics model—a quantity that is well de-
fined for any MDP. Importantly, MobILE combines
strategic exploration with imitation by interleaving
a model learning step with a bonus-based, optimistic
distribution matching step – a perspective, to the best
of our knowledge, that has not been considered in
Imitation Learning. MobILE has the ability to au-
tomatically trade-off exploration and imitation. It
simultaneously explores to collect data to refine the
model and imitates the expert wherever the learned
model is accurate and certain. At a high level, our the-
oretical results and experimental studies demonstrate
that systematic exploration is beneficial for solving
ILFO reliably and efficiently, and optimism is a both
theoretically sound and practically effective approach
for strategic exploration in ILFO (see Figure 1 for comparisons with other ILFO algorithms). This
paper extends the realm of partial information problems (e.g. Reinforcement Learning and Bandits)
where optimism has been shown to be crucial in obtaining strong performance, both in theory (e.g.,
E3 [30], UCB [3]) and practice (e.g., RND [10]). This paper proves that incorporating optimism
into the min-max IL framework [69, 22, 59] is beneficial for both the theoretical foundations and
empirical performance of ILFO.

Our Contributions: We present MobILE (Algorithm 1), a provably efficient, model-based frame-
work for ILFO that offers competitive results in benchmark gym tasks. MobILE can be instantiated
with various implementation choices owing to its modular design. This paper’s contributions are:

1. The MobILE framework combines ideas of model-based learning, optimism for exploration, and
adversarial imitation learning. MobILE achieves global optimality with near-optimal regret bounds
for classes of MDP dynamics that satisfy certain well studied notions of complexity. The key idea
of MobILE is to use optimism to trade-off imitation and exploration.

2. We show an exponential sample complexity gap between ILFO and classic IL where one has
access to expert’s actions. This indicates that ILFO is fundamentally harder than IL. Our lower
bound on ILFO also indicates that to achieve near optimal regret, one needs to perform systematic
exploration rather than random or no exploration, both of which will incur sub-optimal regret.

3. We instantiate MobILE with a model ensemble of neural networks and a disagreement-based bonus.
We present experimental results on benchmark OpenAI Gym tasks, indicating MobILE compares
favorably to or outperforms existing approaches. Ablation studies indicate that optimism indeed
helps in significantly improving the performance in practice.

1.1 Related Works

Imitation Learning (IL) is considered through the lens of two types of approaches: (a) behavior
cloning (BC) [45] which casts IL as a reduction to supervised or full-information online learning [49,
50], or, (b) (adversarial) inverse RL [40, 1, 69, 17, 22, 29, 18], which involves minimizing various
distribution divergences to solve the IL problem, either with the transition dynamics known (e.g.,
[69]), or unknown (e.g., [22]). MobILE does not assume knowledge of the transition dynamics, is
model-based, and operates without access to the expert’s actions.
Imitation Learning from Observation Alone (ILFO) [59] presents a model-free approach FAIL
that outputs a non-stationary policy by reducing the ILFO problem into a sequence of min-max
problems, one per time-step. While being theoretically sound, this approach cannot share data across
different time steps and thus is not data efficient for long horizon problems. Also FAIL in theory
only works for discrete actions. In contrast, our paper learns a stationary policy using model-based
approaches by reusing data across all time steps and extends to continuous action space. Another
line of work [63, 16, 66] relies on learning an estimate of expert action, often through the use of an
inverse dynamics models, P e(a|s, s′). Unfortunately, an inverse dynamics model is not well defined

2



in many benign problem instances. For instance, [68, remark 1, section 9.3] presents an example
showing that inverse dynamics isn’t well defined except in the case when the MDP dynamics is
injective (i.e., no two actions could lead to the same next state from the current state. Note that even
deterministic transition dynamics doesn’t imply injectivity of the MDP dynamics). Furthermore,
ILPO [16] applies to MDPs with deterministic transition dynamics and discrete actions. MobILE, on
the other hand, learns the forward dynamics model which is always unique and well-defined for both
deterministic and stochastic transitions and works with discrete and continuous actions. Another line
of work in ILFO revolves around using hand-crafted cost functions that may rely on task-specific
knowledge [44, 4, 53]. The performance of policy outputted by these efforts relies on the quality of
the engineered cost functions. In contrast, MobILE does not require cost function engineering.
Model-Based RL has seen several advances [61, 36, 13] including ones based on deep learning
(e.g., [34, 19, 38, 24, 37, 65]). Given MobILE’s modularity, these advances in model-based RL can
be translated to improved algorithms for the ILFO problem. MobILE bears parallels to provably
efficient model-based RL approaches including E3 [31, 27], R-MAX [7], UCRL [23], UCBVI [5],
Linear MDP [67], LC3 [25], Witness rank [58] which utilize optimism based approaches to trade-off
exploration and exploitation. Our work utilizes optimism to trade-off exploration and imitation.

2 Setting

We consider episodic finite-horizon MDPM = {S,A, P ?, H, c, s0}, where S,A are the state and
action space, P ? : S × A 7→ S is the MDP’s transition kernel, H is the horizon, s0 is a fixed
initial state (note that our work generalizes when we have a distribution over initial states), and c is
the state-dependent cost function c : S 7→ [0, 1]. Our result can be extended to the setting where
c : S × S 7→ [0, 1], i.e., the ground truth cost c(s, s′) depends on state and next state pairs. For
analysis simplicity, we focus on c : S 7→ [0, 1].2

We denote dπP ∈ ∆(S×A) as the average state-action distribution of policy π under the transition ker-
nel P , i.e., dπP (s, a) := 1

H

∑H
t=1 Pr(st = s, at = a|s0, π, P ), where Pr(st = s, at = a|s0, π, P )

is the probability of reaching (s, a) at time step t starting from s0 by following π under transition
kernel P . We abuse notation and write s ∼ dπP to denote a state s is sampled from the state-wise
distribution which marginalizes action over dπP (s, a), i.e., dπP (s) := 1

H

∑H
t=1 Pr(st = s|s0, π, P ).

For a given cost function f : S 7→ [0, 1], V πP ;f denotes the expected total cost of π under transition P
and cost function f . Similar to IL setting, in ILFO, the ground truth cost c is unknown. Instead, we
can query the expert, denoted as πe : S 7→ ∆(A). Note that the expert πe could be stochastic and
does not have to be the optimal policy. The expert, when queried, provides state-only demonstrations
τ = {s0, s1 . . . sH}, where st+1 ∼ P ?(·|st, at) and at ∼ πe(·|st).

The goal is to leverage expert’s state-wise demonstrations to learn a policy π that performs as well as
πe in terms of optimizing the ground truth cost c, with polynomial sample complexity on problem
parameters such as horizon, number of expert samples and online samples and underlying MDP’s
complexity measures (see section 4 for precise examples). We track the progress of any (randomized)
algorithm by measuring the (expected) regret incurred by a policy π defined as E[V π]− V π∗ as a
function of number of online interactions utilized by the algorithm to compute π.

2.1 Function Approximation Setup

Since the ground truth cost c is unknown, we utilize the notion of a function class (i.e., discriminators)
F ⊂ S 7→ [0, 1] to define the costs that can then be utilized by a planning algorithm (e.g. NPG [26])
for purposes of distribution matching with expert states. If the ground truth c depends (s, s′), we use
discriminators F ⊂ S × S 7→ [0, 1]. Furthermore, we use a model class P ⊂ S × A 7→ ∆(S) to
capture the ground truth transition P ?. For the theoretical results in the paper, we assume realizability:
Assumption 1. Assume F and P captures ground truth cost and transition, i.e., c ∈ F , P ? ∈ P .

We will use Integral probability metric (IPM) with F as our divergence measure. Note that if
c ∈ F and c : S 7→ [0, 1], then IPM defined as maxf∈F Es∼dπf(s) − Es∼dπe f(s) directly upper

2Without any additional assumptions, in ILFO, learning to optimize action-dependent cost c(s, a) (or
c(s, a, s′) is not possible. For example, if there are two sequences of actions that generate the same sequence of
states, without seeing expert’s preference over actions, we do not know which actions to commit to.

3



Algorithm 1 MobILE: The framework of Model-based Imitation Learning and Exploring for ILFO

1: Require: IPM class F , dynamics model class P , policy class Π, bonus function class B, expert
dataset De ≡ {sei}Ni=1.

2: Initialize policy π0 ∈ Π, replay buffer D−1 = ∅.
3: for t = 0, · · · , T − 1 do
4: Execute πt in true environment P ? to get samples τt = {sk, ak}H−1

k=0 ∪ sH . Append to replay
buffer Dt = Dt−1 ∪ τt.

5: Update model and bonus: P̂t+1 : S ×A → S and bt+1 : S ×A → R+ using buffer Dt.
6: Optimistic model-based min-max IL: obtain πt+1 by solving equation (1) with P̂t+1, bt+1,De.
7: end for
8: Return πT .

bounds sub-optimality gap V π − V πe , where V π is the expected total cost of π under cost function
c. This justifies why minimizing IPM between two state distributions suffices [22, 59]. Similarly,
if c depends on s, s′, we can simply minimize IPM between two state-next state distributions, i.e.,
maxf Es,s′∼dπf(s, s′)− Es,s′∼dπe f(s, s′) where discriminators now take (s, s′) as input.3

To permit generalization, we require P to have bounded complexity. For analytical simplicity, we
assume F is discrete (but exponentially large), and we require the sample complexity of any PAC
algorithm to scale polynomially with respect to its complexity ln(|F|). The ln |F| complexity can be
replaced to bounded conventional complexity measures such as Rademacher complexity and covering
number for continuous F (e.g., F being a Reproducing Kernel Hilbert Space).

3 Algorithm

We introduce MobILE (Algorithm 1) for the ILFO problem. MobILE utilizes (a) a function class F
for Integral Probability Metric (IPM) based distribution matching, (b) a transition dynamics model
class P for model learning, (c) a bonus parameterization B for exploration, (d) a policy class Π for
policy optimization. At every iteration, MobILE (in Algorithm 1) performs the following steps:

1. Dynamics Model Learning: execute policy in the environment online to obtain state-action-next
state (s, a, s′) triples which are appended to the buffer D. Fit a transition model P̂ on D.

2. Bonus Design: design bonus to incentivize exploration where the learnt dynamics model is
uncertain, i.e. the bonus b(s, a) is large at state s where P̂ (·|s, a) is uncertain in terms of
estimating P ?(·|s, a), while b(s, a) is small where P̂ (·|s, a) is certain.

3. Imitation-Exploration tradeoff: Given discriminators F , model P̂ , bonus b and expert dataset
De, perform distribution matching by solving the model-based IPM objective with bonus:

πt+1 ← arg min
π∈Π

max
f∈F

L(π, f ; P̂ , b,De) := E(s,a)∼dπ
P̂

[f(s)− b(s, a)]− Es∼De [f(s)] , (1)

where Es∼Def(s) :=
∑
s∈De f(s)/|De|.

Intuitively, the bonus cancels out discriminator’s power in parts of the state space where the dynamics
model P̂ is not accurate, thus offering freedom for MobILE to explore. We first explain MobILE’s
components and then discuss MobILE’s key property—which is to trade-off exploration and imitation.

3.1 Components of MobILE

This section details MobILE’s components.

Dynamics model learning: For the model fitting step in line 5, we assume that we get a calibrated
model in the sense that: ‖P̂t(·|s, a)− P ?(·|s, a)‖1 ≤ σt(s, a),∀s, a for some uncertainty measure
σt(s, a), similar to model-based RL works, e.g. [12]. We discuss ways to estimate σt(s, a) in the
bonus estimation below. There are many examples (discussed in Section 4) that permit efficient

3we slightly abuse notation here and denote dπ as the average state-next state distribution of π, i.e.,
dπ(s, s′) := dπ(s)

∫
a
π(a|s)daP ?(s′|s, a).

4



estimation of these quantities including tabular MDPs, Kernelized nonlinear regulator, nonparametric
model such as Gaussian Processes. Consider a general function class G ⊂ S ×A 7→ S , one can learn
ĝt via solving a regression problem, i.e.,

ĝt = argmin
g∈G

∑
s,a,s′∈Dt

‖g(s, a)− s′‖22, (2)

and setting P̂t(·|s, a) = N
(
ĝt(s, a), σ2I

)
, where, σ is the standard deviation of error induced by

ĝt. In practice, such parameterizations have been employed in several settings in RL with G being a
multi-layer perceptron (MLP) based function class (e.g.,[48]). In Section 4, we also connect this with
prior works in provable model-based RL literature.
Bonus: We utilize bonuses as a means to incentivize the policy to efficiently explore unknown
parts of the state space for improved model learning (and hence better distribution matching).
With the uncertainty measure σt(s, a) obtained from calibrated model fitting, we can simply
set the bonus bt(s, a) = O(Hσt(s, a)). How do we obtain σt(s, a) in practice? For a gen-
eral class G, given the least square solution ĝt, we can define a version space Gt as: Gt ={
g ∈ G :

∑t−1
i=0

∑H−1
h=0 ‖g(sth, a

t
h)− ĝt(sth, ath)‖22 ≤ zt

}
, with zt being a hyper parameter. The

version space Gt is an ensemble of functions g ∈ G which has training error on Dt almost as small as
the training error of the least square solution ĝt. In other words, version space Gt contains functions
that agree on the training setDt. The uncertainty measure at (s, a) is then the maximum disagreement
among models in Gt, with σt(s, a) ∝ supf1,f2∈Gt ‖f1(s, a)− f2(s, a)‖2. Since g ∈ Gt agree on Dt,
a large σt(s, a) indicates (s, a) is novel. See example 3 for more theoretical details.

Empirically, disagreement among an ensemble [41, 6, 11, 43, 37] is used for designing bonuses that
incentivize exploration. We utilize an neural network ensemble, where each model is trained on Dt
(via SGD on squared loss Eq. 2) with different initialization. This approximates the version space Gt,
and the bonus is set as a function of maximum disagreement among the ensemble’s predictions.

Optimistic model-based min-max IL: For model-based imitation (line 6), MobILE takes the current
model P̂t and the discriminators F as inputs and performs policy search to minimize the divergence
defined by P̂n and F : dt(π, πe) := maxf∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es∼dπe f(s)
]
. Note that,

for a fixed π, the arg maxf∈F is identical with or without the bonus term, since Es,a∼dπ
P̂t

bt(s, a) is
independent of f . In our implementation, we use the Maximum Mean Discrepancy (MMD) with
a Radial Basis Function (RBF) kernel to model discriminators F .4 We compute argminπ dt(π, π

e)
by iteratively (1) computing the argmax discriminator f given the current π, and (2) using policy
gradient methods (e.g., TRPO) to update π inside P̂t with f − bt as the cost. Specifically, to find πt
(line 6), we iterate between the following two steps:

1. Cost update:f̂ = argmax
f∈F

Es∼dπ̂
P̂t

f(s)− Es∼Def(s), 2. PG Step:π̂ = π̂ − η · ∇πV π̂P̂t,f̂−bt ,

where the PG step uses the learnt dynamics model P̂t and the optimistic IPM cost f̂(s)− bt(s, a).
Note that for MMD, the cost update step has a closed-form solution.

3.2 Exploration And Imitation Tradeoff

We note that MobILE is performing an automatic trade-off between exploration and imitation. More
specifically, the bonus is designed such that it has high values in the state space that have not
been visited, and low values in the state space that have been frequently visited by the sequence
of learned policies so far. Thus, by incorporating the bonus into the discriminator f ∈ F (e.g.,
f̃(s, a) = f(s) − bt(s, a)), we diminish the power of discriminator f at novel state-action space
regions, which relaxes the state-matching constraint (as the bonus cancels the penalty from the
discriminators) at those novel regions so that exploration is encouraged. For well explored states, we
force the learner’s states to match the expert’s using the full power of the discriminators. Our work
uses optimism (via coupling bonus and discriminators) to carefully balance imitation and exploration.

4For MMD with kernel k, F = {w>φ(s, a)|‖w‖2 ≤ 1} where φ: 〈φ(s, a), φ(s′, a′)〉 = k((s, a), (s′, a′)).

5



4 Analysis

This section presents a general theorem for MobILE that uses the notion of information gain [57], and
then specializes this result to common classes of stochastic MDPs such as discrete (tabular) MDPs,
Kernelized nonlinear regulator [28], and general function class with bounded Eluder dimension [51].

Recall, Algorithm 1 generates one state-action trajectory τ t := {sth, ath}Hh=0 at iteration t and
estimates model P̂t based on Dt = τ0, . . . , τ t−1. We present our theorem under the assumption that
model fitting gives us a model P̂ and a confidence interval of the model’s prediction.
Assumption 2 (Calibrated Model). For all iteration t with t ∈ N, with probability 1− δ, we have a
model P̂t and its associated uncertainty measure σt : S ×A 7→ R+, such that for all s, a ∈ S ×A5∥∥∥P̂t(·|s, a)− P ?(·|s, a)

∥∥∥
1
≤ min {σt(s, a), 2} .

Assumption 2 has featured in prior works (e.g., [12]) to prove regret bounds in model-based RL.
Below we demonstrate examples that satisfy the above assumption.
Example 1 (Discrete MDPs). Given Dt, denote N(s, a) as the number of times (s, a) appears
in Dt, and N(s, a, s′) number of times (s, a, s′) appears in Dt. We can set P̂t(s′|s, a) =

N(s, a, s′)/N(s, a),∀s, a, s′. We can set σt(s, a) = Õ
(√

S/N(s, a)
)

.

Example 2 (KNRs [28]). For KNR, we have P ?(·|s, a) = N
(
W ?φ(s, a), σ2I

)
where feature

mapping φ(s, a) ∈ Rd and ‖φ(s, a)‖2 ≤ 1 for all s, a.6 We can learn P̂t via Kernel Ridge regression,
i.e., ĝt(s, a) = Ŵtφ(s, a) where

Ŵt = argmin
W

∑
s,a,s′∈Dt

‖Wφ(s, a)− s′‖22 + λ ‖W‖2F

where ‖ · ‖F is the Frobenius norm. The uncertainty measure σt(s, a) = βt
σ ‖φ(s, a)‖Σ−1

t
,

βt = {2λ‖W ?‖22 + 8σ2 · [ds ln(5) + 2 ln(t2/δ) + ln(4) + ln (det(Σt)/ det(λI))]}1/2, and,
Σt =

∑t−1
k=0

∑H−1
h=1 φ(skh, a

k
h)φ(skh, a

k
h)> + λI with λ > 0.See Proposition 12 for more details.

Similar to RKHS, Gaussian processes (GPs) offers a calibrated model [57]. Note that GPs offer
similar regret bounds as RKHS; so we do not discuss GPs and instead refer readers to [12].
Example 3 (General class G). In this case, assume we have P ?(·|s, a) = N (g?(s, a), σ2I)
with g? ∈ G. Assume G is discrete (but could be exponentially large with complex-
ity measure, ln(|G|)), and supg∈G,s,a ‖g(s, a)‖2 ≤ G ∈ R+. Suppose model learning

step is done by least square: ĝt = argming∈G
∑t−1
k=0

∑H−1
h=0

∥∥g(skh, a
k
h)− skh+1

∥∥2

2
. Com-

pute a version space Gt =
{
g ∈ G :

∑t−1
k=0

∑H−1
h=0

∥∥g(skh, a
k
h)− ĝt(skh, akh)

∥∥2

2
≤ zt

}
, where

zt = 2σ2G2ln(2t2|G|/δ) and use this for uncertainty computation. In particular, set uncertainty
σt(s, a) = 1

σ maxg1∈G,g2∈G ‖g1(s, a) − g2(s, a)‖2, i.e., the maximum disagreement between any
two functions in the version space Gt. Refer to Proposition 14 for more details.

The maximum disagreement above motivates our practical implementation where we use an ensemble
of neural networks to approximate the version space and use the maximum disagreement among the
models’ predictions as the bonus. We refer readers to Section 6 for more details.

4.1 Regret Bound

We bound regret with the quantity named Information Gain I (up to some constant scaling factor) [57]:

IT := max
Alg

EAlg

[
T−1∑
t=0

H−1∑
h=0

min
{
σ2
t (sth, a

t
h), 1

}]
, (3)

5the uncertainty measure σt(s, a) will depend on the input failure probability δ, which we drop here for
notational simplicity. When we introduce specific examples, we will be explicit about the dependence on the
failure probability δ which usually is in the order of ln(1/δ).

6The covariance matrix can be generalized to any PSD matrix with bounded condition number.

6



where Alg is any adaptive algorithm (thus including Algorithm 1) that maps from history before
iteration t to some policy πt ∈ Π. After the main theorem, we give concrete examples for IT where
we show that IT has extremely mild growth rate with respect to T (i.e., logarithimic). Denote V π as
the expected total cost of π under the true cost function c and the real dynamics P ?.
Theorem 3 (Main result). Assume model learning is calibrated (i.e., Assumption 2 holds for all t)
and Assumption 1 holds. In Algorithm 1, set bonus bt(s, a) := H min{σt(s, a), 2}. There exists a
set of parameters, such that after running Algorithm 1 for T iterations, we have:

E
[

min
t∈[0,...,T−1]

V πt − V π
e

]
≤ O

(
H2.5
√
IT√

T
+H

√
ln(TH|F|)

N

)
.

Appendix A contains proof of Theorem 3. This theorem indicates that as long as IT grows sublinearly
o(T ), we find a policy that is at least as good as the expert policy when T and N approach infinity.
For any discrete MDP, KNR [28], Gaussian Processes models [57], and general G with bounded
Eluder dimension ([52, 42]), we can show that the growth rate of IT with respect to T is mild.

Corollary 4 (Discrete MDP). For discrete MDPs, IT = Õ(HS2A) where S = |S|, A = |A|. Thus:

E
[

min
t∈[0,...,T−1]

V πt − V π
e

]
= Õ

(
H3S

√
A√

T
+H

√
ln(|F|)
N

)
.

Note that Corollary 4 (proof in Appendix A.1) hold for any MDPs (not just injective MDPs) and
any stochastic expert policy. The dependence on A, T is tight (see lower bound in 4.2). Now we
specialize Theorem 3 to continuous MDPs below.
Corollary 5 (KNRs (Example 2)). For simplicity, consider the finite dimension setting φ : S ×A 7→
Rd. We can show that IT = Õ

(
Hd+Hdds +Hd2

)
(see Proposition 13 for details), where d is the

dimension of the feature φ(s, a) and ds is the dimension of the state space. Thus, we have 7

E
[

min
t∈[0,...,T−1]

V πt − V π
e

]
= Õ

(
H3
√
dds + d2

√
T

+H

√
ln(|F|)
N

)
.

Corollary 6 (General G with bounded Eluder dimension (Example 3)). For general G, assume that
G has Eluder-dimension dE(ε) (Definition 3 in [42]). Denote dE = dE(1/TH). The information
gain is upper bounded as IT = O

(
HdE + dE ln(T 3H|G|) ln(TH)

)
(see Proposition 16). Thus,

E
[

min
t∈[0,...,T−1]

V πt − V π
e

]
= Õ

(
H3
√
dE ln(TH|G|)√

T
+H

√
ln(|F|)
N

)
.

Thus as long as G has bounded complexity in terms of the Eluder dimension [52, 42], MobILE with
the maximum disagreement-based optimism leads to near-optimal guarantees.

4.2 Exploration in ILFO and the Exponential Gap between IL and ILFO

To show the benefit of strategic exploration over random exploration in ILFO, we present a novel
reduction of the ILFO problem to a bandit optimization problem, for which strategic exploration
is known to be necessary [9] for optimal bounds while random exploration is suboptimal; this
reduction indicates that benefit of strategic exploration for solving ILFO efficiently. This reduction
also demonstrate that there exists an exponential gap in terms of sample complexity between ILFO
and classic IL that has access to expert actions. We leave the details of the reduction framework in
Appendix A.4. The reduction allows us to derive the following lower bound for any ILFO algorithm.
Theorem 7. There exists an MDP with number of actions A ≥ 2, such that even with infinitely many
expert data, any ILFO algorithm must occur expected commutative regret Ω(

√
AT ).

Specifically we rely on the following reduction where solving ILFO, with even infinite expert data, is
at least as hard as solving an MAB problem with the known optimal arm’s mean reward which itself

7We use Õ to suppress log term except the ln(|G|) and ln(|F|) which present the complexity of F and G.

7



occurs the same worst case
√
AT cumulative regret bound as the one in the classic MAB setting. For

MAB, it is known that random exploration such as ε-greedy will occur suboptimal regret O(T 2/3).
Thus to achieve optimal

√
T rate, one needs to leverage strategic exploration (e.g., optimism).

Methods such as BC for IL have sample complexity that scales as poly ln(A), e.g., see [2, Theorem
14.3, Chapter 14] which shows that for tabular MDP, BC learns a policy whose performance is
O(H2

√
S ln(A)/N) away from the expert’s performance (here S is the number of states in the tabular

MDP). Similarly, in interactive IL setting, DAgger [50] can also achieve poly ln(A) dependence in
sample complexity. The exponential gap in the sample complexity dependence on A between IL and
ILFO formalizes the additional difficulty encountered by learning algorithms in ILFO.

5 Practical Instantiation of MobILE

We present a brief practical instantiation MobILE’s components with details in Appendix Section C.
Dynamics model learning:We employ Gaussian Dynamics Models parameterized by an MLP [48,
32], i.e., P̂ (s, a) := N (hθ(s, a), σ2I), where, hθ(s, a) = s + σ∆s

· MLPθ(sc, ac), where, θ are
MLP’s trainable parameters, sc = (s− µs)/σs, ac = (a− µa)/σa with µs, µa (and σs, σa) being
the mean of states, actions (and standard deviation of states and actions) in the replay buffer D. Next,
for (s, a, s′) ∈ D, ∆s = s′ − s and σ∆s is the standard deviation of the state differences ∆s ∈ D.
We use SGD with momentum [60] for training the parameters θ of the MLP.
Discriminator parameterization:We utilize MMD as our choice of IPM and define the discriminator
as f(s) = w>ψ(s), where, ψ(s) are Random Fourier Features [46].
Bonus parameterization:We utilize the discrepancy between predictions of a pair of dynamics
models hθ1(s, a) and hθ2(s, a) for designing the bonus. Empirically, we found that using more than
two models in the ensemble offered little to no improvements. Denote the disagreement at any (s, a)
as δ(s, a) = ‖hθ1(s, a)− hθ2(s, a)‖2, and δD = max(s,a)∼D δ(s, a) is the max discrepancy of a
replay buffer D. We set bonus as b(s, a) = λ ·min(δ(s, a)/δD, where λ > 0 is a tunable parameter.
PG oracle:We use TRPO [54] to perform incremental policy optimization inside the learned model.

6 Experiments

This section seeks to answer the following questions: (1) How does MobILE compare against other
benchmark algorithms? (2) How does optimism impact sample efficiency/final performance? (3)
How does increasing the number of expert samples impact the quality of policy outputted by MobILE?

We consider tasks from Open AI Gym [8] simulated with Mujoco [62]: Cartpole-v1, Reacher-v2,
Swimmer-v2, Hopper-v2 and Walker2d-v2. We train an expert for each task using TRPO [54]
until we obtain an expert policy of average value 460,−10, 38, 3000, 2000 respectively. We setup
Swimmer-v2, Hopper-v2,Walker2d-v2 similar to prior model-based RL works [33, 39, 38, 48, 32].

We compare MobILE against the following algorithms: Behavior Cloning (BC), GAIL [22], BC-
O [63], ILPO [16] (for environments with discrete actions), GAIFO [64]. Furthermore, recall that
BC and GAIL utilize both expert states and actions, information that is not available for ILFO. This
makes both BC and GAIL idealistic targets for comparing ILFO methods like MobILE against. As
reported by Torabi et al. [63], BC outperforms BC-O in all benchmark results. Moreover, our results
indicate MobILE outperforms GAIL and GAIFO in terms of sample efficiency. With reasonable
amount of parameter tuning, BC serves as a very strong baseline and nearly solves deterministic
Mujoco environments. We use code released by the authors for BC-O and ILPO. For GAIL we use an
open source implementation [21], and for GAIFO, we modify the GAIL implementation as described
by the authors. We present our results through (a) learning curves obtained by averaging the progress
of the algorithm across 5 seeds, and, (b) bar plot showing expert normalized scores averaged across
5 seeds using the best performing policy obtained with each seed. Normalized score refers to ratio
of policy’s score over the expert score (so that expert has normalized score of 1). For Reacher-v2,
since the expert policy has a negative score, we add an constant before normalization. More details
can be found in Appendix C.

8



1 2 3 4 5
Online Samples 1e4

0

100

200

300

400

500

R
et

ur
n 

(V
al

ue
)

CartPole-v1 (10 traj.)

MobILE (Ours)
BC
Expert
GAIL

BC-O
GAIFO
ILPO

0.5 1.0 1.5
Online Samples 1e4

40

30

20

10

R
et

ur
n 

(V
al

ue
)

Reacher-v2 (10 traj.)

0.2 0.4 0.6 0.8 1.0
Online Samples 1e5

10

0

10

20

30

40

R
et

ur
n 

(V
al

ue
)

Swimmer-v2 (40 traj.)

0.5 1.0 1.5
Online Samples 1e6

0

1000

2000

3000

R
et

ur
n 

(V
al

ue
)

Hopper-v2 (10 traj.)

0.25 0.50 0.75 1.00 1.25
Online Samples 1e6

0

500

1000

1500

2000

2500

R
et

ur
n 

(V
al

ue
)

Walker2d-v2 (10 traj.)

CartPole-v1

Reacher-v2

Swimmer-v2

Hopper-v2

Walker2d-v2
0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

 S
co

re

Figure 2: Comparing MobILE (red) against BC (orange), BC-O (green), GAIL (purple), GAIFO
(periwinkle), ILPO (green olive). The learning curves are obtained by averaging all algorithms over
5 seeds. MobILE outperforms BC-O, GAIL and matches BC’s behavior despite MobILE not having
access to expert actions. The bar plot (bottom-right) presents the best performing policy outputted
by each algorithm averaged across 5 seeds for each algorithm. MobILE clearly outperforms BC-O,
GAIFO, ILPO while matching the behavior of IL algorithms like BC/GAIL which use expert actions.

6.1 Benchmarking MobILE on MuJoCo suite

Figure 2 compares MobILE with BC, BC-O, GAIL, GAIFO and ILPO. MobILE consistently matches
or exceeds BC/GAIL’s performance despite BC/GAIL having access to actions taken by the expert
and MobILE functioning without expert action information. MobILE, also, consistently improves upon
the behavior of ILFO methods such as BC-O, ILPO, and GAIFO. We see that BC does remarkably
well in these benchmarks owing to determinism in the transition dynamics; in the appendix, we
consider a variant of the cartpole environment with stochastic dynamics. Our results suggest that BC
struggles with stochasticity in the dynamics and fails to solve this task, while MobILE continues to
reliably solve this task. Also, note that we utilize 10 expert trajectories for all environments except
Swimmer-v2; this is because all algorithms (including MobILE) present results with high variance.
We include a learning curve for Swimmer-v2 with 10 expert trajectories in the appendix. The bar
plot in Figure 2 shows that within the sample budget shown in the learning curves, MobILE (being a
model-based algorithm), presents superior performance in terms of matching expert, thus indicating
it is more sample efficient than GAIFO, GAIL (both being model-free methods), ILPO and BC-O.

6.2 Importance of the optimistic MDP construction

Figure 3 presents results obtained by running MobILE with and without optimism. In the absence
of optimism, the algorithm either tends to be sample inefficient in achieving expert performance or

2 4
# Online Samples 1e4

0

200

400

R
et

ur
n 

(V
al

ue
)

CartPole-v1 (10 traj.)

Expert
With optimism
No optimism

0.5 1.0 1.5
# Online Samples 1e4

40

30

20

10

Reacher-v2 (10 traj.)

0.5 1.0
# Online Samples 1e5

0

20

40
Swimmer-v2 (40 traj.)

0.5 1.0 1.5
# Online Samples 1e6

0

1000

2000

3000

Hopper-v2 (10 traj.)

0.5 1.0
# Online Samples 1e6

0

1000

2000

Walker2d-v2 (10 traj.)

Figure 3: Learning curves obtained by running MobILE with (red) and without (green) optimism.
Without optimism, the algorithm learns slowly or does not match the expert, whereas, with optimism,
MobILE shows improved behavior by automatically trading off exploration and imitation.

9



completely fails to solve the problem. Note that without optimism, the algorithm isn’t explicitly
incentivized to explore – only implicitly exploring due to noise induced by sampling actions. This,
however, is not sufficient to solve the problem efficiently. In contrast, MobILE with optimism presents
improved behavior and in most cases, solves the environments with fewer online interactions.

6.3 Varying Number of Expert Samples Table 1: Expert normalized score and standard de-
viation of policy outputted by MobILE when vary-
ing number of expert trajectories as E1 and E2

(specific values represented in parentheses)

Environment E1 E2 Expert

Cartpole-v1 1.07± 0.15 (5) 1.14± 0 (10) 1± 0.25
Reacher-v2 1.01± 0.05 (10) 0.997± 0.055 (20) 1± 0.11
Swimmer-v2 1.54± 1.1 (10) 1.25± 0.15 (40) 1± 0.05
Hopper-v2 1.11± 0.064 (10) 1.16± 0.03 (40) 1± 0.16

Walker2d-v2 0.975± 0.12 (10) 0.94± 0.038 (50) 1± 0.25

Table 1 shows the impact of increasing the num-
ber of samples drawn from the expert policy for
solving the ILFO problem. The main takeaway
is that increasing the number of expert samples
aids MobILE in reliably solving the problem (i.e.
with lesser variance).

7 Conclusions

This paper introduces MobILE, a model-based ILFO approach that is applicable to MDPs with
stochastic dynamics and continuous action spaces. MobILE trades-off exploration and imitation,
and this perspective is shown to be important for solving the ILFO efficiently both in theory and in
practice. Future works include exploring other means for learning dynamics models, performing
strategic exploration and extending MobILE to problems with rich observation spaces (e.g. videos).

By not even needing the actions to imitate, ILFO algorithms allow for learning algorithms to capitalize
on large amounts of video data available online. Moreover, in ILFO, the learner is successful if it
learns to imitate the expert. Any expert policy designed by bad actors can naturally lead to obtaining
new policies that continue to imitate and be a negative influence to the society. With this perspective
in mind, any expert policy must be thoroughly vetted in order to ensure ILFO algorithms including
MobILE are employed in ways that benefit the society.

Acknowledgements

Rahul Kidambi acknowledges funding from NSF TRIPODS Award CCF − 1740822 at Cornell
University. All content represents the opinion of the authors, which is not necessarily shared or
endorsed by their respective employers and/or sponsors.

10



References
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning.

In ICML. ACM, 2004.

[2] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory
and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[4] Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando de Freitas.
Playing hard exploration games by watching youtube. In NeurIPS, pages 2935–2945, 2018.

[5] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, pages 263–272,
2017.

[6] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In ITA, pages 1–9. IEEE, 2018.

[7] Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. J. Mach. Learn. Res., 3:213–231, 2001.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai Gym. arXiv preprint arXiv:1606.01540, 2016.

[9] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and non-stochastic
multi-armed bandit problems. Found. Trends Mach. Learn, 5(1):1–122, 2012.

[10] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[11] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random
network distillation. In ICLR. OpenReview.net, 2019.

[12] Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement
learning through optimistic policy search and planning. arXiv preprint arXiv:2006.08684, 2020.

[13] Marc Deisenroth and Carl E. Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In International Conference on Machine Learning, pages 465–472, 2011.

[14] Siddharth Desai, Ishan Durugkar, Haresh Karnan, Garrett Warnell, Josiah Hanna, Peter Stone,
and AI Sony. An imitation from observation approach to transfer learning with dynamics
mismatch. Advances in Neural Information Processing Systems, 33, 2020.

[15] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[16] Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L. Isbell Jr. Imitating
latent policies from observation. In ICML, 2019.

[17] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In ICML, 2016.

[18] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence mini-
mization perspective on imitation learning methods. In Conference on Robot Learning, pages
1259–1277. PMLR, 2020.

[19] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration, 2016.

[20] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018.

11

https://github.com/openai/baselines


[21] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[22] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. CoRR,
abs/1606.03476, 2016.

[23] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[24] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. CoRR, abs/1906.08253, 2019.

[25] Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Infor-
mation theoretic regret bounds for online nonlinear control. arXiv preprint arXiv:2006.12466,
2020.

[26] Sham M. Kakade. A natural policy gradient. In NIPS, pages 1531–1538, 2001.

[27] Sham M. Kakade, Michael J. Kearns, and John Langford. Exploration in metric state spaces. In
ICML, 2003.

[28] Sham M. Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun.
Information theoretic regret bounds for online nonlinear control. In NeurIPS, 2020.

[29] Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Siddhartha Srini-
vasa. Imitation learning as f -divergence minimization. arXiv preprint arXiv:1905.12888,
2019.

[30] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232, 2002.

[31] Michael Kearns and Satinder Singh. Near optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002.

[32] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. CoRR, abs/2005.05951, 2020.

[33] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In ICLR. OpenReview.net, 2018.

[34] Thomas Lampe and Martin A. Riedmiller. Approximate model-assisted neural fitted q-iteration.
In IJCNN, pages 2698–2704. IEEE, 2014.

[35] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[36] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear
biological movement systems. In ICINCO, pages 222–229, 2004.

[37] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch.
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control. In
International Conference on Learning Representations (ICLR), 2019.

[38] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algo-
rithmic framework for model-based deep reinforcement learning with theoretical guarantees.
arXiv preprint arXiv:1807.03858, 2018.

[39] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In IEEE
International Conference on Robotics and Automation, pages 7559–7566, 2018.

[40] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Proc.
ICML, pages 663–670, 2000.

12

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines


[41] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep rein-
forcement learning. CoRR, abs/1806.03335, 2018.

[42] Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the Eluder
dimension. In Advances in Neural Information Processing Systems, pages 1466–1474, 2014.

[43] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. In ICML, pages 5062–5071, 2019.

[44] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: example-
guided deep reinforcement learning of physics-based character skills. ACM Trans. Graphics,
2018.

[45] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Technical report,
CMU, 1989.

[46] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems, pages 1177–1184, 2008.

[47] Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards General-
ization and Simplicity in Continuous Control. In NIPS, 2017.

[48] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. ArXiv, abs/2004.07804, 2020.

[49] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye Teh
and D. Mike Titterington, editors, AISTATS, JMLR Proceedings, pages 661–668, 2010.

[50] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, pages 627–635, 2011.

[51] Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In NIPS, pages 2256–2264, 2013.

[52] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics
of Operations Research, 39(4):1221–1243, 2014.

[53] Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Re-
inforcement learning with videos: Combining offline observations with interaction. CoRR,
abs/2011.06507, 2020.

[54] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization. CoRR, abs/1502.05477, 2015.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[56] Yuda Song, Aditi Mavalankar, Wen Sun, and Sicun Gao. Provably efficient model-based policy
adaptation. In International Conference on Machine Learning, pages 9088–9098. PMLR, 2020.

[57] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[58] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on Learning Theory, pages 2898–2933. PMLR, 2019.

[59] Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imitation
learning from observation alone. In ICML, volume 97. PMLR, 2019.

[60] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In ICML, volume 28, 2013.

13



[61] R. S. Sutton. First results with dyna, an integrated architecture for learning, planning, and
reacting. In Neural Networks for Control, pages 179–189. The MIT Press: Cambridge, MA,
USA, 1990.

[62] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In IEEE International Conference on Intelligent Robots and Systems, pages 5026–5033,
2012.

[63] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In IJCAI,
pages 4950–4957, 2018.

[64] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv preprint arXiv:1807.06158, 2018.

[65] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois,
Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based
reinforcement learning. arXiv preprint arXiv:1907.02057, 2019.

[66] Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and
Chuang Gan. Imitation learning from observations by minimizing inverse dynamics disagree-
ment. In NeurIPS, 2019.

[67] Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels,
and regret bound. arXiv preprint arXiv:1905.10389, 2019.

[68] Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from
observations. In NeurIPS, 2020.

[69] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

14



1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1
(b) Did you describe the limitations of your work? [Yes] See Section 4
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms

to them? [Yes] We have read the ethics review guidelines to ensure that this paper
conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See section 4
(b) Did you include complete proofs of all theoretical results? [Yes] See section 4 and

supplemental results for all proofs
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See section 5.
All hyperparameters, exact values, and environmental stats are detailed in the supple-
mental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section 6 and supplemental material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See section 6. All of our results are presented with error
bars across 5 random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We do not use any specialized
hardware or large scale compute that would be prohibitive for an average end-user to
run our experiments. All experiments were run on 1 core and 12 GB of RAM.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6 for

citations for OpenAI Gym and MuJoCo.
(b) Did you mention the license of the assets? [No] OpenAI Gym is an opensource software

and we paid for our license for MuJoCo.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15



Contents

1 Introduction 1

1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Setting 3

2.1 Function Approximation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Algorithm 4

3.1 Components of MobILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Exploration And Imitation Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Analysis 6

4.1 Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Exploration in ILFO and the Exponential Gap between IL and ILFO . . . . . . . . 7

5 Practical Instantiation of MobILE 8

6 Experiments 8

6.1 Benchmarking MobILE on MuJoCo suite . . . . . . . . . . . . . . . . . . . . . . . 9

6.2 Importance of the optimistic MDP construction . . . . . . . . . . . . . . . . . . . 9

6.3 Varying Number of Expert Samples . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 Conclusions 10

A Analysis of Algorithm 1 17

A.1 Discrete MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.2 KNRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.3 General Function Class G with Bounded Eluder dimension . . . . . . . . . . . . . 21

A.4 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Auxiliary Lemmas 25

C Implementation Details 25

C.1 Environment Setup and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.2 Practical Implementation of MobILE . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.2.1 Dynamics Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.2.2 Replay Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.2.3 Design of Bonus Function . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.2.4 Discriminator Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.2.5 Model-Based Policy Update . . . . . . . . . . . . . . . . . . . . . . . . . 27

C.3 Hyper-parameter Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D Additional Experimental Results 27

16



D.1 Modified Cartpole-v0 environment with noise added to transition dynamics . . . 27

D.2 Swimmer Learning Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D.4 Ablation Study on Number of Models used for Strategic Exploration Bonus . . . . 29

A Analysis of Algorithm 1

We start by presenting the proof for the unified main result in Theorem 3. We then discuss the bounds
for special instances individually.

The following lemma shows that under Assumption 2, with bt(s, a) = H min{σt(s, a), 2}, we
achieve optimism at all iterations.
Lemma 8 (Optimism). Assume Assumption 2 holds, and set bt(s, a) = H min {σt(s, a), 2}. For all
state-wise cost function f : S 7→ [0, 1], denote the bonus enhance cost as f̃t(s, a) := f(s)− bt(s, a).
For all policy π, we have the following optimism:

V π
P̂t,f̃t

≤ V πP,f ,∀t.

Proof. In the proof, we drop subscript t for notation simplicity. We consider a fixed function f and
policy π. Also let us denote V̂ π as the value function of π under (P̂ , f̃), and V π as the value function
under (P, f).

Let us start from h = H , where we have V̂ πH(s) = V πH(s) = 0. Assume inductive hypothesis holds
at h+ 1, i.e., for any s, a, we have Q̂πh+1(s, a) ≤ Qπh+1(s, a). Now let us move to h. We have:

Q̂πh(s, a)−Qπh(s, a) = f̃(s, a) + Es′∼P̂ (·|s,a)V̂
π
h+1(s′)− f(s)− Es′∼P (·|s,a)V

π
h+1(s′)

≤ −H min{σ(s, a), 2}+ Es′∼P̂ (·|s,a)V
π
h+1(s′)− Es′∼P (·|s,a)V

π
h+1(s′)

≤ −H min{σ(s, a), 2}+H
∥∥∥P̂ (·|s, a)− P (·|s, a)

∥∥∥
1

≤ −H min{σ(s, a), 2}+H min{σ(s, a), 2} = 0,

where the first inequality uses the inductive hypothesis at time step h + 1. Finally, note that
V πh (s) = Ea∼π(s)Q

π
h(s, a), which leads to V̂ πh (s) ≤ V πh (s). This concludes the induction step.

The next lemma concerns the statistical error from finite sample estimation of Es∼dπe f(s).
Lemma 9. Fix δ ∈ (0, 1). For all t, we have that with probability at least 1− δ,∣∣∣∣∣Es∼dπe f(s)−

N∑
i=1

f(sei )/N

∣∣∣∣∣ ≤ 2

√
ln (2t2|F|/δ)

N
,∀f ∈ F .

Proof. For any t, we set the failure probability to be 6δ/(t2π2) at iteration t where we abuse notation
and point out that π = 3.14159.... Thus the total failure probability for all t ∈ N is at most δ. We
then apply classic Hoeffding inequality to bound Es∼dπe f(s) −

∑N
i=1 f(sei )/N with the fact that

f(s) ∈ [0, 1] for all s. We conclude the proof by taking a union bound over all f ∈ F .

Note that here we have assumed sei ∼ dπ
e

is i.i.d sampled from dπ
e

. This can easily be achieved
by randomly sampling a state from each expert trajectory. Note that we can easily deal with i.i.d
trajectories, i.e., if our expert data contains N many i.i.d trajectories {τ1, . . . , τN}, we can apply
concentration on the trajectory level, and get:∣∣∣∣∣Eτ∼πe

[
H−1∑
h=0

f(sh)

]
− 1

N

N∑
i=1

H−1∑
h=0

f(sih)

∣∣∣∣∣ ≤ O
(
H

√
ln(t2|F|/δ)

N

)
,

17



where τ ∼ π denotes that a trajectory τ being sampled based on π, sih denotes the state at time step h

on the i-th expert trajectory. Also note that we have Es∼dπf(s) = 1
HEτ∼π

[∑H−1
h=0 f(sh)

]
for any

π, f . Together this immediately implies that:∣∣∣∣∣Es∼dπe f(s)− 1

NH

N∑
i=1

H−1∑
h=0

f(sih)

∣∣∣∣∣ ≤ O
(√

ln(t2|F|/δ)
N

)
,

which matches to the bound in Lemma 9.

Now we conclude the proof for Theorem 3.

Proof of Theorem 3. Assume that Assumption 2 and the event in Lemma 9 hold. Denote the joint of
these two events as E . Note that the probability of E is at most 2δ. For notation simplicity, denote

εstats = 2
√

ln(2T 2|F|/δ)
N .

In each model-based planning phase, recall that we perform model-based optimization on the
following objective:

πt = argmin
π∈Π

max
f∈F

[
Es,a∼dπ

P̂t

[f(s)− bt(s, a)]−
N∑
i=1

f(sei )/N

]
.

Note that for any π, using the inequality in Lemma 9, we have:

max
f∈Ft

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))−
N∑
i=1

f(sei )/N

]

= max
f∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es∼dπe f(s) + Es∼dπe f(s)−
N∑
i=1

f(sei )/N

]

≤ max
f∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es∼dπe f(s)
]

+ max
f∈F

[
Es∼dπe f(s)−

N∑
i=1

f(sei )/N

]

≤ max
f∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es,a∼dπe
P̂t

(f(s)− bt(s, a))

]
+ εstats

where in the last inequality we use optimism from Lemma 8, i.e., Es,a∼dπe
P̂t

(f(s) − bt(s, a)) ≤
Es∼dπe f(s).

Hence, for πt, since it is the minimizer and πe ∈ Π, we must have:

max
f∈F

[
Es,a∼dπt

P̂t

(f(s)− bt(s, a))−
N∑
i=1

f(sei )/N

]

≤ max
f∈F

[
Es,a∼dπe

P̂t

(f(s)− bt(s, a))−
N∑
i=1

f(sei )/N

]

≤ max
f∈F

[
Es,a∼dπe

P̂t

(f(s)− bt(s, a))− Es,a∼dπe
P̂t

(f(s)− bt(s, a))

]
+ εstats = εstats.

Note that F contains c, we must have:

Es,a∼dπt
P̂t

[c(s)− bt(s, a)] ≤
N∑
i=1

c(sei )/N + εstats ≤ Es∼dπe c(s) + 2εstats,

which means that V πt
P̂t;c̃t

≤ V πe + 2Hεstats.

Now we compute the regret in episode t. First recall that bt(s, a) = H min{σt(s, a), 2}, which means
that ‖bt‖∞ ≤ 2H as ‖c‖∞ ≤ 1, which means that ‖c− bt‖∞ ≤ 2H . Thus,

∥∥∥V π
P̂ ;c−bt

∥∥∥
∞
≤ 2H2.

Recall simulation lemma (Lemma 18), we have:

V πt − V π
e

≤ V πt − V πt
P̂t;c̃t

+ 2Hεstats

18



= HEs,a∼dπt
[
|c̃t(s, a)− c(s)|+ 2H2

∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1

]
+ 2Hεstat

= HEs,a∼dπt
[
H min{σt(s, a), 2}+ 2H2

∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1

]
+ 2Hεstat

≤ HEs,a∼dπt
[
H min{σt(s, a), 2}+ 2H2 min{σt(s, a), 2}

]
+ 2Hεstat

≤ 3H3Es,a∼dπt min{σt(s, a), 2}+ 2Hεstat

≤ 6H3Es,a∼dπt min{σt(s, a), 1}+ 2Hεstat

Now sum over t, and denote Eπt as the conditional expectation conditioned on the history from
iteration 0 to t− 1, we get:

T−1∑
t=0

[
V πt − V π

e
]
≤ 6H2

T−1∑
t=0

Eπt

[
H−1∑
h=0

min{σt(sth, ath), 1}

]
+ 2HTεstat

≤ 6H2
T−1∑
t=0

√H
√√√√Eπt

H−1∑
h=0

min{σ2
t (sth, a

t
h), 1}

+ 2HTεstat,

where in the last inequality we use E[a>b] ≤
√

E[‖a‖22]E[‖b‖22].

Recall that πt are random quantities, add expectation on both sides of the above inequality, and
consider the case where E holds and E holds, we have:

E

[
T−1∑
t=0

(
V πt − V π

e
)]
≤ 6H2.5E

T−1∑
t=0

√√√√Eπt
H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

+ 2HTεstat + P(E)TH

≤ 6H2.5

√T
√√√√E

[
T−1∑
t=0

H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

]+ 2HTεstat + 2δTH,

where in the last inequality, we use E[a>b] ≤
√

E[‖a‖22]E[‖b‖22]. This implies that that:

E
[
min
t
V πt − V π

e
]
≤ 6H2.5

√
T

√√√√max
Alg

EAlg

[
T−1∑
t=0

H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

]
+ 2Hεstats + 2Hδ.

Set δ = 1/(HT ), we get:

E
[
V π − V π

e
]
≤ 6H2.5

√
T

√√√√max
Alg

EAlg

[
T−1∑
t=0

H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

]
+ 2H

√
ln(T 3H|F|)

N
+

2

T

where Alg is any adaptive mapping that maps from history from t = 0 to the end of the t− 1 iteration
to to some policy πt. This concludes the proof.

Below we discuss special cases.

A.1 Discrete MDPs

Proposition 10 (Discrete MDP Bonus). With δ ∈ (0, 1). With probability at least 1− δ, for all t ∈ N,
we have: ∥∥∥P̂t(·|s, a)− P ?(·|s, a)

∥∥∥
1
≤ min

{√
S ln(t2SA/δ)

Nt(s, a)
, 2

}
.

Proof. The proof simply uses the concentration result for P̂t under the `1 norm. For a fixed t and
s, a pair, using Lemma 6.2 in [2], we have that with probability at least 1− δ,∥∥∥P̂t(·|s, a)− P ?(·|s, a)

∥∥∥
1
≤

√
S ln(1/δ)

Nt(s, a)
.

19



Applying union bound over all iterations and all s, a pairs, we conclude the proof.

What left is to bound the information gain I for the tabular case. For this, we can simply use the
Proposition 13 that we develop in the next section for KNR. This is because in KNR, when we set
the feature mapping φ(s, a) ∈ R|S||A| to be a one-hot vector with zero everywhere except one in the
entry corresponding to (s, a) pair, the information gain in KNR is reduced to the information gain in
the tabular model.
Proposition 11 (Information Gain in discrete MDPs). We have:

IT = O
(
HS2A · ln(TSA/δ) ln(1 + TH)

)
.

Proof. Using Lemma B.6 in [25], we have:

T−1∑
t=0

min

{
H−1∑
h=0

1

Nt(sth, a
t
h)
, 1

}
≤ 2SA ln (1 + TH) .

Now using the definition of information gain, we have:

IT =

T−1∑
t=0

H−1∑
h=0

min
{
σ2
t (sth, a

t
h), 1

}
≤ S ln(T 2SA/δ)H

T−1∑
t=0

min

{
H−1∑
h=0

1

Nt(sth, a
t
h)
, 1

}
≤ 2HS2A ln(T 2SA/δ) ln(1 + TH)

This concludes the proof.

A.2 KNRs

Recall the KNR setting from Example 2. The following proposition shows that the bonus designed in
Example 2 is valid.
Proposition 12 (KNR Bonus). Fix δ ∈ (0, 1). With probability at least 1− δ, for all t ∈ N, we have:∥∥∥P̂t(·|s, a)− P ?(·|s, a)

∥∥∥
1
≤ min

{
βt
σ
‖φ(s, a)‖Σ−1

t
, 2

}
,∀s, a,

where βt =
√

2λ‖W ?‖22 + 8σ2 (ds ln(5) + 2 ln(t2/δ) + ln(4) + ln (det(Σt)/ det(λI))).

Proof. The proof directly follows the confidence ball construction and proof from [25]. Specifically,
from Lemma B.5 in [25], we have that with probability at least 1− δ, for all t:∥∥∥(Ŵt −W ?

)
(Σt)

1/2
∥∥∥2

2
≤ β2

t .

Thus, with Lemma 19, we have:∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ 1

σ

∥∥∥(Ŵt −W ?)φ(s, a)
∥∥∥

2
≤
∥∥∥(Ŵt −W ?)(Σt)

1/2
∥∥∥ ‖φ(s, a)‖Σ−1

t
/σ ≤ βt

σ
‖φ(s, a)‖Σ−1

t
.

This concludes the proof.

The following proposition bounds the information gain quantity.
Proposition 13 (Information Gain on KNRs). For simplicity, let us assume φ : S × A 7→ Rd, i.e.,
φ(s, a) is a d-dim feature vector. In this case, we will have:

IT = O
(
H
(
d ln(T 2/δ) + dds + d2 ln

(
1 + ‖W ?‖22TH/σ2

))
ln
(
1 + ‖W ?‖22TH/σ2

))
.

Proof. From the previous proposition, we know that σ2
t (s, a) = (β2

t /σ
2)‖φ(s, a)‖2

Σ−1
t

. Set-

ting λ = σ2/‖W ?‖22, we will have β2
t /σ

2 ≥ 1, which means that min{σ2
t (s, a), 1} ≤

(β2
t /σ

2) min
{
‖φ(s, a)‖2Σ−1

t
, 1
}

.

20



Note that βt is non-decreasing with respect to t, so βt ≤ βT for T ≥ t, where

βT =
√

2σ2 + 8σ2(ds ln(5) + 2 ln(T 2/δ) + ln(4) + d ln(1 + TH‖W ?‖22/σ2))

Also we have
∑T−1
t=0

∑H−1
h=0 min

{
‖φ(sth, a

t
h)‖2

Σ−1
t

, 1
}
≤ H

∑T−1
t=0 min

{∑H−1
h=0 ‖φ(sth, a

t
h)‖2

Σ−1
t

, 1
}

,

since min{a1, b1}+ min{a2, b2} ≤ min{a1 + a2, b1 + b2}. Now call Lemma B.6 in [25], we have:

T−1∑
t=0

min

{
H−1∑
h=0

‖φ(sth, a
t
h)‖2

Σ−1
t
, 1

}
≤ 2 ln (det(ΣT )/ det(λI)) = 2d ln

(
1 + TH‖W ?‖22/σ2

)
.

(4)

Finally recall the definition of IT , we have:

IT =

T−1∑
t=0

H−1∑
h=0

min
{
σ2
t (sth, a

t
h), 1

}
≤ β2

T

σ2

T−1∑
t=0

H−1∑
h=0

min
{
‖φ(sth, a

t
h)‖2

Σ−1
t
, 1
}
≤ β2

T

σ2
2Hd ln(1 + ‖W ?‖22TH/σ2)

≤ 2Hd
(
2 + 8

(
ds ln(5) + 2 ln(T 2/δ) + ln(4) + d ln

(
1 + ‖W ?‖22TH/σ2

)))
ln
(
1 + ‖W ?‖22TH/σ2

)
= H

(
4d+ 32dds + 32d ln(T 2/δ) + 32d+ 2d2 ln

(
1 + ‖W ?‖22TH/σ2

))
ln
(
1 + ‖W ?‖22TH/σ2

)
,

which concludes the proof.

Extension to Infinite Dimensional RKHS When φ : S × A 7→ H where H is some infinite
dimensional RKHS, we can bound our regret using the following intrinsic dimension:

d̃ = max
{{sth,a

t
h}
H−1
h=0 }

T−1
t=0

ln

(
I +

1

λ

T−1∑
t=0

H−1∑
h=0

φ(sth, a
t
h)φ(sth, a

t
h)>

)
.

In this case, recall Proposition 12, we have:

βt ≤ βT ≤
√

2λ‖W ?‖22 + 8σ2 (ds ln(5) + 2 ln(t2/δ) + ln(4) + ln (det(ΣT )/ det(λI)))

≤
√

2λ‖W ?‖22 + 8σ2
(
ds ln(5) + 2 ln(t2/δ) + ln(4) + d̃

)
.

Also recall Eq. (4), we have:

T−1∑
t=0

min

{
H−1∑
h=0

‖φ(sth, a
t
h)‖2

Σ−1
t
, 1

}
≤ 2 ln (det(ΣT )/det(λI)) ≤ 2d̃.

Combine the above two, following similar derivation we had for finite dimensional setting, we have:

IT = Õ
(
Hd̃2 +Hd̃ds

)
.

A.3 General Function Class G with Bounded Eluder dimension

Proposition 14. Fix δ ∈ (0, 1). Consider a general function class G where G is discrete, and
supg∈G,s,a ‖g(s, a)‖2 ≤ G. At iteration t, denote ĝt ∈ argming∈G

∑t−1
i=0

∑H−1
h=0 ‖g(sih, a

i
h) −

sih+1‖22, and denote a version space Gt as:

Gt =

{
g ∈ G :

t−1∑
i=0

H−1∑
h=0

∥∥g(sih, a
i
h)− ĝt(sih, aih)

∥∥2

2
≤ ct

}
, with ct = 2σ2G2ln(2t2|G|/δ).

The with probability at least 1− δ, we have that for all t, and all s, a:∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ min

{
1

σ
max

g1∈Gt,g2∈Gt
‖g1(s, a)− g2(s, a)‖2 , 2

}
.

21



Proof. Consider a fixed function g ∈ G. Let us denote zth =
∥∥g(sth, a

t
h)− sth+1

∥∥2

2
−∥∥g?(sth, ath)− sth+1

∥∥2

2
. We have:

zth =
(
g(sth, a

t
h)− g?(sth, ath)

)> (
g(sth, a

t
h) + g?(sth, a

t
h)− 2g?(sth, a

t
h)− 2εth

)
=
∥∥g(sth, a

t
h)− g?(sth, ath)

∥∥2

2
− 2(g(sth, a

t
h)− g?(sth, ath))>εth.

Since εth ∼ N (0, σ2I), we must have:

2(g(sth, a
t
h)− g?(sth, ath))>εth ∼ N (0, 4σ2

∥∥g(sth, a
t
h)− g?(sth, ath)

∥∥2

2
)

Since supg,s,a ‖g(s, a)‖2 ≤ G, then 2(g(sth, a
t
h)− g?(sth, ath))>εth is a 2σG sub-Gaussian random

variable.

Call Lemma 3 in [52], we have that with probability at least 1− δ:∑
t

∑
h

∥∥g(sth, a
t
h)− sth+1

∥∥2

2
≥
∑
t

∑
h

∥∥g?(sth, ath)− sth+1

∥∥2

2
+ 2

∑
t

∑
h

∥∥g(sth, a
t
h)− g?(sth, ath)

∥∥2

2
− 4σ2G2 ln(1/δ).

Note that the above can also be derived directly using Azuma-Bernstein’s inequality and the property
of square loss. With a union bound over all g ∈ G, we have that with probability at least 1− δ, for all
g ∈ G.∑
t

∑
h

∥∥g(sth, a
t
h)− sth+1

∥∥2

2
≥
∑
t

∑
h

∥∥g?(sth, ath)− sth+1

∥∥2

2
+ 2

∑
t

∑
h

∥∥g(sth, a
t
h)− g?(sth, ath)

∥∥2

2
− 4σ2G2 ln(|G|/δ).

Set g = ĝt, and use the fact that gt is the minimizer of
∑
t

∑
h ‖g(sth, a

t
h)− sth+1‖22, we must have:∑

t

∑
h

∥∥ĝt(sth, ath)− g?(sth, ath)
∥∥2

2
≤ 2σ2G2ln(2t2|G|/δ).

Namely we prove that our version space Gt contains g? for all t. Thus, we have:∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ 1

σ
‖ĝt(s, a)− g?(s, a)‖2 ≤

1

σ
sup

g1∈Gt,g2∈Gt
‖g1(s, a)− g2(s, a)‖2,

where the last inequality holds since both g? and ĝt belong to the version Gt.

Now we bound the information gain IT below. The proof mainly follows from the proof in [42].
Lemma 15 (Lemma 1 in [42]). Denote βt = 2σ2G2 ln(t2|G|/δ). Let us denote the uncertainty
measure wt;h = supf1,f2∈Gt ‖f1(sth, a

t
h)− f2(sth, a

t
h)‖2 (note that wt;h is non-negative). We have:

t−1∑
i=0

H−1∑
h=0

1{w2
t;h > ε} ≤

(
4βt
ε

+H

)
dE(
√
ε).

Proposition 16 (Bounding IT ). Denote d = dE(1/TH). We have

IT =
(
1/σ2 +HdG2/σ2 + 8G2 ln(T 2|G|/δ)d ln(TH)

)
.

Proof. Note that the uncertainty measures wt;h are non-negative. Let us reorder the sequence
and denote the ordered one as w1 ≥ w2 ≥ w3 · · · ≥ wTH−H . For notational simplicity, denote
M = TH −H We have:

T−1∑
i=0

H−1∑
h=0

w2
t;h =

M−1∑
i=0

w2
i ≤ 1 +

∑
i

w2
i 1{w2

i ≥
1

M
},

where the last inequality comes from the fact that
∑
i w

2
i 1{w2

i < 1/M} ≤M 1
M = 1. Consider any

wt where w2
t ≥ 1/M . In this case, we know that w2

1 ≥ w2
2 ≥ · · · ≥ w2

t ≥ 1/M . This means that:

t ≤
∑
i

∑
h

1{w2
t;h > w2

t } ≤
(

4βT
w2
t

+H

)
dE(
√
wt) ≤

(
4βT
w2
t

+H

)
dE(1/M),

22



where the second inequality uses the lemma above, and the last inequality uses the fact that dE(ε)
is non-decreasing when ε gets smaller. Denote d = dE(1/M). The above inequality indicates that
w2
t ≤

4βT d
t−Hd . This means that for any w2

t ≥ 1/M , we must have w2
t ≤ 4βT d/(t−Hd). Thus, we

have:
T−1∑
i=0

H−1∑
h=0

w2
t;h ≤ 1 +HdG2 +

M∑
τ=Hd+1

w2
τ1{w2

τ ≥ 1/M} ≤ 1 +HdG2 + 4βT d ln(M)

= 1 +HdG2 + 4βT d ln(TH).

Finally, recall the definition of IT , we have:
T−1∑
t=0

H−1∑
h=0

min{σ2
t (sth, a

t
h), 1} ≤

T−1∑
t=0

H−1∑
h=0

σ2
t (sth, a

t
h) ≤ 1

σ2

T−1∑
t=0

H−1∑
h=0

w2
t;h ≤

1

σ2

(
1 +HdG2 + 4βT d ln(TH)

)
.

This concludes the proof.

A.4 Proof of Theorem 7

This section provides the proof of Theorem 7.

First we present the reduction from a bandit optimization problem to ILFO.

Consider a Multi-armed bandit (MAB) problem with A many actions {ai}Ai=1. Each action’s ground
truth reward ri is sampled from a Gaussian with mean µi and variance 1. Without loss of generality,
assume a1 is the optimal arm, i.e., µ1 ≥ µi ∀ i 6= 1. We convert this MAB instance into an MDP.
Specifically, set H = 2. Suppose we have a fixed initial state s0 which has A many actions. For
the one step transition, we have P (·|s0, ai) = N (µi, 1), i.e., g∗(s0, ai) = µi. Here we denote the
optimal expert policy πe as πe(s0) = a1, i.e., expert policy picks the optimal arm in the MAB
instance. Hence, when executing πe, we note that the state s1 generated from πe is simply the
stochastic reward of a1 in the original MAB instance. Assume that we have observed infinitely many
such s1 from the expert policy πe, i.e., we have infinitely many samples of expert state data, i.e.,
N → ∞. Note, however, we do not have the actions taken by the expert (since this is the ILFO
setting). This expert data is equivalent to revealing the optimal arm’s mean reward µ1 to the MAB
learner a priori. Hence solving the ILFO problem on this MDP is no easier than solving the original
MAB instance with additional information which is that optimal arm’s mean reward is µ1 (but the
best arm’s identity is unknown).

Below we show the lower bound for solving the MAB problem where the optimal arm’s mean is
known.
Theorem 17. Consider best arm identification of Gaussian MAB with the additional information
that the optimal arm’s mean reward is µ. For any algorithm, there exists a MAB instance with
number of arms A ≥ 2, such that the expected cumulative regret is still Ω(

√
AT ), i.e., the additional

information does not help improving the worst-case regret bound to solve the MAB instance.

Proof of Theorem 17. Below, we will construct A many MAB instances where each instance has A
many arms and each arm has a Gaussian reward distribution with the fixed variance σ2. Each of
the A instances has the maximum mean reward equal to ∆, i.e., all these A instances have the same
maximum arm mean reward. Consider any algorithm Alg that maps ∆ together with the history
of the interactions Ht = {a0, r0, a1, r1, . . . , at−1, rt−1} to a distribution over A actions. We will
show for any such algorithm alg that knows ∆, with constant probability, there must exist a MAB
instance from the A many MAB instances, such that Alg suffers at least Ω(

√
AT ) regret where T is

the number of iterations.

Now we construct the A instances as follows. Consider the i-th instance (i = 1, . . . , A). For arm j in
the i-th instance, we define its mean as µij = 1{i = j}∆. Namely, for MAB instance i, its arms have
mean reward zero everywhere except that the i-th arm has reward mean ∆. Note that all these MAB
instances have the same maximum mean reward, i.e., ∆. Hence, we cannot distinguish them by just
revealing ∆ to the learner.

We will construct an additional MAB instance (we name it as 0-th MAB instance) whose arms have
reward mean zero. Note that this MAB instance has maximum mean reward 0 which is different from

23



the previous A MAB instances that we constructed. However, we will only look at the regret of Alg
on the previously constructed A MAB instances. I.e., we do not care about the regret of Alg(∆,Ht)
on the 0-th MAB instance.

Let us denote Pi (for i = 0, . . . , A) as the distribution of the outcomes of algorithm Alg(∆,Ht)
interacting with MAB instance i for n iterations, and Ej [Ni(T )] as the expected number of times
arm i is pulled by Alg(∆,Ht) in MAB instance j. Consider MAB instance i with i ≥ 1:

Ei[Ni(T )]− E0[Ni(T )] ≤ T ‖Pi − P0‖1 ≤ T
√

KL(P0,Pi) ≤ T
√

∆2E0[Ni(T )],

where the last step uses the fact that we are running the same algorithm Alg(∆,Ht) on both
instance 0 and instance i (i.e., same policy for generating actions), and thus, KL(P0,Pi) =∑A
j=1 E0[Nj(T )]KL (q0(j), qi(j)) (Lemma 15.1 in [35]), where qi(j) is the reward distribution

of arm j at instance i. Also recall that for instance 0 and instance i, their rewards only differ at arm i.

This implies that:

Ei[Ni(T )] ≤ E0[Ni(T )] + T
√

∆2E0[Ni(T )].

Sum over i = 1, . . . , A on both sides, we have:

A∑
i=1

Ei[Ni(T )] ≤ T + T

A∑
i=1

√
∆2E0[Ni(T )] ≤ T + T

√
A

√√√√ A∑
i=1

∆2E0[Ni(T )]

≤ T + T
√
A
√

∆2T

Now let us calculate the regret of Alg(∆,Ht) on i-th instance, we have:

Ri = T∆− Ei[Ni(T )]∆.

Sum over i = 1, . . . , A, we have:

A∑
i=1

Ri = ∆

(
AT −

A∑
i=1

Ei[Ni(T )]

)
≥ ∆

(
AT − T − T

√
A∆2T

)
Set ∆ = c

√
A/T for some c that we will specify later, we get:

A∑
i=1

Ri ≥ c
√
A

T
(AT − T − cAT ) .

Set c = 1/4, we get:

A∑
i=1

Ri ≥ c
√
A

T
(AT − T − cAT ) ≥ 1

4

√
AT (A− 1−A/4) =

1

4

√
AT (3A/4− 1) ≥ 1

4

√
AT (A/4) ,

assuming A ≥ 2.

Thus there must exist i ∈ {1, . . . , A}, such that:

Ri ≥
1

16

√
AT.

Note that the above construction considered any algorithm Alg(∆,Ht) that maps ∆ and history to
action distributions. Thus it concludes the proof.

The hardness result in Theorem 17 and the reduction from MAB to ILFO together implies the lower
bound for ILFO in Theorem 7, namely solving ILFO with cumulative regret smaller then O(

√
AT )

will contradict the MAB lower bound in Theorem 17.

24



B Auxiliary Lemmas

Lemma 18 (Simulation Lemma). Consider any two functions f : S ×A 7→ [0, 1] and f̂ : S ×A 7→
[0, 1], any two transitions P and P̂ , and any policy π : S 7→ ∆(A). We have:

V πP ;f − V πP̂ ,f̂ =

H−1∑
h=0

Es,a∼dπP
[
f(s, a)− f̂(s, a) + Es′∼P (·|s,a)V

π
P̂ ,f̂ ;h

(s′)− Es′∼P̂ (·|s,a)V
π
P̂ ,f̂ ;h

(s′)
]

≤
H−1∑
h=0

Es,a∼dπP
[
f(s, a)− f̂(s, a) + ‖V π

P̂ ,f̂ ;h
‖∞‖P (·|s, a)− P̂ (·|s, a)‖1

]
.

where V πP,f ;h denotes the value function at time step h, under π, P, f .

Such simulation lemma is standard in model-based RL literature and can be found, for instance, in
the proof of Lemma 10 from [58].

Lemma 19. Consider two Gaussian distribution P1 := N (µ1, σ
2I) and P2 := N (µ2, σ

2I). We
have:

‖P1 − P2‖1 ≤
1

σ
‖µ1 − µ2‖2 .

The above lemma can be proved by Pinsker’s inequality and the closed-form of the KL divergence
between P1 and P2.

C Implementation Details

C.1 Environment Setup and Benchmarks

This section sketches the details of how we setup the environments. We utilize the standard envi-
ronment horizon of 500, 50, 200 for Cartpole-v1, Reacher-v2, Cartpole-v0. For Swimmer-v2,
Hopper-v2 and Walker2d-v2, we work with the environment horizon set to 400 [33, 39, 38, 48, 32].
Furthermore, for Hopper-v2, Walker2d-v2, we add the velocity of the center of mass to the
state parameterization [48, 38, 32]. As noted in the main text, the expert policy is trained us-
ing NPG/TRPO [26, 54] until it hits a value of (approximately) 460,−10, 38, 3000, 2000, 170 for
Cartpole-v1, Reacher-v2, Swimmer-v2, Hopper-v2, Walker2d-v2, Cartpole-v0 respectively.
Furthermore, for Walker2d-v2 we utilized pairs of states (s, s′) for defining the feature representa-
tion used for parameterizing the discriminator. All the results presented in the experiments section
are averaged over five seeds. Furthermore, in terms of baselines, we compare MobILE to BC, BC-O,
ILPO, GAIL and GAIFO. Note that BC/GAIL has access to expert actions whereas our algorithm
does not have access to the expert actions. We report the average of the best performance offered
by BC/BC-O when run with five seeds, even if this occurs at different epochs for each of the runs -
this gives an upper hand to BC/BC-O. Moreover, note that for BC, we run the supervised learning
algorithm for 500 passes. Furthermore, we run BC-O/GAIL with same number of online samples
as MobILE in order to present our results. Furthermore, we used 2 CPUs with 16-32 GB of RAM
usage to perform all our benchmarking runs implemented in Pytorch. Finally, our codebase utilizes
Open-AI’s implementation of TRPO [15] for environments with discrete actions, and the MJRL
repository [47] for working with continuous action environments. With regards to results in the
main paper, our bar graph presenting normalized results was obtained by dividing every algorithm’s
performance (mean/standard deviation) by the expert mean; for Reacher-v2 because the rewards
themselves are negative, we first added a constant offset to make all the algorithm’s performance to
become positive, then, divided by the mean of expert policy.

C.2 Practical Implementation of MobILE

We will begin with presenting the implementation details of MobILE (refer to Algorithm 2):

25



Algorithm 2 MobILE: Model-based Imitation Learning and Exploring for ILFO (used in practical
implementation)

1: Require: Expert Dataset De, Access to dynamics of the true environment i.e. P ?.
2: Initialize Policy π0, Discriminator w0, Replay Buffer of pre-determined sizeD, Dynamics Model
P̂−1, Bonus b−1.

3: for t = 0, · · · , T − 1 do
4: Online Interaction: Execute πt in true environment P ? to get samples St.
5: Update replay buffer: D = Replay-Buffer-Update(D,St) (refer to section C.2.2).
6: Update dynamics model: Obtain P̂t by starting at P̂t−1 and update using replay buffer D

(refer to section C.2.1).
7: Bonus Update: Update bonus bt : S ×A → R+ using replay bufferD (refer to section C.2.3).

8: Discriminator Update: Update discriminator as wt ← arg maxw L(w;πt, P̂t, bt,De) (refer
to section C.2.4).

9: Policy Update: Perform incremental policy update through approximate minimization of
L(·),

i.e.: πt ← arg minπ L(π;wt, P̂t, bt,De) by running KPG steps of TRPO
(refer to section C.2.5).

10: end for
11: Return πT .

C.2.1 Dynamics Model Training

As detailed in the main paper, we utilize a class of Gaussian Dynamics Models parameterized by
an MLP [48], i.e. P̂ (s, a) := N (hθ(s, a), σ2I), where, hθ(s, a) = s+ σ∆s ·MLPθ(sc, ac), where,
θ are MLP’s trainable parameters, sc = (s − µs)/σs, ac = (a − µa)/σa with µs, µa (and σs, σa)
being the mean of states, actions (and standard deviation of states and actions) in the replay buffer D.
Note that we predict normalized state differences instead of the next state directly.

In practice, we fine tune our estimate of dynamics models based on the new contents of the replay
buffer as opposed to re-training the models from scratch, which is computationally more expensive.
In particular, we start from the estimate P̂t−1 in the t − 1 epoch and perform multiple updates
gradient updates using the contents of the replay buffer D. We utilize constant stepsize SGD
with momentum [60] for updating our dynamics models. Since the distribution of (s, a, s′) pairs
continually drift as the algorithm progresses (for instance, because we observe a new state), we utilize
gradient clipping to ensure our model does not diverge due to the aggressive nature of our updates.

C.2.2 Replay Buffer

Since we perform incremental training of our dynamics model, we utilize a replay buffer of a fixed
size rather than training our dynamics model on all previously collected online (s, a, s′) samples.
Note that the replay buffer could contain data from all prior online interactions should we re-train our
dynamics model from scratch at every epoch.

C.2.3 Design of Bonus Function

We utilize an ensemble of two transition dynamics models incrementally learned using the contents
of the replay buffer. Specifically, given the models hθ1(·) and hθ2(·), we compute the discrepancy as:
δ(s, a) = ||hθ1(s, a)− hθ2(s, a)||2. Moreover, given a replay buffer D, we compute the maximum
discrepancy as δD = max(s,a,s′)∼D δ(s, a). We then set the bonus as b(s, a) = min (1, δ(s, a)/δD) ·
λ, thus ensuring the magnitude of our bonus remains bounded between [0, λ] roughly.

C.2.4 Discriminator Update

Recall that fw(s) = w>ψ(s), where w are the parameters of the discriminator. Given a policy π, the
update for the parameters w take the following form:

max
w:||w||22≤ζ

L(w;π, P̂ , b,De) := E(s,a)∼dπ
P̂

[fw(s)− b(s, a)]− Es∼De [fw(s)]

26



≡ max
w

Lζ(w;π, P̂ , b,De) = E(s,a)∼dπ
P̂

[fw(s)− b(s, a)]− Es∼De [fw(s)]− 1

2
·
(
||w||22 − ζ

)
,

=⇒ ∂wLζ(w;π, P̂ , b,De) = Es∼dπ
P̂

[ψ(s)]− Es∼De [ψ(s)]− w ∈ 0,

where, ∂wLζ(w;π, P̂ , b,De) denotes the sub-differential of Lζ(·) wrt w. This in particular implies
the following:

1. Exact Update: w∗ = PB(ζ)

(
Es∼dπ

P̂
[ψ(s)]− Es∼De [ψ(s)]

)
, P· is the projection operator,

and B(ζ) is the ζ−norm ball.

2. Gradient Ascent Update: wt+1 = PB(ζ)

(
(1− ηw)wt + ηw ·

(
Es∼dπ

P̂
[ψ(s)]− Es∼De [ψ(s)]

))
,

ηw > 0 is the step-size.

We found empirically either of the updates to work reasonably well. In the Swimmer-v2 task, we
use the gradient ascent update with ηw = 0.67, and, in the other tasks, we utilize the exact update.
Furthermore, we empirically observe the gradient ascent update to yield more stability compared to
the exact updates. In the case of Walker2d-v2, we found it useful to parameterize the discriminator
based on pairs of states (s, s′).

C.2.5 Model-Based Policy Update

Once the maximization of the discriminator parameters w is performed, consider the policy optimiza-
tion problem, i.e.,

min
π
L(π;w, P̂ , b,De) := E(s,a)∼dπ

P̂
[fw(s)− b(s, a)]− Es∼De [fw(s)]

≡ min
π
L(π;w, P̂ , b,De) = E(s,a)∼dπ

P̂
[fw(s)− b(s, a)]

Hence we perform model-based policy optimization under P̂ and cost function fw(s)− b(s, a). In
practice, we perform approximate minimization of L(·) by incrementally updating the policy using
KPG-steps of policy gradient, where, KPG is a tunable hyper-parameter. In our experiments, we
find that setting KPG to be around 10 to generally be a reasonable choice (for precise values, refer to
Table 2). This paper utilizes TRPO [54] as our choice of policy gradient method; note that this can be
replaced by other alternatives including PPO [55], SAC [20] etc. Similar to practical implementations
of existing policy gradient methods, we implement a reward filter by clipping the IPM reward f(s)
by truncating it between cmin and cmax as this leads to stability of the policy gradient updates. Note
that the minimization is done with access to P̂ , which implies we perform model-based planning.
Empirically, for purposes of tuning the exploration-imitation parameter λ, we minimize a surrogate
namely: E(s,a)∼dπ

P̂
[(1− λ) · fw(s)− b(s, a)] (recall that b(s, a) has a factor of λ associated with it).

This ensures that we can precisely control the magnitude of the bonuses against the IPM costs, which,
in our experience is empirically easier to work with.

C.3 Hyper-parameter Details

This section presents an overview of the list of hyper-parameters necessary to implement Algorithm 1
in practice, as described in Algorithm 2. The list of hyper-parameters is precisely listed out in Table 2.
The hyper-parameters are broadly categorized into ones corresponding to various components of
MobILE, namely, (a) environment specifications, (b) dynamics model, (c) ensemble based bonus,
(d) IPM parameterization, (e) Policy parameterization, (f) Planning algorithm parameters, (g) Critic
parameterization. Note that if there a hyper-parameter that has not been listed, for instance, say, the
value of momentum for the ADAM optimizer in the critic, this has been left as is the default value
defined in Pytorch.

D Additional Experimental Results

D.1 Modified Cartpole-v0 environment with noise added to transition dynamics

27



Parameter Cartpole-v1 Reacher-v2 Swimmer-v2 Cartpole-v0 Hopper-v2 Walker2d-v2

Environment Specifications
Horizon H 500 50 400 200 400 400
Expert Performance (≈) 460 −10 38 181 3000 2000
# online samples per outer loop 2 ·H 2 ·H 2 ·H 2 ·H 8 ·H 3 ·H
Dynamics Model
Architecture/Non-linearity MLP(64, 64)/ReLU MLP(64, 64)/ReLU MLP(512, 512)/ReLU MLP(64, 64)/ReLU MLP(512, 512)/ReLU MLP(512, 512)/ReLU
Optimizer(LR, Momentum, Batch Size) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256)
# train passes per outer loop 20 100 100 20 50 200
Grad Clipping 2.0 2.0 1.0 2.0 4.0 1.0
Replay Buffer Size 10 ·H 10 ·H 10 ·H 10 ·H 16 ·H 15 ·H
Ensemble based bonus
# models/bonus range 2/[0, 1] 2/[0, 1] 2/[0, 1] 2/[0, 1] 2/[0, 1] 2/[0, 1]

IPM parameters
Step size for w update (ηw) Exact Exact 0.33 Exact Exact Exact
# RFFs/BW Heuristic 128/0.1 quantile 128 / 0.1 quantile 128 / 0.1 quantile 128 / 0.1 quantile 128 / 0.1 quantile 128 / 0.1 quantile

Policy parameterization
Architecture/Non-linearity MLP(64, 64)/TanH MLP(64, 64)/TanH MLP(64, 64)/TanH MLP(32, 32)/TanH MLP(32, 32)/TanH MLP(32, 32)/TanH
Policy Constraints None None None None log σmin = −1.0 log σmin = −2.0

Planning Algorithm
# model samples per TRPO step 2 ·H 10 ·H 4 ·H 4 ·H 8 ·H 20 ·H
# TRPO steps per outer loop (KPG) 3 10 20 5 10 15

TRPO Parameters
(CG iters, dampening, kl, gaeλ, γ)

(50, 0.001, 0.01,
0.97, 0.995)

(100, 0.001, 0.01,
0.97, 0.995)

(100, 0.001, 0.01,
0.97, 0.995)

(100, 0.001, 0.01,
0.97, 0.995)

(10, 0.0001, 0.025,
0.97, 0.995)

(10, 0.0001, 0.025,
0.97, 0.995)

Critic parameterization
Architecture/Non-linearity MLP(128, 128)/ReLU MLP(128, 128)/ReLU MLP(128, 128)/ReLU MLP(32, 32)/ReLU MLP(128, 128)/ReLU MLP(128, 128)/ReLU

Optimizer
(LR, Batch Size, ε, Regularization) Adam(0.001, 64, 1e− 5, 0) Adam(0.001, 64, 1e− 5, 0) Adam(0.001, 64, 1e− 5, 0) Adam(0.001, 64, 1e− 5, 0) Adam(0.001, 64, 1e− 8, 1e− 3) Adam(0.001, 64, 1e− 8, 1e− 3)

# train passes per TRPO update 1 1 1 1 2 2

Table 2: List of various Hyper-parameters employed in MobILE’s implementation.

1 2 3 4
Online Samples 1e4

0

50

100

150

200

R
et

ur
n 

(V
al

ue
)

CartPole-v0 (stochastic)

BC
Expert
GAIL
BC-O

MobILE (Ours)
GAIFO
ILPO

Figure 4: Learning curves for
Cartpole-v0 with stochastic dy-
namics with 20 expert trajectories
comparing MobILE with BC, BC-O,
GAIL, GAIFO and ILPO.

We consider a stochastic variant of Cartpole-v0,
wherein, we add additive Gaussian noise of variance un-
known to the learner in order to make the transition dy-
namics of the environment to be stochastic. Specifically,
we train an expert of value ≈ 170 in Cartpole-v0
with stochastic dynamics using TRPO. Now, using 20
trajectories drawn from this expert, we wish to con-
sider solving the ILFO problem using MobILE as well
as other baselines including BC, BC-O, ILPO, GAIL and
GAIFO. Figure 4 presents the result of this comparison.
Note that MobILE compares favorably against other base-
line methods - in particular, BC tends suffer in environ-
ments like Cartpole-v0 with stochastic dynamics be-
cause of increased generalization error of the supervised
learning algorithm used for learning a policy. Our algo-
rithm is competitive with both BC-O, GAIL, GAIFO and
ILPO. Note that BC-O tends to outperform BC both in
Cartpole-v1 and in Cartpole-v0 (with stochastic dy-
namics).

D.2 Swimmer Learning Curves

We supplement the learning curves for Swimmer-v2 (with 40 expert trajectories) with the learning
curves for Swimmer-v2 with 10 expert trajectories in figure 5. As can be seen, MobILE outperforms
baseline algorithms such as BC, BC-O, ILPO, GAIL and GAIFO in Swimmer-v2 with both 40 and
10 expert trajectories. The caveat is that for 10 expert trajectories, all algorithms tend to show a lot
more variance in their behavior and this reduces as we move to the 40 expert trajectory case.

0.5 1.0
Online Samples 1e5

0

20

40

R
et

ur
n 

(V
al

ue
) 40 trajectories

BC
Expert
GAIL
BC-O

MobILE (Ours)
GAIFO
ILPO

0.5 1.0
Online Samples 1e5

0

20

40
10 trajectories

Figure 5: Learning curves for Swimmer-v2 with 40 (left) and 10 (right) expert trajectories comparing
MobILE with BC, BC-O, ILPO, GAIL and GAIFO. MobILE continues to perform well relative to all
other benchmarks with both 10 and 40 expert trajectories. The variance of the algorithm as well as
the benchmarks is notably higher with lesser number of expert trajectories.

28



D.3 Additional Results

1 2 3 4 5
Online Samples 1e4

0

100

200

300

400

500

600

R
et

ur
n 

(V
al

ue
)

CartPole-v1 (10 traj.)

BC
Expert
GAIL
GAIFO

ILPO
BC-O
MobILE (Ours)

0.5 1.0 1.5
Online Samples 1e4

40

30

20

10

R
et

ur
n 

(V
al

ue
)

Reacher-v2 (10 traj.)

0.2 0.4 0.6 0.8 1.0
Online Samples 1e5

0

10

20

30

40

50

R
et

ur
n 

(V
al

ue
)

Swimmer-v2 (40 traj.)

0.5 1.0 1.5
Online Samples 1e6

0

1000

2000

3000

R
et

ur
n 

(V
al

ue
)

Hopper-v2 (10 traj.)

0.25 0.50 0.75 1.00 1.25
Online Samples 1e6

0

500

1000

1500

2000

2500

R
et

ur
n 

(V
al

ue
)

Walker2d-v2 (10 traj.)

Figure 6: Learning curves tracking the running maximum averaged across seeds comparing
MobILE against BC, BC-O, ILPO, GAIL and GAIFO. MobILE tends to reach expert performance
consistently and in a more sample efficient manner.
In this section, we give another view of our results for MobILE compared against the baselines
(BC/BC-O/ILPO/GAIL/GAIFO) by tracking the running maximum of each policy’s value averaged
across seeds. Specifically, for every iteration t, we plot the best policy performance obtained by
the algorithm so far averaged across seeds (note that this quantity is monotonic, since the best
policy obtained so far can never be worse at a later point of time when running the algorithm).
For BC/BC-O/ILPO, we present a simplified view by picking the best policy obtained through the
course of running the algorithm and averaging it across seeds (so the curves are flat lines). As
figure 6 shows, MobILE reliably hits expert performance faster than GAIL and GAIFO while often
matching/outperforming ILPO/BC/BC-O.

D.4 Ablation Study on Number of Models used for Strategic Exploration Bonus

In this experiment, we present an ablation study on using more number of models in the ensemble for
setting the strategic exploration bonus. Figure 7 suggests that even utilizing two models for purposes
of setting the bonus is effective from a practical perspective.

1 2 3 4 5
# Online Samples 1e4

0

100

200

300

400

500

R
et

ur
n 

(V
al

ue
)

CartPole-v1 (5 traj.)

Expert
2 Models
4 models
8 models

Figure 7: Learning curves for Cartpole-v1 with varying number of dynamics models for assigning
bonuses for strategic exploration.

29


	Introduction
	Related Works

	Setting
	Function Approximation Setup

	Algorithm
	Components of MobILE
	Exploration And Imitation Tradeoff

	Analysis
	Regret Bound
	Exploration in ILFO and the Exponential Gap between IL and ILFO

	Practical Instantiation of MobILE
	Experiments
	Benchmarking MobILE on MuJoCo suite
	Importance of the optimistic MDP construction
	Varying Number of Expert Samples

	Conclusions
	Analysis of Algorithm 1
	Discrete MDPs
	KNRs
	General Function Class G with Bounded Eluder dimension
	Proof of Theorem 7

	Auxiliary Lemmas
	Implementation Details
	Environment Setup and Benchmarks
	Practical Implementation of MobILE
	Dynamics Model Training
	Replay Buffer
	Design of Bonus Function
	Discriminator Update
	Model-Based Policy Update

	Hyper-parameter Details

	Additional Experimental Results
	Modified Cartpole-v0 environment with noise added to transition dynamics
	Swimmer Learning Curves
	Additional Results
	Ablation Study on Number of Models used for Strategic Exploration Bonus


