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Abstract

Insect-borne diseases kill >0.5 million people annually. Currently available re-1

pellents for personal or household protection are limited in their efficacy, appli-2

cability, and safety profile. Here, we describe a machine-learning-driven high-3

throughput method for the discovery of novel repellent molecules. To achieve4

this, we digitized a large, historic dataset containing 19,000 mosquito repellency5

measurements. We then trained a graph neural network (GNN) to map molecular6

structure and repellency. We applied this model to select 317 candidate molecules7

to test in parallelizable behavioral assays, quantifying repellency in multiple pest8

species and in follow-up trials with human volunteers. The GNN approach out-9

performed a chemoinformatic model and produced a hit rate that increased with10

training data size, suggesting that both model innovation and novel data collection11

were integral to predictive accuracy. We identified >10 molecules with repellency12

similar to or greater than the most widely used repellents. This approach enables13

computational screening of billions of possible molecules to identify empirically14

tractable numbers of candidate repellents, leading to accelerated progress towards15

solving a global health challenge.16

1 Introduction17

Mosquitos and other blood-sucking arthropods carry and transmit diseases that kill hundreds of thou-18

sands of people each yearSimmons et al. [2012], noa [a]. To make continued progress on this global19

health issue, we must discover, manufacture, and deploy more efficient molecules for pest control20

across a variety of application spaces collectively termed vector control; this includes molecules21

that affect life history traits, such as insecticides, and molecules that affect host-seeking behavior,22

e.g. topical repellents for personal protection and spatial repellents applied to a home or room.23

The commonly used repellents DEET (N,N-diethyl-meta-toluamide) and IR3535 (Ethyl butylacety-24

laminopropionate) are not very potent, and high concentrations must be used in topical applications.25

Furthermore, they have undesirable properties and/or safety profiles; for example, DEET is a plasti-26

cizer, precluding its use on synthetic clothing or shelter surfaces, and it is toxic to some vertebrate27

wildlifenoa [b]. Some commonly used repellents are species-specific; for example IR3535 is ef-28

fective against Aedes aegypti but is ineffective against Anopheles mosquitoes and is therefore not29

recommended for use in malaria-endemic regions. Over the past few decades, only a few dozen new30

repellent molecule candidates have been found and very few have reached the market; an approach31

to rapidly discover and validate large numbers of new candidates is desperately needed.32

Multiple strategies exist for identifying insect repellent candidates. Behavioral assays seek to di-33

rectly test repellent activity in realistic conditions. Recognizing the devastating effect of insect-borne34

diseases (including dengue fever) faced by the United States Army during the second world war, the35

U.S. Department of Agriculture (USDA) tested 30,000 molecules for their effectiveness as repellents36
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and insects on mosquitos, ticks, and other insect speciesFA Morton, BV Travis, JP Linduska [1947],37

Travis et al. [1949]. In particular, 14,000 molecules were tested for their effectiveness as mosquito38

(A. aegypti and A. quadrimaculatus) repellents using human volunteers; this effort led to the discov-39

ery of DEET. Structure-targeted modeling of the obligatory insect olfactory co-receptor Orco led to40

discovery of picaridinBoeckh et al. [1996] and VUAA1Jones et al. [2011]. Scaffold-hopping tech-41

niquesSun et al. [2012] can focus the molecular search space, and in combination with arm-in-cage42

testing, led to the discovery of IR3535Klier and Kuhlow [1976] and DEPAKalyanasundaram [1982].43

Chemoreceptor studies exploit the molecular mechanism of action: DEET and IR3535 modulate44

the activity of G-protein coupled receptors, including odorant and gustatory receptorsDickens and45

Bohbot [2013], Ditzen et al. [2008] but may also affect cholinergic signalingAbd-Ella et al. [2015],46

Moreau et al. [2020]. The exact molecular details of their mode of action are not fully understood,47

and may be very species-specific (Afify and Potter, 2020). It is difficult to more broadly and system-48

atically explore molecular space using each of these approaches, as they can be labor-intensive.49

The USDA dataset represents a wealth of information on the relationship between molecular struc-50

ture and arthropod behavior. Small parts of this dataset have been used previously to train compu-51

tational models of mosquito repellencyWright [1956], Katritzky et al. [2008], Bernier and Tsikolia52

[2011], typically on specific structural families of molecules. Katritzky et al.Katritzky et al. [2010]53

used an artificial neural network model trained on 167 carboxamides and found 1 carboxamide can-54

didate with high repellency activity. As modern deep learning models show performance which55

scales in proportion to the volume of their training dataGwern, we hypothesized that exploiting56

the full size of the USDA dataset would provide a strong starting point for a new deep learning57

model. We selected a graph neural network architecture (GNN), as GNNs have been shown to have58

superior performance to computable chemoinformatics descriptors in predicting the properties of a59

molecule from its chemical structure, given a sufficiently large datasetWu et al. [2018], Duvenaud60

et al. [2015a]. Notably, previous work demonstrated that a GNN-based human odor model outper-61

forms standard cheminformatics models even on insect behavior datasets.Wright [1956], Katritzky62

et al. [2008], Bernier and Tsikolia [2011]63

Here we present a data-driven workflow for the discovery and validation of novel molecules for64

behavioral modification in arthropods. The critical components underlying the success of this ap-65

proach are 1) expanded training data made possible by a complete digitization of the USDA dataset;66

2) high-quality validation data using a parallelizable membrane-feeding assay that does not require67

human volunteers; and 3) a graph neural network model to learn the relationship between molecular68

structure and these data. We iteratively use this model to propose candidates from a purchasable69

chemical library, validate these candidates for repellency, and use these results to expand the train-70

ing dataset and therefore improve the predictive accuracy of the behavior model (Figure 1). Through71

this process we have discovered a chemically diverse set of molecules with effectiveness equal to or72

greater than DEET, unlocking new potential capabilities in vector control.73

2 Results74

2.1 Digitizing a rich historical dataset75

The USDA dataset is unmatched in size and scope, but for decades existed only in print. Google76

Books scanned and made available the original work onlineFA Morton, BV Travis, JP Linduska77

[1947], and for this work we subsequently converted it into a machine-readable format. After some78

preprocessing to make the dataset easier to read, we employed expert curators to transcribe the full79

records and provide canonical structures for each listed molecule (Fig. 2A, Methods). We then80

focused our analysis on the four mosquito repellency assays contained in this dataset: two mosquito81

species, Aedes aegypti and Anopheles quadrimaculatus; and two repellency contexts, skin and cloth.82

Together these comprise 19,000 labeled data points on repellency of specific molecules (Fig. 2B),83

representing a broad range of structural and functional classes (Fig. 2C). This large dataset served84

as training data for our modeling efforts.85

2.2 Assessment of repellent candidates86

In order to test model predictions and iteratively expand the training data, we adapted a standard87

membrane feeding assay (SMFA), commonly used in malaria researchBoyd [1949], Churcher et al.88

[2012], to evaluate the repellency against Anopheles stephensi mosquitoes. Repellency was eval-89
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Figure 1: Pipeline for active learning of new behavior repellent molecules. A large historical
dataset from the USDA (USDA data) was used to train a graph neural network to generate a fixed
vector representation of any candidate molecule (USDA learned representation, USDALR). To cre-
ate the transfer-learned assay model, molecules are first embedded with the USDA learned represen-
tation and fed to a dense neural network; this assay model is trained on the assay data. A large-scale
in silico molecular screen is applied to select candidate molecules for testing in a membrane feeder
assay for repellency. Resulting data are used to train the assay model. In subsequent iterations, the
assay results are used to improve the transfer-learning model, a form of active learning.

uated by prevention of blood feeding relative to a vehicle (ethanol) control (Fig. 2D). The assay90

was used to evaluate each molecules potency and duration of effect as exemplified for the reference91

molecule DEET in Fig 2E. We assessed the inherent inter-assay reliability by comparing repellency92

levels for a diverse set of molecules from independent experiments (tested at 25 ţg/cm2, r=0.81, Fig.93

2F). Using a cut-off of 75% repellency as measured 120 min after initial application, selected to94

include widely used repellents (e.g. DEET, dimethyl phthalate, and indalone), approximately 3/4 of95

the molecules classified as active in a first assay were confirmed to be active upon re-testing.96

The USDA dataset was collected 70 years ago using arm-in-cage experiments, involving human97

volunteers, while our assay was conducted with a surrogate target. We evaluated the relationship98

between these two experiments by directly comparing the activity of 38 molecules with their repel-99

lency reported in the USDA dataset. We found considerable concordance between the historical100

USDA dataset and the membrane feeding assays (p<0.01 Mann Whitney U test, Fig. 2G), despite101

differences in experimental setup. However, some disagreement was observed, highlighting the need102

for additional data collection.103

2.3 Modeling mosquito repellency behavior104

Using the USDA dataset, we sought to create a representation of molecules specific to mosquito105

repellency behavior. It has been previously demonstrated that graph neural networks (GNNs) are106

particularly adept at creating task-specific representationsDuvenaud et al. [2015b], Wu et al. [2018],107

and that representational power extends to the domain of olfactionSanchez-Lengeling et al. [2019],108

Qian et al. [2022]. We trained GNN models on the USDA dataset, observing an AUC=0.881 on109

the cloth-Aedes aegypti task, the task with the largest dataset (Methods). We then use the output110

heads from the ensemble models on all four USDA tasks to create the USDA learned representation111

(USDALR, Figure 1).112

We sought to build a model that was specific for the activity behavior in our membrane feeder assay.113

We created an assay model by first using the fixed USDA learned representation to embed input114

molecules, then adding a two layer, 256-node neural network to learn to predict the assay data.115
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Figure 2: Overview of data sources. (A) The USDA dataset scanned into Google Books was digi-
tized and manually curated into a machine-readable table of repellency ratings for each compound
(King, WV 1954). (B) Digitized ratings from USDA dataset used here covered two assay types
and two mosquito species. (C) The USDA dataset covered a diverse range of chemical classes;
shown here is the distribution of some ClassyFire classes (Djoumbou-Feunang et al. 2016). Active
compounds are defined as class 4 or higher. (D) Our validation assay used warmed blood and an
odorant-coated netting; repellency was identified with a decrease in feeding behavior relative to a
control odorant (ethanol). (E) Repellency measured using the assay in (D); 100% indicates total
repellency (no feeding) and 0% matches behavior using the solvent alone. Data points (mean +/- SD
across replicates) show repellency using the indicated concentration of DEET as the odorant. Top:
Repellency of DEET at t=120 min. increases with concentration. Bottom: Repellency decreases
with time after initial application of the odorant (sigmoidal fit). (F) Repellency values are correlated
across independent replications of the assay. Trials 1 and 2 are not necessarily in chronological
order. Test-retest values of DEET are indicated in red. Dotted line indicates positive activity cutoff
at Repellency=0.75 for t=120min. (G) Repellency observed in the assay at t=2 min. at 1% concen-
tration using A. stephensi is concordant with repellency from the USDA dataset using A. aegypti on
cloth. Dotted line represents activity cutoff at Repellency=0.9 for t=2min. for feeder assay. DEETs
activity is represented by a red dot. Raw repellency % for USDA Class 1&2 vs Class 5: p<0.01
(Mann-Whitney U Test); Hit percentage: p<0.05 (Z-test of proportions).

We applied the assay model to make predictions on novel repellent candidate compounds from116

a large library of purchasable molecules provided by the vendor eMoleculeseMolecules. We fil-117

tered this library for desirable qualities such as volatility and low cost, and we further screened out118

molecules which did not pass an inhalation toxicity filter (Methods). From among those compounds119

passing these filters ( 10k molecules), we selected those which had sufficient predicted repellency120

and–to ensure novelty–which were structurally distinct (Tanimoto similarity <0.8) from those in the121

USDA dataset or previous candidate selections. Assay results from each batch of selections were122

added to the assay dataset; for each subsequent batch of selections, the assay model was re-trained123

on the expanded assay dataset. Detailed notes on the specific modeling setup for each batch are124

located in the Supplementary section.125

Over several iterations, a total of 400 molecules were purchased and further screened empirically126

according to a solubility criterion (Methods); those that passed (n=317) were then tested for repel-127

lency with the membrane-feeder assay. Over the course of selections spanning over a year, some128

adjustments were made to both the USDA model and the membrane-feeder assay. In particular,129

our hit definition evolved with our dataset size and model capability: we initially defined a hit as130

90% repellency using a dose of 25 ţg/cm2 as measured at T=2min (1 measurement), but in the fi-131
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nal batch of selections, we changed our definition to 75% repellency as measured at T=120min (3132

measurements).133

2.4 The hit rate improves with training data size134

To evaluate the contribution of the training data to our performance, we retrospectively scored135

high-repellency candidates in two phases: before the USDA dataset was available (pre-USDA)136

and after we began using the USDA dataset to build and deploy the USDA learned representation137

(post-USDA). In the pre-USDA phase, instead of using the USDA learned representation to em-138

bed molecules, we employed an odor-specific representation previously demonstrated to outperform139

standard cheminformatics representations on olfaction related tasksQian et al. [2022]. Further, at140

that time, we only had assay data for 34 molecules, so we opted to use a k-nearest neighbors model141

(k=10) to model assay activity. In the post-USDA phase, the assay dataset size for the first batch was142

142 molecules, and grew to a size of 402 molecules for our final batch of selections (Supplemental143

Batch Notes).144

This large dataset made a huge difference; hit rates post-USDA measured on repellency time=2min145

increased to 49% from the pre-USDA level of only 29% (Figure 3A). When we then raised the bar146

for hit classification to require a longer duration of effect, hit rates dropped to 6% for predictions147

from the post-UDSA phase and 3% for predictions from the pre-USDA phase. It is important to148

note that only the last batch in the post-USDA phase was trained to find candidates meeting this new149

repellent standard; further iterations may have continued to improve performance as they did under150

the previous standard.151

This hit rate comparison across the two different experimental phases aggregates changes in both152

representational approach and assay dataset size; how much did the USDA learned representation153

specifically, and by extension the USDA dataset, improve our models performance?154

To estimate the contributions of the USDA representation, we performed a retrospective analysis155

comparing the USDA representation against two other chemical representation approaches: a chem-156

informatics representation (using Mordred descriptorsMoriwaki et al. [2018]) and the odor-based157

representationQian et al. [2022] used in the pre-USDA phase. We split the full assay dataset into158

two parts, a training set composed of molecules from all batches of tests performed before the use159

of the USDA dataset (88 measurements) and an evaluation set of all molecules selected in the post-160

USDA phase (170 measurements).161

We observed that the USDA learned representation model significantly outperformed both alterna-162

tives on this prediction task (Figure 3B; USDA model AUC=0.74 [0.68,0.81]; Chemoinformatics163

model AUC=0.59 [0.50,0.67]; GNN Odor model AUC=0.60 [0.51,0.67]), suggesting that the histor-164

ical dataset played a significant role in the elevated predictive performance. There is a selection bias165

because the selection of molecules for evaluation was done by the assay model using USDA learned166

representations. One effect of this bias is that it reduces the expected number of negative exam-167

ples, reducing the contrast between predicted repellents and non-repellents, resulting in a negative168

bias into all AUC measurements. However, the model used for selection should suffer the greatest169

negative bias, suggesting that the performance difference we observed is an underestimate of the170

true advantage that the USDA model has over its alternatives, as would have been observed under a171

counterfactual unbiased selection of repellent candidates.172

2.5 Selected hit molecules are chemically diverse173

Training a model on a large pool of data containing a variety of molecules allows the model to174

generalize to larger areas of chemical space. Figure 4 shows the distribution of molecules selected175

by our post-USDA models, and compares them to the active molecules reported in the USDA dataset176

itself. The candidate selections made by our model explore some of the same regions of the USDA177

dataset, but find hits in some underexplored regions of the original dataset (Figure 4A). The ML-178

selected molecules were required to be a minimum of 0.2 Tanimoto distance from USDA molecules;179

we observe an overall median Tanimoto distance of 0.52 from USDA molecules across all of our180

selections, and a median distance of 0.48 from USDA molecules amongst active molecules (Figure181

4B). Using ClassyFireDjoumbou Feunang et al. [2016] to annotate each molecule, we found that182

molecules selected by our model are enriched in benzenoids, ethers, carboxylic acid derivatives,183
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Figure 3: The table reflects experimental testing set up in pre-USDA phase, i.e. before the use of
the USDA dataset for modeling, and post-USDA phase, i.e. after the use of the USDA dataset.
(A) Active repellent compounds found at a much higher rate in post-USDA phase (49%) vs. pre-
USDA phase (29%). Hits are defined as compounds that showed >90% repellency in the feeder assay
at initial application (t=2 min) or >75% repellency after 2 hours of evaporation (t=120). Error bars
represent the standard error of jackknife estimated mean values. (B) In a retrospective prediction
task, USDA learned representation model (USDALR) outperforms models using cheminformatics
representation (Mordred, Moriwaki et al, 2018) and odor-based representation (Qian et al. 2022).
Models were trained on assay data collected before USDA modeling (88 data points), and evaluated
on post-USDA measurements (170 data points). Error bars represent 95% bootstrap-resampling
confidence intervals.

and organoheterocyclic molecules when compared to the molecules measured by the USDA dataset184

(Figure 4C).185

2.6 Top candidates show strong repellency in additional applications186

While the membrane feeder assay provides a rapid measurement of repellency effectiveness, for real-187

world applications it is necessary to consider the effect of odorants released by human skin. To assess188

repellency of hit molecules in the context of host skin emanations, we tested a representative set of189

our molecules in arm-by-cage experiments (Fig. 5A). To this end, we selected 31 hit molecules that190

showed 75% repellency at a density of 25 ţg/cm2 at T=120 minutes at least once in the membrane191

feeder experiments, and 4 molecules with lower repellency activities. When tested at a density of192

13 ţg/cm2 in the arm-by-cage experiments, 43% of the tested molecules perform very well (75%193

repellency) and 67% of those even outperform DEET (>84% repellency) (Fig. 5B). Overall, we194

observed high correspondence between repellency as measured in the feeder vs. the arm-in-cage195

assays (r=0.64), with 83% of hits from the former also reaching the hit threshold in the latter (Fig.196

5C).197

Our primary assay assessed repellency against A. stephensi, but other pest species also carry dis-198

ease, and there are some known species-specific differences in repellency of known molecules199

(e.g. IR3535). To address this concern, we selected 16 molecules based on their activity against200

A. stephensi, 9 strong and 7 weak repellents. We then used the original assay to test them against201

A. aegypti and a modified assay (Fig. 5D) to test against I. scapularis, the black-legged tick. We ob-202

served significant generalization across pest species: 8 of the strong repellents (88%) demonstrated203
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Figure 4: Analysis of the chemical space we explored. (A) The model-selected molecules are
distributed throughout the chemical space, with some active molecules found both near and far
from USDA clusters. Shown is a UMAP embedding of USDA active molecules (light blue), and
model selected molecules (dark blue), aligned with the eMolecules library (grey heatmap), using
Morgan fingerprint features (r=4, n=2048). The positions of a few high-repellency, model-selected
compounds and several known repellents are shown. (B) Tanimoto distance of ML-selected can-
didates to the USDA dataset; molecules were selected to be at least Tanimoto distance=0.2 away
from other USDA molecules, with active candidates having a lower median distance away from
the USDA dataset (median=0.48) compared to inactive candidates (median=0.54). (C) Distribution
of ClassyFire classes (Djoumbou-Feunang et al., 2016) in the USDA dataset and the TropIQ selec-
tions. TropIQ selections are enriched for organoheterocyclic compounds, ethers, benzenoids, and
carboxylic acid derivatives.

good repellency (>50% repellency) at 25 ţg/cm2 against A. aegypti, and 12 (75%) molecules were204

active (>75% repellency) at 540 ţg/cm2 against I. scapularis (ED50 of DEET 120 ţg/cm2, Fig. 5E).205

3 Discussion206

We developed and validated novel methods for identifying potential repellent molecules for vector207

control of deadly human and animal diseases. First, we digitized a historic dataset rich with an208

unprecedented volume of relevant repellency data covering thousands of molecules. Second, we209

applied and refined a deep learning model architecture to learn the mapping between molecular210

structure and repellency in this dataset. Third, we used a high-throughput experimental assay to211

prospectively validate predictions from this model, and to conduct active learning to iteratively im-212

prove model predictions. Finally, we showed that these predictions identify new repellent candidates213

in underexplored regions of chemical space, and that some of these molecules show applicability214

across real-life context and across pest species. This represents a promising approach to identify215

next-generation repellents and help solve one of humanitys greatest global health challenges.216

Despite containing a surprisingly large quantity of relevant repellency data, the USDA dataset has217

remained underused, garnering only 200 citations in the last 50 years. This surely stemmed in218

part from the limited visibility and accessibility of the data during most of this period, where it was219

accessible only via paper handbooks in physical libraries. The Google Books digitization project220
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Figure 5: Model-selected and feeder assay validated compounds show high performance across
context and species. (A) Experimental setup of arm-by-cage experiments on Anopheles stephensi.
(B) Arm-by-cage repellency of molecules previously determined to be repellent in the membrane
feeder assay. (C) Activities of repellents identified in the membrane feeding assay correlate well with
the activity in arm-by-cage assays. (D) Experimental setup of Ixodes scapularis (tick) repellency
assay. Ticks are placed in a repellent-impregnated ring on a heated bed and the number of ticks
that cross the ring are counted. (E) Repellency of molecules is correlated across species; one line
corresponds to one compound.

scanned these handbooks, making images of the data visible to anyone with an internet connection.221

However, many of the chemical names contained there-in were archaic or ambiguous, and so could222

not be effortlessly mapped to chemical structures; the repellency values themselves were also not223

machine readable. The manual curation and digitization that we performed was the last step to224

unlock the power of these historical records. The general pattern of connecting diffuse experimental225

records to support larger modeling efforts and meta-analyses continues to bear fruit30,31.226

How important were these data? Machine learning is data-driven, and frequently suffers from cold227

start problems; deep learning models are especially data-hungry, and finding enough data to train228

them to state-of-the-art performance can be a major challenge. The USDA dataset solved this prob-229

lem by allowing us to train a draft model, which we were then able to build upon using data from230

a modern experimental assay. Several previous efforts to identify new repellents using machine231

learning have used only several dozen similar molecules to train their models1517,32. A larger slice232

of the historical dataset ( 2000 molecules) has been used to train a neural network model to both233

predict repellency and verify the repellency of known repellents33. Recently, larger datasets are234

becoming available for receptor-targeted QSAR (RT-QSAR)34,35, but until this current work, no235

machine-readable large-scale datasets have been available for BT-QSAR.236

Most previous publications validated their repellency models only retrospectively by predicting237

the activity of known repellents, rather than prospectively 36 by using the model to identify new238

molecules with repellency behavior. This typically leads to overestimation of predictive perfor-239

mance of new repellent candidates. By contrast, we collected assay data for prospective validation240
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of the model, and further used this data in an active learning loop to refine the model, showing241

continued improvement in predictive performance as new data was collected.242

Prospective validation has been used in the past to discover new repellent molecules: Picaridin was243

discovered at Bayer using pharmacophore modeling6, and a small set of acylpiperdines were dis-244

covered using neural networks trained on a small subset of USDA data17. However, these novel re-245

pellents have typically been structural near-neighbors of existing repellents. By contrast, our model-246

selected candidates cover a much wider range of structural classes than previous repellency discov-247

ery attempts, facilitating our discovery of molecules with repellency activity greater than DEET even248

at 2 hours after application, and a subset that have repellency efficacy when tested in the presence of249

attractive human skin emanations.250

Machine learning, and particularly deep learning, is yielding impressive advances in applications in251

chemistry. Several academic and industrial groups have used deep learning models to screen for new252

molecules with desirable properties, such as antibiotic activity or protein binding affinity34,3739.253

The methods outlined in this paper can also be applied to other disease vectors, other classes of254

behavior-modifying molecules, and more broadly to enable hit discovery in arbitrary chemical ap-255

plications. Future work will be required to impose additional filters or modeling steps to satisfy256

additional criteria related to safety, biodegradability, odor, and skin-feel, in conjunction with experi-257

mental data about these important factors.258
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A Method335

A.1 Mosquitoes and ticks336

Both Anopheles stephensi and Aedes aegypti mosquitoes were maintained on a 5% sugar solution337

in a 26 řC environment with 80% humidity, according to standard rearing procedures. Adult Ixodes338

scapularis ticks were maintained in a 26 řC environment with 90% humidity. Mosquito behavioral339

assays Before each membrane feeding assay, 10-20 female Anopheles stephensi or Aedes aegypti340

mosquitoes (3-5 days old) were transferred to a paper cup covered with mosquito netting. The341

mosquitoes were denied access to their normal sugar solution 4-6 hours prior to the feeding assay.342

30 ţl of test molecule, dissolved in ethanol, was pipetted on a piece of mosquito netting (3x3 cm)343

and allowed to dry. To ensure a regular and standardized airflow over the samples, a gastronorm344

tray (¡ 200mm) equipped with a computer fan (80x80x25mm, 12V, 0.08A) was placed over the345

samples. After a specified time of evaporation (e.g., 2 hours), the sample was placed on top of the346

cup containing the mosquitoes. The cups were then placed under a row of glass membrane feeders347

containing a pre-warmed (37 řC) blood meal. The mosquitoes were allowed to feed for 15 minutes.348

The number of fed and unfed mosquitoes were then recorded.349

For the arm-by-cage assays, 30-50 female Anopheles stephensi mosquitoes were transferred to an350

acrylic cup (150x100mm) covered with mosquito netting. 1 mL of test molecule (0.5% w/v), dis-351

solved in ethanol, was pipetted on a piece of cheesecloth (6x9 cm) and taped to an acrylic panel352
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(6mm thick) with a cutout and allowed to dry. A panel with an untreated piece of cloth was then353

placed next to the acrylic cups containing the mosquitoes and a volunteer placed his hand against the354

panel for 5 minutes. The mosquitoes were filmed and the maximum number of mosquitoes landing355

simultaneously was recorded. This was then repeated with a piece of treated cloth and the number of356

landings was normalized to the control, which is the ethanol solvent alone. All arm-by-cage assays357

were designed and run by TropIQ.358

A.2 Tick behavioral assays359

The setup of the tick repellency assay is shown in figure 5D. The assay consists of a heated (37žC)360

aluminum plate (235 x 235 mm) that is painted white. Before the test, 750 ţl of test molecule,361

dissolved in ethanol, is pipetted on a ring of filter paper (OD = 150 mm, ID = 122 mm). The ring362

is then transferred onto the heated plate and 5 Ixodes scapularis ticks are placed in the center. The363

ticks are monitored for 5 minutes and the number of ticks that cross the filter paper are counted.364

Repellency is expressed as the percentage of ticks that did not cross the filter paper.365

A.3 Historical dataset preparation366

The scanned versions of the USDA datasets, available from Google Books, were converted into a367

machine-readable format. Chemical structures (Simplified Molecular-Input Line-Entry System, or368

SMILES) 40 were assigned to each single molecule entry in the dataset. The raw PDFs of the two369

repellency handbooks41,42 used to create the USDA dataset are available on Google Books. For370

this study, the PDFs were converted to png files, then sliced by rows according to bounding boxes371

drawn by curators. The row sliced images and the full page images were provided to a third-party372

curation service, who transcribed the chemical names as SMILES and corresponding assay results.373

Post-processing analysis and evaluation of a random sample of 150 entries suggest an error rate of374

<5% in the chemical structures. The final dataset resulted in 18,886 data points on 14,187 molecules.375

This includes the results on two assay setups, one testing the effectiveness of the candidates on cloth,376

the other on human skin, and also two different mosquito species (Aedes aegypti and Anopheles377

quadrimaculatus); all four combinations of these two species and conditions were used in this study.378

USDA dataset labels in the source material were repellency ratings given as integers from 1 (worst)379

to 5 (best).41380

A.4 USDA Dataset Modeling and Representation Learning381

Each of the USDA tasks was split into a 70:15:15 train/validation/test split such that molecules were382

assigned to the same split across all tasks; in particular, if a molecule is in the training set for one task,383

it was also in the training split for the other tasks for which there was a measurement. Molecules384

in the USDA dataset that were also used in the pre-USDA phase (Batches 1-3, see Supplementary385

Batch notes) were excluded from the USDA training sets. Iterative stratification over the label386

classes across each task was applied to balance the labels in the training/validation/test splits for387

each task.388

Graph neural network models (GNNs) were trained on each of the four mosquito repellent tasks from389

the USDA dataset. Each model provided predicted probabilities of the class label and combination390

class labels; specifically, the model predicted the probability of the class label being: [1], [2], [3],391

[4], [5], [1 OR 3 OR 4 OR 5], [3 OR 4 OR 5], [1 OR 4 OR 5]. AUROC performance on the [3 OR392

4 OR 5] label objective was used to optimize the models. The graph neural network used message393

passing layers (MPNN44), with a max atom size of 45, 30 atom features, and 6 bond features.394

Hyperparameter selections were made using the Vizier43 default Bayesian optimization algorithm395

over 300 trials.396

The USDA learned representation was constructed from the outputs of the frozen ensemble model397

of the best 50 models from hyperparameters trained on the USDA dataset. For the last batch of398

selections, the models used to create the ensemble model ranged in AUROC performance from399

0.872 to 0.881.400
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A.5 Model Training on Membrane Feeding Assay Data401

To train the models for activity in membrane feeding assays, assay results were binarized: a positive402

label for repellency activity was defined as >90% at T=2min at 25 ţg/cm2, and >75% for T=120min.403

For model evaluation and hyperparameter selection, the dataset was split into a 70:30 train/test split,404

using iterative stratification to balance the label classes. The model trained on the USDA dataset was405

used to generate specialized representations for the molecules. A two-layer neural network model406

with 256 nodes was used to predict the binarized activity label given the molecule; the hyperparam-407

eters of this model were selected with grid search. At inference time, to make predictions on new408

candidates, the model was retrained using the entire dataset.409

A.6 Molecule Selection410

We began by filtering molecules listed in the eMolecules catalog – which contains 1 million commer-411

cially available molecules – for atom composition (C/N/O/S/H only), price (<$1000 per 10 grams),412

purity (>95%), and availability (<4 weeks lead time). We utilized a toxicity filter to remove poten-413

tially harmful molecules, according to a toxicologist-recommended protocol. In this protocol, we414

classified molecules by their mutagen / Cramer class using ToxTree, calculated their vapor pressure415

at room temperature, and then compared the likely exposure air volume to OSHA daily exposure416

limits for the corresponding toxicity class. We removed likely odorless molecules according to417

water-soluble (cLogP < 0) and nonvolatile (boiling point > 300 C) criteria. We manually removed418

molecules that were likely to degrade or react under our experimental conditions. After training419

the assay model, molecules were selected such that they had a prediction score above an f1 opti-420

mized cutoff score, and then selected such that they had a Tanimoto similarity of <0.8 from other421

selected molecules and the USDA dataset. A minimum solubility threshold of 10 mg/ml in absolute422

ethanol was used as a last criterion. Molecules with an ethanol solubility below the threshold were423

abandoned. Detailed selection criteria for batches are reported in the Supplemental section.424
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