Dear reviewers and editors,

We appreciate your careful reading of our manuscript and insightful comments. We believe that we have addressed
all of the reviewers’ concerns and suggestions. Below, please find our responses to all of your comments. Our
manuscript has been revised accordingly; these revisions have greatly improved the clarity of our paper. We also
provide source code and all pretrained models for reproducibility. We hope our manuscript is now suitable for
publication. Thank you very much.

Sincerely Yours,

# Reviewer aAob

[Comment 1] My main concern for this paper is about the main contribution. Using curvature information to select
the patch scale is used in an MVS method (Xu et al., 2020). Although the method does not use deep learning, it limits
the technical contribution of this paper.

[Answer 1] Thank you for your review. We agree that the existing work already utilized the curvature information to
select the pixel-level scale (Xu et al., 2020). However, compared to this work, our proposed method has several main
contributions as follows

- We proposed an improved version for curvature computation, namely learnable curvature, which is fast and
applicable to a deep neural network.

- Our method automatically selected a proper scale among the candidates by using a classification network.
Meanwhile, the previous work used a threshold of 0.01 for curvature to select a scale, which degrades the
performance. Our scale selection can adapt to epipolar geometry, which is not analyzed in previous work.
This property is already shown in Figures 2 and 6 in our paper.

- We applied the estimated curvature to predict visibility information for cost aggregation. This significantly
enhances the depth estimation accuracies.

We detail the contributions of our work compared to Xu et al. (2020) in Appendix A.4 (Effectiveness of learnable
curvature).

[Comment 2] In the related work section, this paper claims that the proposed method should have an advantage of
performance compared with Xu et al. (2020) because they do not rely on the handcrafting features. However, the claim
was not confirmed through the experiments.

[Answer 2] To verify the statements above, we additionally perform the ablation studies in Appendix A.4
(Effectiveness of learnable curvature). Table 4 in Appendix A.4 presents the results of our proposed learnable
curvature compared to the original curvature by Xu et al. (2020). Our method significantly improves the performance
in terms of depth accuracy, reconstruction quality, runtime, and memory consumption compared to the method with
original curvature. We also provide a qualitative comparison in Fig. 8. The original curvature estimation degrades the
performance because it cannot handle the high-dimensional features. It treats each feature channel equally when
computing the derivatives with Gaussian filters. Therefore, it may produce a high curvature estimation even though
the neighboring feature vectors are visually similar. On the other hand, the learnable curvature consistently preserves
the properties of normal curvature concerning the untextured and rich-textured regions in every layer. Furthermore,
our learning-based estimation takes advantage of the attention mechanism (shown in the red circles in Fig. 8), which
improves the completeness of reconstruction.

We also provide the effectiveness of the curvature-guided visibility aggregation. As shown in Table 4, the curvature-
guided visibility aggregation boosts the performance without more heavy computation.



In the main experiments, we evaluate the performances on DTU and Tanks & Temples datasets, the most commonly
used for MVS evaluation. The original study of the MARMVS method (Xu et al., 2020) did not provide an evaluation
on these datasets. Re-implementing the whole MARMYVS pipeline is out of scope in this paper. However, to
demonstrate we additionally compare our method to the other traditional MVS methods, such as COLMAP, Gipuma
(shown in Table 1), ACMM, and ACMP (updated in Table 3). Our method outperformed the state-of-the-art methods
on DTU and achieved a high ranking on the leaderboard of Tanks & Temples.

Table 4: Comparison between our learnable curvature and the original curvature (Xu et al., 2020). All models
are trained on a subset of DTU training set, using the same setups and hyperparameters. The evaluation of
depth map and pointcloud is collected on DTU validation and test set, respectively.

Design Options Depth Map Pointcloud Time & Memory
Methods s Prec. Prec. MAE Acc.  Comp. Overall| Time Mem
curv. type vis. with curv. 2mm 4mm (mm) (mm) (mm) (mm) (s) (Mb)
Model A original 7426  84.89 6.84 0.378 0315  0.347 | 0.539 7993
Model B original v 7412 8477 5.99 0391 0327  0.359 | 0.539 7993
Model C learnable 76.14  86.08 6.30 0373 0302  0.338 | 0.421 4389
Model D learnable v 76.23  85.92 5.89 0372 0305 0339 | 0421 4389
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Figure 8: A qualitative comparison on DTU evaluation set (Aans et al., 2016) between the learnable and
original curvature. We visualize the curvature maps at the scale o = 3 (kernel size is 3) extracted from the
first four layers of CDSFNet. The first and second layers output the curvature maps at the full resolution, the
third and fourth layers extract the maps at the half-resolution. The red circles denote the effect of attention
mechanism, which is benefited from the learnable kernels K as presented in Section 3.2



# Reviewer Qeua

[Comment 1] It’d be good to add some ablation studies to show the delta brought by CDSConv and the MVS
architectural changes compared with the baseline network, i.e. CasMVSNet.

[Answer 1] We appreciate your comment and agree with the point you made. We additionally provide an ablation
study in Appendix A.4 (analysis of CDSFNet and the cascade structure). This section analyzes the effectiveness of
several proposed modules, including learnable normal curvature, curvature-guided for visibility prediction, number of
candidate scales in CDSFNet, and the number of stages in cascade MV'S structure.

[Comment 2] For the Tanks& Temple dataset, did you also evaluate the method using high-res images on the advanced
cases? | found that the method ranks high on the intermediate cases but not on the advanced cases.

[Answer 2] We evaluated the advanced set of Tanks & Temples. However, similar to most learning-based methods
trained on DTU and BlendedMVS datasets, our method achieved only an average ranking in this benchmark. The
main reason is due to the complex indoor scenes in the advanced dataset. Moreover, our paper is already long enough
with dense experiments and analysis. Therefore, we did not include this evaluation in our paper. The improvement for
the advanced dataset can be addressed by re-training our model by using an additional indoor dataset.

[Comment 3] Is the major deduction of running time a consequence of only computing depths of half-resolution
images and then upsample to the original resolution?

[Answer 3] Yes, our method can predict highly accurate depth maps even at half-resolution because of the robustness
of our feature extraction CDSFNet. Therefore, we only need to maintain that accuracy at the full resolution by
upsampling and then performing a depth refinement step. This approach can guarantee both reconstruction quality and
computational efficiency for high-resolution MVS. To explain this, we have revised the manuscript as follows.

(Page 17, Subsection “Analysis of CDSFNet and the cascade structure”, Paragraph 2, Line 3): “The last stage | =
3 is used for depth upsampling; it outputs the full-resolution depth while maintaining the same depth accuracy
compared to the previous stage. Suppose this stage is implemented by the three-step MV'S depth estimation pipeline
mentioned in Section 4.1, the entire MVS network suffers from a considerable computation and cannot fit into a
limited GPU memory. Therefore, we only apply the depth refinement with a 2D CNN to the last stage for efficiency
in time and memory.”

[Comment 4] Add legend to the left image of Figure 3. Why is the GPU memory significantly lower when resolution
is increased? It’s even lower compared with lower-res images, for ‘ours’.

[Answer 4] We have updated Fig. 3 with a legend. About the reduction of GPU memory, based on the observations
from Fig. 3, we notice that memory consumption starts to drop when the runtime increases non-linearly. This means
that the executing program scarifies a small amount of time to finish some parallel computations and then release
memory. The reason is due to a gap of computation between the last stage and previous stage when the image is at a
high resolution. In particular, the last stage used a 2D CNN while the previous stage used a 3D CNN. At the low
resolution, the difference of computation between these stages is small. However, at the high resolution, the
computation in previous stage is heavier than the last stage. There will be a delay in time to pass the depth estimated
from the previous stage to the last stage. In the delay time, the memory might be released significantly. Therefore, the
memory is dropped at high resolution in our method. We have revised the manuscript for this explanation as follows.

(Page 9, Subsection “Run-time and memory”, Line 6): “However, we noticed that the memory consumption of our
method was dropped from the resolution of 80% while our run-time was slightly increased. This indicates that our
method can release a significant amount of GPU memory by only sacrificing a small amount of run-time.”.



# Reviewer 68iw

[Comment 1] (1) The fairness of the experimental setup is in question. (a) On the DTU dataset (page 8), as explicitly
stated by the authors the proposed method is trained on the union of DTU and Blended-MVS datasets (training splits).
This is a major issue because the reported performance figures of the competition in Table 1 are being trained on the
conventional train split of DTU, without additions.

[Answer 1] We appreciate your comment and agree with the point you made. The feature extraction of CDSFNet
heavily depends on the epopilar geometry; therefore, we require a training dataset with diverse camera trajectories.
However, the DTU dataset is obtained from the same camera trajectory for all 118 scenes. The DTU dataset alone is
not sufficient to effectively train our model. Therefore, we additionally used the BlendedMVS dataset to get the images
captured from diverse camera trajectories.

To provide fair experimental results, we additionally evaluated our model trained only on the DTU training dataset.
We applied the same setups and hyperparameters for the evaluation as before. The accuracy, completeness, and overall
performance are appended to Table 1. Our method still outperforms the state-of-the-art baselines and approximates
the results trained on both DTU and BlendedMV'S datasets.

[Comment 2] (1) (b) Appendix, A3 page 15: It is factually not true that (Zhang et al., 2020; Luoet al., 2020; Sormann
et al., 2020) perform training on DTU+Blended-MVS to test on DTU

[Answer 2] We are sorry for the unclear description. We agree that the written sentence “"Note that we trained the
single model using both DTU and Blended datasets instead of training individually on each dataset as in previous
methods (Zhang et al., 2020; Luo et al., 2020; Sormann et al., 2020)" is ambiguous. In this sentence, we mean that the
previous methods (Zhang et al., 2020; Luo et al., 2020; Sormann et al., 2020) trained individually on each dataset,
whereas we trained a single model using both DTU and Blended datasets. We revised this sentence as "We provided
two experimental scenarios. First, we train the model on the DTU training set and evaluate the DTU test set. This pre-
trained model is then fine-tuned on BlendedMVS dataset for 10 epochs with a learning rate of 10™* to evaluate on
Tanks & Temples. Second, we train a single model on both DTU and BlendedMVS datasets and use this model for
evaluation on both DTU and Tanks & Temples."”

[Comment 3] (1) (c) Regarding the provided experiments on Tanks and Temples (ToG 2017), Table 3: It isa common
practice in the field to train on either DTU with or without fine-tuning on Blended-MVS (eg, resp. BP-MVS, AttMVS),
not by training on the union of both dataset as it is done for the proposed method (Appendix A3).

[Answer 3] We understand your concern. However, in our case, we trained on both datasets as follows

*hkhkhkhkhkhkhkhkhkhkkhkkhkhkkhhhhhkhhkhkhiiiik

for epoch in 1...num_epochs:
for batch in DTU:
update weights
for batch in Blended:
update weights
decrease learning rate

*hkhkkhkhhkkhhkhkkhhkkhhkhkkihkkhkhhkihkikhhkiikkx

The method that trains on DTU and then fine-tunes on BlendedMVS such as BP-MVS can be presented as follows

B S S S e T e e e

for epoch in 1...num_epochs:
for batch in DTU:
update weights



decrease learning_rate
set learning_rate a small value
for epoch in 1...num_finetuning_epochs:
for batch in BlendedMVS:
update weights
decrease learning_rate

*hkkkhkhhkkhhkhkkhhkkhkhkhkhhkkhkhhihkkikhhkiikkx

Compared to the fine-tuning approach above, there will be no considerable difference in performance in our approach.
We did not shuffle DTU and BlendedMVS and then sampled the batch for updating the weights. We updated the
network weights on DTU and BlendedMVS sequentially.

To verify this, we performed the fine-tuning and then submitted the reconstructed models to the Tanks & Temples
benchmark. The performance was not too different in comparison to the performance by training on DTU and Blended
simultaneously. However, the performance was degraded because we only fine-tuned with a small number of epochs.
The loss can still be optimized when increasing the number of epochs. We added the results to Table 3 for reference.

[Comment 4] In particular, given that AttMVS is the closest-performing competition w.r.t the proposed method, why
not provide experiments with the same training setup and data?

[Answer 4] Compared to the other state-of-the-art methods, AttMVS applied different training and evaluation setups,
as follows:

- First, AttMVS used the refined DTU dataset by generating more accurate ground-truth depths for training
while most of the other methods, including ours, used the DTU dataset preprocessed by Yao et al. (2018) for
MV SNet.

- Second, AttMVS applied a higher number of depth hypotheses for training on DTU, 256. The other methods
used less than that; for example, CasMVSNet and VisMVSNet (Zhang et al., 2020) applied 192 and 128
depth planes, respectively. Our training setup is most similar to CasMVSNet.

- Finally, AttMVS proposed an improved point cloud generation strategy presented in Section 4 of their paper.
Most other methods such as MVSNet, CasMVSNet, CVPMVSNet, VisMVSNet, and ours applied the same
point cloud generation strategy. On the other hand, AttMVS further performed the point cloud refinement
process by optimizing a target function. The refinement remarkably contributes to the quality of reconstructed
3D models.

The source code and pre-processed dataset of AttMVS are not available, but the re-implementation of AttMVS is
out of scope in our paper. For these reasons, we did not follow the setups of AttMV'S. Excepting training on DTU and
Blended simultaneously, we followed the general setups of recent works such as MVSNet, CasMVSNet,
CVPMVSNet, VisMVSNet, etc.

In summary, we agree that training on the union of DTU and Blended is a different setup. However, recent studies
such as AttMVS (Luo et al., 2020), BP-MVSNet (Sormann et al., 2020), and Vis-MVSNet (Zhang et al., 2020) applied
their own setups for training to ensure that their models have the best performance. For example,

- AttMVS designed the setups as mentioned above.

- BP-MVSNet integrated the validation set with 18 scenes to the training set of DTU and then performed model
training on the integrated dataset; this can be found in Section 4 in their paper. The other methods, including
ours, generally trained on the training set, validated their models on the validation set, and finally reported
the evaluation on the test set of DTU. For Tanks & Temples, BP-MVSNet fine-tuned the pretrained model
on DTU by re-training the model on the BlendedMVS dataset with a learning rate of 107,

- VisMVSNet applied a noise filtering strategy for point cloud generation by using all probability maps at all
stages of coarse-to-fine architecture (Section 4.1 in their paper). On the other hand, previous methods such
as CasMVSNet, CVP-MVSNet, UCSNet used the probability map only at the last stage for filtering.



Therefore, we also keep the original results of our model, which are produced by training the models on two datasets
simultaneously. We also provide the new results by applying different dataset setups, as follows:

- We trained our model only on the training set of DTU and evaluated its performance on the test set. This
result was updated in Table 1.

- We fine-tuned this model pre-trained on DTU using the BlendedMVS dataset with 10 epochs and a learning
rate of 10~* to evaluate the Tanks & Temples benchmark performance. We added this result to Table 3.

In both cases, our method still achieved good performance in all benchmarks. This demonstrates the effectiveness of
our proposed method.

[Comment 5] (2) Certain claims and justifications are either ambiguous, inaccurate or even misleading. This is the
case in particular regarding the evaluation part above, and the pieces of justification that are specified in the appendix.
This again is a relatively major concern as is.

[Answer 5] We fixed the ambiguous sentences and added more evaluations as you suggested. As explained above,
training on both datasets can be an option.

[Comment 6] (3) No ablation studies are provided. Given the sequential pipeline nature of the proposed contributions,
ie, feature extraction, approximate curvature priors, 3D cost volume aggregation and regularization, it is highly
expected to provide a comprehensive ablation study (ie, activating/removing pieces of the pipeline) to help understand
and assess the relative contribution of each individual piece / ingredient, in particular given: (a) It isa common practice
in the field and within the realm for this particular literature (eg, BP-MVS, AttMVS, or even at BMVC which is a
venue which much less text real-estate: Zhang et al. 2020). (b) This is all-the-more problematic given (1) above, that
puts an even greater weight on the ablation analysis and the lack thereof. (c) Additionally, certain design choices and
hyperparameters are not experimentally challenged to support their respective values are (at least near-) optimal, eg,
\lambda_1 and \lambda_2 in sec 4.2, page 13: the number of different scales / number of stages that are typically
considered.

[Answer 6] Thank you for your helpful suggestions. We added the ablation studies in Appendix A.4. In the ablation
studies, we addressed the following issues:

- Effectiveness of learnable curvature: We validated our proposed learnable curvature by comparing it with
the original version proposed by Xu et al. (2020). We replaced our curvature estimation in Eq. 5 with the
original in Eq. 1 and then performed the same training and evaluation setups. As shown in Table 4, the
proposed learnable curvature boosts the performance significantly compared to the original curvature. It also
improves efficiency in terms of runtime and memory consumption.

- Curvature-guided visibility aggregation: We analyzed the effectiveness of curvature-guide visibility
prediction on the DTU dataset. This visibility prediction improves the depth estimation accuracies.

- Analysis of CDSFNet: To deeply understand our proposed feature network CDSFNet, we removed the cost
regularization step in our CDS-MVSNet pipeline and then changed the number of candidate scales in each
CDSConv layer. By designing the experiment like this, we can find out how CDSFNet affects feature
matching and improves performance when increasing the network complexity. Table 5 shows the accuracy
of estimated depth when increasing the number of candidate scales from 1 to 4. We observed that CDSFNet
achieved better performance when using more candidate scales. However, it suffered from heavy
computation. Therefore, we chose the design with two or three scales for each CDSConv, shown in CDSFNet
architecture (Fig. 5), to guarantee depth accuracy and computational efficiency.

- Analysis of the cascade structure: Finally, we investigated how much the estimated depth is improved after
each cascade stage. Combing with the evaluations in Table 1, 3 and Fig. 3, we demonstrated that our design
could guarantee both reconstruction quality and computational efficiency.



[Comment 7] (4) Missing prior work in the comparative evaluation. This is relatively important given the proximity,
performance-wise, w.r.t the proposed method, eg, (Sormann et al. 2020) BP-MVS (overall perf: 0.327 vs. 0.315).

[Answer 7] The results of BP-MVSNet are updated in Table 1 and Table 3 for DTU and Tanks & Temples,
respectively. However, as mentioned in (1)(c), the BP-MVSNet’s model is trained on both the training and validation
sets of DTU. The model is then fine-tuned on the BlendedMVS dataset for the Tanks & Temples benchmark. Although
BP-MVSNet achieves an approximated performance compared to our method on the DTU dataset, its performance on
Tanks & Temples is lower than ours with a large margin.

[Comment 8] (5) Relative positioning, performance-wise, is unclear. This is a direct implication stemming from
(1)+(3) above. The reported performance figures are hence uninformative and do not allow to properly assess the
relative positioning of the proposed approach w.r.t existing work, and hence, the validate its usefulness.

[Answer 8] We appreciate your comment and agree with the point you made. We added more evaluations in Tables
1 and 3 and updated the qualitative comparisons in Figs. 9 and 10.

[Comment 9] (6) Readability. To a lesser extent, the text as it currently stands, is still in a relatively rough, tough to
digest state. There are numerous grammar issues and typos (a few example below). However and overall, the main
ideas and key claims do not suffer substantially from the language-related issues and the articulations of the main
ideas is often preserved.

[Answer 9] We appreciate your comment. We revised the ambiguous sentences and fixed them.



# Reviewer 6P6T

[Comment 1] Replacing Gxx with learned Kxx seems arbitrary: first, using G is quite tractable (only 3 derivatives).
second, what promise do we have that all the K's are directional like the derivatives? e.g. Kxx can have some y meaning
- lastly, this can easily be tested and showed in an experiment (i.e. show performance with G and then learned K)

[Answer 1] We appreciate your comment and agree with the point you made. We want to replace the word “intractable”
in our paper by “infeasible,” i.e., using Eq. 2 with the Gaussian filter G is infeasible. We agree that Eq. 2 can still be
applied to curvature computation even if the input is a high-dimensional feature map. In this case, we have to compute
a curvature map for each feature channel using Eq. 2 and then output the final curvature map by averaging over the
channels. However, this solution may produce a noisy estimation because it treats each feature channel equally. In
particular, the two neighboring feature vectors are visually similar, but their distance can be large. Therefore, Eq. 2
will produce a high curvature estimation even though the ground truth is low in this case.

For the second question, the kernels K’s are used to handle the high dimensional feature input. Therefore, K’s are high
dimensional and learned implicitly from data. As discussed above, G’s average all feature channels; it treats each
channel equally. Using K’s instead of G’s can be interpreted as a weighted sum over all channels, which allows
extracting information from a specific set of meaningful channels. This approach is an attention mechanism that is a
power of deep learning. In summary, to answer the question, K’s might have a directional meaning at some specific
channels.

We experimented by using G to justify our theories above, as shown in Table 4 of Appendix A.4. Table 4 shows that
using K’s significantly improves the reconstruction quality and computational efficiency performance compared to
using G’s.

[Comment 2] Is the physical curvature/scale actually estimated? can you compare it to the one from the GT?

[Answer 2] Our proposal only approximates the physical curvature by learning it implicitly from data. The main goal
is to preserve a property of normal curvature. In particular, the estimated curvature for a pixel X is low when X belongs
to an untextured region. In contrast, the curvature is high when it belongs to a rich texture or near-edge region. Our
learnable curvature can satisfy this property. However, due to the effect of attention in deep learning, each CDSConv
layer tends to focus on scale estimation at some specific regions. To justify these statements, we add Fig. 8 in Appendix
A.4 to show the curvature maps extracted from our method and the original method using G’s (Xu et al., 2020).

[Comment 3] Is the curvature/scale consistent across the cascade? If not, is it getting better/worse compared to GT?

[Answer 3] The curvature is not consistent over cascade stages. Also, it is not consistent in each CDSConv layer. The
reason is that the feature vector at each pixel extracted by the current CDSConv layer encodes a different patch scale
compared to the feature at the same pixel in the previous CDSConv layer. Although the estimated curvature in each
CDSConv layer is different, it still preserves the property of curvature that is low in untextured regions and high in
rich texture or near-edge regions. Therefore, it still helps choose a proper scale effectively in our CDSConv module.
We have added this information to the manuscript.

(Page 16, Line 14-15): “Fig. 8 also implies that the estimated curvature tends to be higher at the deeper layers because
it encodes a larger patch scale.”

[Comment 4] Are the CDSConv scale features (C1, ... Ck) constrained to be scaled versions of each other? Otherwise,
it's not really a scale estimation, no?

[Answer 4] We are sorry for the unclear descriptions. The candidate kernels {C,, C,, ..., Cx} have different scale/size.
Therefore, choosing a kernel among these candidates to extract features is truly a scale estimation. We proposed to
choose that kernel by using normal curvature information. To make it clear, we modified the manuscript as follows.



(Page 4, Section 3.2, Line 2): “Given a set of Kconvolutional kernels with different size {C;, C,, ..., Cx } corresponding
to K candidate scales {0y, g5, ..., 0x }, CDSConv aims to select a proper scale for each pixel X.”

[Comment 5] The use of 2D CNN in the last layer seems to be for performance reasons (not clear from the text), but
a comparison to another stage of 3D CNN should provide better results - why not show the impact here?

[Answer 5] We estimated the depth maps for the first three stages [ € {0,1,2} using three depth estimation steps:
feature extraction, cost formulation, and cost regularization. For the last stage [ = 3, we upsample the estimated depth
in the previous stage and then perform a refinement with 2D CNN. This 2D CNN did not affect much to the depth
accuracy. The reason for using it is to estimate high-resolution depth within a low cost of computation. To analyze the
impact of each cascade stage, we also provide an additional experiment (Table 6 in Appendix A.4) to explain our
choice for this design.

[Comment 6] The G<<1 assumption should be better justified.
[Answer 6] We provided a justification for this assumption.

(Page 5, Paragraph 2): “To address the heavy computation issue, we notice that the curvature curv,and derivatives
Ly, are proportional to Gaussian kernel G, following Eq. 2 and Eq. 3. Moreover, we use a classification network to
select the patch scale automatically from the curvature inputs. Therefore, we can perform normalization for the
curvatures by rescaling the kernel G. We restrict the gaussian kernel in a small range, i.e., G(X,0) < 1.

[Comment 7] Regarding eqg?2 - first, why is it intractable? second, there are only 4 convolutions, not 5 (Ixy==lyx)

[Answer 7] As mentioned above, we have changed “intractable” to “infeasible” for more accurate delivery. We
pointed out two significant drawbacks of Eq. 2; they are heavy computation and cannot handle the high dimensional
feature inputs. We also performed an experiment to validate this, which is shown in Table 4, Appendix A.4. For the
second note, there are five convolutions including I, I, L, Ly, I,,. To make it clear, we revised the manuscript as
follows.

(Page 5, Line 2-3): “the computation is heavy because of five convolution operations for computing the derivatives

L, 1y, Ly, Ly, and 1,

[Comment 8] Is the visibility-based aggregation in CDS-MVSNet novel or was it done in prior works? not clear from
the text

[Answer 8] The visibility-based aggregation is originally proposed by Zhang et al. (2020). However, they only used
two-view matching cost volume information and applied a 3D CNN to predict the visibility information. In our
visibility prediction, we additionally utilized the curvature prior estimated from the feature extraction network
CDSFNet. We then used a 2D CNN for the visibility prediction, which is much more efficient than 3D CNN. We
provide a detail explanation about the visibility-based aggregation in Appendix A.4 (Curvature-guided visibility
aggregation).

[Comment 9] Are weights shared between cascade scales? (are stages 0,1,2 of Fig 4 identical weights)

[Answer 9] We applied individual weights for each cascade stage. To make it clear, we revised the manuscript as
follows.

(Page 13, Appendix A.2, Line 5): “CDS-MVSNet also uses an independent 3D CNN for each stage to regularize 3D
cost volume”



[Comment 10] To summarize, most of my concerns can be addressed with either a deeper explanation or preferably
an ablation (of using visibility-aggregation K vs G, removing the last 2D CNN, whether to add the epipolar constraint)

[Answer 10] In summary, we appreciate the comments of the reviewer so that we can improve our paper. We
additionally provide the ablation studies in Appendix A.4 to answer your primary concerns, including the effectiveness
of our learnable curvature, the curvature-guided visibility prediction, the role of each cascade stage. Moreover, we
analyze the impact of the number of candidate scales {C;, C,, ..., Cx} in contribution to the overall performance.



