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Abstract

Reconstructing 3D shape and pose of static objects from a single image is an essential
task for various industries, including robotics, augmented reality, and digital content
creation. This can be done by directly predicting 3D shape in various representations
[12, 28, 34] or by retrieving CAD models from a database and predicting their alignments
[13, 14, 21, 22, 24]. Directly predicting 3D shapes often produces unrealistic, overly
smoothed or tessellated shapes [12, 27, 33]. Retrieving CAD models ensures realistic
shapes but requires robust and accurate alignment. Learning to directly predict CAD
model poses from image features is challenging and inaccurate [21, 22]. Works, such as
ROCA [14], compute poses from predicted normalised object coordinates which can be
more accurate but are susceptible to systematic failure. SPARC [24] demonstrates that
following a “render-and-compare” approach where a network iteratively improves upon
its own predictions achieves accurate alignments. Nevertheless, it performs individual
CAD alignment for every object detected in an image. This approach is slow when
applied to many objects as the time complexity increases linearly with the number of
objects and can not learn inter-object relations. Introducing a new network architecture
Multi-SPARC we learn to perform CAD model alignments for multiple detected objects
jointly. Compared to other single-view methods we achieve state-of-the-art performance
on the challenging real-world dataset ScanNet [8]. By improving the instance alignment
accuracy from 31.8% [14] to 40.3% we perform similar to state-of-the-art multi-view
methods [26].

1 Introduction
Approaches to reconstructing 3D scenes from an image can be broadly split up into direct
shape prediction [12, 27, 33] as well as retrieval-based methods [13, 14, 21, 22]. The issue
with the former is that they struggle to reconstruct high quality shapes. Retrieval-based
approaches on the other hand often have difficulty in accurately aligning CAD models to
an image. Some existing works [21, 22] directly regress CAD model poses from image
features. Whilst being simple such methods are often inaccurate. Other methods, such as
ROCA [14], predict dense 2D to 3D correspondences and use these correspondences for
computing object poses. While such approaches allow for more accurate pose estimates, the
predicted correspondences are often systematically shifted, leading to a constant offset in the
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Input SPARCROCA Ours GT

Figure 1: State-of-the-art methods for CAD model alignment from a single image. Using
normalised object coordinates ROCA’s [14] alignments suffer from constant offsets. SPARC
[24] produces more accurate alignments, but predicts CAD model poses individually which
is slow and leads to worse predictions. In our method CAD model alignments are predicted
jointly which is faster and more accurate.

alignment. Recent work [24] demonstrates that an iterative, render-and-compare approach
is more accurate and robust than relying on normalised object coordinates. However, [24]
perform CAD model alignment individually for every detected object which is slow at test
time and can not model inter-object relations. We introduce a render-and-compare approach
to deal with multiple CAD models simultaneously. For this purpose we predict bounding
boxes, surface normals, depth and segmentation masks for a given input image. For every
detected bounding box we initialise a CAD model in some initial pose and reproject points
and surface normals sampled from the CAD model into the image plane. This information in
combination with sparse information about the depth, surface normals, segmentation masks
and RGB is used as the input to a Perceiver-based [19] alignment network which predicts
pose updates for all CAD models jointly.
We demonstrate that learning pose alignments jointly and pre-training our network on a large
number of randomly sampled synthetic scenes leads to state-of-the-art-performance on the
real-world dataset ScanNet [8]. Another important observation is that our network benefits
from imposing some structure on the latent space. In addition to learning pose alignments
we learn classification scores indicating whether the current alignment is accurate or not. We
show that we can use these classification scores to select the best alignment from different
initialisations. Our system improves the instance alignment accuracy on ScanNet [8] from
31.8% [14] to 40.3%. In summary our contributions include:

• A novel render-and-compare approach which jointly predicts CAD model alignments
for multiple CAD models simultaneously;

• A demonstration that synthetic pre-training on a large number of synthetic scenes
achieves state-of-the-art performance on the challenging real-world dataset ScanNet
[8].

• A well calibrated classification score that can be used for selecting CAD model poses
from different initialisations and other tasks.

2 Related Work
Aligning CAD models to images is a form of 3D reconstruction. While there exist a large
number of works that perform 3D reconstruction by directly predicting shapes in various
representations [7, 9, 10, 12, 31, 33, 36], this section will focus on works that, like ours,
perform 3D reconstruction by retrieving CAD models and aligning them to images. Those
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works can be split along two meaningful axes: Whether they are single-shot predictions or
perform iterative render-and-compare, or whether they predict object poses individually or
for multiple CAD models jointly.
Single-shot alignments vs. iterative procedures. Mask2CAD [21] and Patch2CAD [22]
directly predict CAD model poses by simply regressing the 6-DoF pose with a convolutional
network. While this approach is very simple and fast it is not very accurate and performs
poorly for unseen objects. [23] demonstrate more accurate alignments by establishing sparse
2D-3D correspondences between RGB images and rendered CAD model and use these con-
straints to find the pose that maximizes the silhouette overlap with an instance segmenta-
tion prediction. ROCA [14] demonstrate a more robust method by leveraging predicted
depth to lift dense 2D-3D correspondences into 3D and directly optimizing for the pose that
minimizes the 3D correspondence error. In contrast to these works stand approaches that
iteratively update a CAD model pose. These works include [18] and [13] which learn a
comparison function between the original image and the rendered CAD model. Both works
maximise the learned similarity function at test time using gradient descent requiring 250
to 1000 update steps with run-times of 4 minutes and 36 seconds respectively. SPARC [24]
demonstrate that render-and-compare can be harnessed more efficiently by directly learning
to predict pose updates which proves to be a lot faster (2 seconds) and more robust to poor
initialization. Our method works similar to SPARC [24] but we demonstrate how to apply
render-and-compare to multiple objects simultaneously.
Single-object vs. multi-object. [13, 14, 21, 22, 24] all predict alignments for every CAD
model individually. While [14, 21, 22] are still fast as they use the same encoder for making
predictions for multiple CAD models, [13, 24] need to perform render-and-compare sep-
arately for every object which is slow at test time as the time increases linearly with the
number of objects in the scene. This can be very slow for scenes with many objects. In-
dependent of the speed all of these methods fail to model inter-object relations which are
valuable when attempting to predict accurate CAD alignments.
Methods like [3, 27, 37] explicitly model inter-object relations demonstrating that these can
contain valuable information for the alignment. [3, 27, 37] model object relations with a
graph where nodes represent objects and edges represent their relations with each other. In
comparison we allow our network to learn object relations by imposing less structure by hav-
ing a dense latent space where information from different objects can attend to information
regarding its own alignment and the alignment of other objects through attention.

3 Method
In this section we describe the three key steps of our method: (i) 2D object detection, instance
segmentation as well as surface normal and depth estimation (Sec. 3.1), (ii) sparse input
generation (Sec. 3.2) and (iii) pose update predictions (Sec. 3.3) where we iteratively repeat
steps (ii) and (iii). Sec. 3.4 explains the synthetic pre-training we used.

3.1 Object Detection, Instance Segmentation, Normal and Depth
Prediction

As a first step we perform 2D object detections by predicting a set of bounding boxes (BB)
and object classes (see Fig. 2) using Mask-RCNN [15]. We use the same bounding boxes,
object classes and CAD model retrievals as ROCA [14], although any other method could
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Figure 2: Method: Left side: For all 2D detections we sample the RGB values (RGB), sur-
face normals (N), depth values (D) and instance segmentation mask values (S) from inside
the detected bounding boxes and for pixel bearing (Px,Py,Pz) onto which a 3D CAD point
is reprojected. CAD model information is encoded by reprojecting 3D points and surface
normals into the image plane. Right side: Using Multi-SPARC-Net we encode information
for each alignment separately into a latent space using cross-attention. Repeating blocks of
separate cross-attention followed by self-attention layers three times we decode from each
part of the latent space separately to predict pose updates DR, DT and DS as well as a classi-
fication score s . Pose updates are used to iteratively refine CAD model poses and s is used
for choosing the best alignment from different rotation initialisations (see Fig. 4a).

be employed as well. Additionally, we use instance segmentation predictions (S) from [20]
prompted with the detected bounding boxes. For estimating surface normals (N) and depth
values (D) we follow the same training procedure as [24]. We employ a lightweight con-
volutional encoder-decoder architecture from [1]. The training losses are consistent with
state-of-the-art works for surface normal estimation [4] and for depth estimation [5]. We use
ground truth surface normals provided by [16] and ground truth depth from ScanNet [8] (for
more details see the Supp. Mat.). When training the surface normal and depth estimation
network, we respect the train and test split used in our evaluation.

3.2 Generating Sparse Inputs
Rather than processing full images we sample sparse image information as vectors through
different image channels [24]. We sample the location of those vectors from two regions, in-
side the detected bounding boxes (blue points in Fig. 2) and from pixels onto which 3D CAD
model points were reprojected (red points). The different input channels include their color
values (RGB), surface normal (N) and depth estimates (D) as well as their instance segmen-
tation mask value (S). We append to those vectors the corresponding pixel bearing (Px,Py,Pz)
(to provide information on the location of the sampled values), a token t corresponding to
the type of input (t = 0 for bounding box, t = 1 for reprojected points) and the ID of the
detection. For a single detection all vectors are stacked to make up the light blue block of
shape (Nbbox +NCAD,Cinput) in Fig. 2. We encode the 3D CAD model information of shape
(NCAD,Cinput) (dark blue block) in a similar way by sampling 3D points and corresponding
surface normals from the CAD model in the current pose R,T,S. When reprojecting those
points into the image plane we can compute the locations of the corresponding pixel bearings
and the values of their surface normal and depth. Values for the color channels (RGB) and
instance segmentation (S) are filled with zeros. For the region channel we add t = 2 and also
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include the detection ID. Together, both blocks of information make up all the information
for a given detection which is encoded separately into the latent space. This information is
sampled for all detections up to a maximum number of Nmul detections. If there are fewer
detections than Nmul inputs are padded with zeros. If there are more detections, they are split
up into multiple forward passes.

3.3 Pose Update Predictions
This subsection provides details on the network architecture, pose parameterisation, loss
function and iterative refinement procedure.
Network Architecture. Our network architecture is built on a Perceiver network [19]
with one small difference. Rather, than encoding all input information of the different
detections jointly we found it beneficial to encode them separately using a shared cross-
attention layer ([Ninput ,Cinput ], [Nlatent ,Clatent ]! [Nlatent ,Clatent ]) (see Fig. 2 right side). We
concatenate all encodings and apply two layers of self-attention ([Nmul ·Nlatent ,Clatent ] !
[Nmul ·Nlatent ,Clatent ]) which allows for processing information relevant to the alignment and
for sharing information between the different alignments. This block of per-object cross-
attention followed by two layers of self attention is repeated three times. At the decoding
stage we again decode from the relevant portion of the latent space for each detection sep-
arately. For this we reduce the [NLatent,CLatent] latent space for each object to an [CLatent]
embedding by taking the mean over the first dimension. We map this to the desired number
of output parameters Nout = 11 using an MLP. The same MLP is applied to the different
portions of the latent space to produce pose updates for every detection.
Pose Parameterisation. The outputs are the updates to the current pose (T,R,S). They
consist of a translation update DT, a rotation update DR and a scale update DS as well as a
classification score s indicating whether the starting pose was already an accurate alignment
or not. We parameterise T with polar coordinates (d,f ,q ) where d is the distance from the
camera center and f and q parameterise a vector on the unit sphere. The updated translation
T0 is given by T0 = (d ·Dd,f +Df ,q +Dq). Rotation is parameterised using quarternions
which are transformed to a rotation matrix before making the rotation update R0 = R ·DR.
Finally, S is parameterised by three axis-aligned scaling parameters and S0 = S ·DS. The
updates for scale and the distance parameter d are multiplicative rather than additive. This
is to ensure that the learned updates are decoupled from each other as much as possible. An
additive scale update will produce different effects depending on whether the object is close
and small or far away and large. In contrast, a multiplicative scale update will produce the
same result. We ensure that the predicted updates are positive by applying a sigmoid func-
tion to the predicted values. Choosing polar coordinates was again motivated by the intuition
that decoupled pose updates are easier to learn than coupled ones. While for euclidean coor-
dinates a given X prediction will have a very different effect if the object is close and small
or far and large, predicting updates for f and q will have the same effect regardless of the
distance.
Loss function. Our loss function is comprised of two components, one for learning the CAD
model alignments and one for learning the pose classifications. For learning the alignments
we introduce a loss function that unifies learning translation, rotation and scale, and does not
require any hyper-parameter tuning for weighing the relative strengths of different compo-
nents. Our loss is simply given by the L1 distance of Nloss points P sampled from the CAD
model in the ground truth pose (TGT,RGT,SGT) to the CAD model under the predicted pose
(T0,R0,S0), Lalign = ÂNloss

i=1 |F 0(Pi)�FGT (Pi)|, where F 0 and FGT denote the affine transfor-
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mations when applying S0,R0 and T0 or SGT ,RGT and TGT respectively. In general, poses are
initialised from a large range of translations, rotations and scale to ensure that at test time the
network is robust to poor detections. Consistent with previous work [21, 24], we find that
it is difficult to learn rotation updates over the entire rotation space. We therefore constrain
initialisations to be within an azimuthal angle of ±45� of RGT. At test time we initialise from
0�, 90�, 180� and 270� azimuthal angle and use the predicted pose classification s to identify
the correct prediction. For learning s we use a binary cross entropy loss. A given pose is
labelled correct if its translation, rotation and scale are within 20 cm, 20� and 20% respec-
tively, Lclassifier = LBCE(s ,sGT). Therefore the total loss is given by Ltotal = Lalign+Lclassifier.
In order to balance the training of the pose classifier we sample separate training poses which
are different from the ones used for learning the pose updates (see the Supp. Mat.).
Iterative Refinements. After a given prediction at train time the next initial poses will be
the updated poses based on the networks predictions. This ensures that the network learns to
predict pose updates for realistic poses that it is likely to encounter at test time. After repeat-
ing this 3 times a new batch of images is initialised with objects sampled in random poses.
At test time pose updates are predicted for all objects in the image which are initialised from
4 different azimuthal angles rotated 90� with respect to each other (Fig. 2 shows just one
such initialisation). For each initialisation three pose updates are predicted and in a fourth
iteration their classification score s is determined. For each detection the pose with the
highest classification score is returned as the final prediction (see Fig. 4a).

3.4 Synthetic Pre-training
For the synthetic pre-training we sample random objects from 3D-Future [11] in random
poses and render them on-the-fly with PyTorch3D [29]. We use CAD models from 3D-
Future as opposed to the CAD models from ShapeNet [6] used for our main training and
evaluation as many ShapeNet models contain holes or are poorly meshed leading to artifacts
when rendering surface normals. For more details see the Supp. Mat.

4 Experimental Setup
This section provides a concise overview of the dataset employed in training and testing,
along with an explanation of the evaluation metrics and the selected hyperparameters.
ScanNet dataset. Following the approach of [14, 21, 22, 24, 27], we use the ScanNet25k
image dataset [8] for training and testing, which includes CAD model annotations provided
by [2]. This dataset comprises 20,000 training images from 1,200 training scenes and 5,000
test images from 300 distinct test scenes. Our method is trained and tested on the top 9 cate-
gories with the highest number of CAD annotations covering over 2,500 unique shapes.
Evaluation metrics. For our main evaluation we follow the original evaluation protocol es-
tablished by Scan2CAD [2] which evaluates CAD model alignments on a per-scene basis.
We convert predicted CAD model poses into ScanNet [8] world coordinates and, similar to
[14, 24], apply 3D non-maximum suppression to remove multiple detections of identical ob-
jects from different images. For the evaluation, a CAD model prediction is deemed correct
if the object class prediction is correct, the translation error is less than 20 cm, the rotation
error is less than 20°, and the scale error is below 20%. We report the percentage of correct
alignments for each class individually as well as the overall instance alignment accuracy for
all predictions.
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Figure 3: Qualitative comparison. Particularly for multiple objects close to each other our
alignments are more accurate than existing methods (column 1 - 5). Due to the synthetic
pre-training, our network can even work from very challenging viewpoints (column 6). Fur-
thermore, our learned 3D classification score allows the network to identify potentially bad
alignments (column 7 - 8). Our network struggles to correctly classify display orientations
leading to poor performance on that class (column 9).

In addition to the per-scene alignments we evaluate per-image alignments. For this purpose
we reproject CAD models in GT poses into the individual camera frames. Note that for each
camera frame only GT CAD models whose center is reprojected into the camera view are
considered. For every predicted CAD alignment we find the associated GT CAD model by
computing the IoU of the 2D bounding boxes and finding that GT CAD model of the same
category with maximum IoU. In order to avoid penalising for objects that are not visible due
to occlusion we only consider GT objects for which at least 50% of pixel have the rendered
depth value within 30 cm of the GT sensor depth value. Similar to the per-scene metric we
evaluate the alignment accuracy by computing the percentage of predictions whose errors
for rotation, translation and scale are within the same thresholds as above. Additionally we
compute APmesh introduced by [12]. It is defined as the mean area under the per-category
precision-recall curves for Fr at different thresholds. The Fr score is the harmonic mean of
the fraction of points sampled from the predicted aligned CAD model that are within r of a
point sampled from the GT aligned CAD model and the fraction of points sampled from the
GT CAD model within r of a point sampled from the predicted CAD model. We evaluate
AP50, which considers a prediction to be correct if Fr > 0.5, as well as AP mean which takes
the average across the ten AP scores AP50, AP55,...,AP95 sampled in regular intervals.
Hyperparameters. For our inputs we sample Nbbox = 2000 pixels inside the predicted
bounding box which is uniformly extended by 10% and use NCAD = 500 points from the
CAD model. Ninput = (Nbbox + 2NCAD) and Cinput = 13. We set the number of latents
Nlatent = 80 where each latent has Clatent = 256 channels. We choose Nmul = 5 which means
that a maximum of 5 CAD models are processed jointly. If an image contains more than 5
detections the detections are split into multiple blocks. We show in the Supp. Mat. that we
achieve similar results with larger numbers of Nmul . We use batches of 20 images and use
the Lamb optimisier [35] with learning rate set to 0.001. We sample Nloss = 1000 points for
computing the loss. Our model is pretrained on 10 M rendered images containing between 1
and 4 CAD models in random poses.
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Method bathtub bed bin bkshlf cabinet chair display sofa table class instance time [ms]
Number of Instances # 120 70 232 212 260 1093 191 113 553 9 2844 -

Ablation experiments

Joint Encoding and Decoding separate encoding - joint decoding 17.5 21.4 26.7 9.9 15.0 45.7 3.1 29.2 17.5 20.7 27.9 864
joint encoding - separate decoding 18.3 34.3 36.6 12.7 14.2 52.8 4.7 25.7 17.5 24.1 31.9 656

Single vs Multi
Pre-training vs. No Pre-trainig

single-object - no pre-training 20.8 24.3 39.2 12.7 22.7 57.5 2.1 24.8 19.2 24.8 34.6 2320
multi-object - no pre-training 20.0 28.6 40.1 13.7 20.4 59.9 0.5 36.3 23.0 26.9 36.7 864
single-object - pre-training 28.3 35.7 36.6 20.3 23.1 61.4 4.8 37.2 23.5 30.2 38.7 2320
multi-object - pre-training 25.8 34.3 44.8 17.0 19.2 64.8 5.8 35.4 25.5 30.3 40.3 864

Sparser and Faster Nbbox = 200, NCAD = 200 - joint encoding 25.0 34.3 33.6 14.2 17.7 56.6 2.6 35.4 21.2 26.7 34.8 480
Nbbox = 50, NCAD = 50 - joint encoding 14.2 25.7 31.0 9.9 18.1 55.0 7.3 29.2 22.8 23.7 33.4 448

Learned Classification Score 2D confidence 27.5 31.4 45.3 16.0 20.4 60.6 5.8 38.9 25.1 30.1 38.8 816
3D classification 25.8 34.3 44.8 17.0 19.2 64.8 5.8 35.4 25.5 30.3 40.3 864

Comparison to other methods - per-scene evaluation

Single-view

Total3D-ODN [27] 10.0 2.9 16.8 2.8 4.2 14.4 13.1 5.3 6.7 8.5 10.4 -
Mask2CAD-b5 [21] 7.5 2.9 24.6 1.4 5.0 29.9 13.1 5.3 5.6 10.6 16.7 60

ROCA [14] 20.8 8.6 26.3 9.0 13.1 39.9 24.6 10.6 12.7 18.4 25.0 53
SPARC [24] 25.8 25.7 24.6 14.2 20.8 51.5 17.8 28.3 15.4 24.9 31.8 1925

Ours 25.8 34.3 44.8 17.0 19.2 64.8 5.8 35.4 25.5 30.3 40.3 864
Multi-view Vid2CAD [26] 27.5 35.7 45.7 9.9 21.5 63.4 33.0 24.8 25.8 31.9 41.0 2500

Table 1: Alignment Accuracy on ScanNet [2, 8] in % for the per-scene evaluation in com-
parison to the state-of-the-art. Bolded numbers denote the highest accuracy for the single-
view methods. Times are for reconstructing a scene containing 5 objects. The yellow row
highlights the reference for comparing ablations for “joint encoding and decoding” as well
as the “sparser and faster” experiments for which no pre-training was performed. The orange
row are our main results.

Implementation Details. All code is implemented in PyTorch. Pre-training our main model
takes 6 days on a single TitanXp. Finetuning on ScanNet25k for 500 epochs takes 2 days.

5 Results
This section explains our qualitative and quantitative results. We first ablate major design
choices in the network architecture and training procedure and subsequently compare our
method to the state-of-the-art. If not stated otherwise numbers in the following refer to the
overall instance alignment accuracy of all objects on ScanNet [8].
Separate Encoding and Decoding. When performing multi-CAD model alignment with
a transformer-based [32] architecture, naively one would simply concatenate all inputs,
marking information for different alignments with different tokens, and hoping that the
network will learn to regress all pose updates jointly. The first two rows in Tab. 1 show
results for the experiments where we perform joint decoding or joint encoding. For the
former we reduce all latents [Nmul ·Nlatent ,Clatent ] ! [Clatent ] by taking the mean over the
first dimension and then learning an MLP to map to Nmul · Nout directly. For the latter
we have one large cross attention that maps from all the concatenated inputs to all latents
([Nmul ·Ninput ,Cinput ], [Nmul ·Nlatent ,Clatent ]! [Nmul ·Nlatent ,Clatent ]). Comparing the instance
alignment accuracy 27.9% and 31.9% to the alignment accuracy for the multi-object results
without pre-training 36.7% we find that both separate encoding and separate decoding are
crucial for good alignments, with separate decodings being even more important. The intu-
ition behind this is that it is not easy for the network to learn to associate input information
from different CAD models to the correct output values and encoding and decoding sepa-
rately helps with this.
Single vs. Multi-object and Pre-training vs. No Pre-training. Our experiments show
that performing CAD model alignments jointly leads to slightly more accurate alignments
(36.7% vs. 34.6% without pre-training, 40.3% vs. 38.7% with pre-training). Reasons why
learning joint-alignments does not help even more may include noise in the annotation data,
making if difficult to learn exact relations, as well as a higher chance of overfitting to entire
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Figure 4: Pose selection, calibration and loss functions. a) We use the predicted classifica-
tion score to select the final object predictions from 4 different rotation initialisations. b) The
classification score is also used in the ScanNet evaluation to filter out duplicate predictions.
Compared to the 2D confidence scores (green) from [14] our 3D classification score (blue) is
significantly better calibrated. c) Synthetic pre-training leads to lower losses during training
and testing as well as a higher instance alignment accuracy on the test set.

scenes as opposed to single alignments. When comparing results with and without synthetic
pre-training we find significant improvement of 4%. This indicates that even training on a
different set of CAD models synthetically rendered in random poses provides useful training
signals that transfer to real images. Inspecting Fig. 4c we find that the pre-trained model
achieves both a lower train and test loss leading to a higher instance alignment accuracy on
the test set.
Sparser and Faster. Another advantage of performing alignments for multiple CAD models
jointly as opposed to in sequence is that it is a lot faster. The times in Tab. 1 include the time
for processing the input data (23 ms, for the main network architecture and inputs in row
4)) as well as a forward pass through the network (31 ms). These steps have to be repeated
four times for the refinement procedure (3 refinement + 1 final classification score) from four
different initialisations (see Fig. 4a) leading to a total time of 4⇥ 4⇥ (23+ 31) = 864 ms.
By processing very sparse inputs i.e. Nbbox = 200 and NCAD = 200, reducing the number of
latents Nlatent = 40 and encoding input information jointly, we can reduce both the time for
processing the inputs (16 ms) as well as the forward pass (14 ms) and almost halve the total
run-time to 480 ms. If not initialised from four different rotations (as would be realistic for
example in a video setting where the rough object rotation is known from previous frames)
this approaches the speed of single-shot methods while being considerably more accurate.
Interestingly, this network variant is more accurate than the one encoding the full inputs
jointly in the second row. This may indicate that it is easier for the network to learn to sep-
arate information for multiple alignments when presented with fewer inputs. Row 8 shows
results for even sparser inputs, resulting in further small gains in speed.
Learned classification score. Rather than just predicting pose updates we also learn classi-
fication scores indicating whether a given alignment is accurate or not. We use these learned
classification scores to select the best alignment from multiple rotation initialisations (see
Fig. 4a) as well as to select from multiple predictions of the same object from different
images in the Scan2CAD [2] evaluation. We compare to the 2D detection confidence from
ROCA [14] and note a small improvement (40.3% compared to 38.8%). More importantly,
plotting the mean accuracy of the predictions sorted by the confidence we find that our 3D
classification score is significantly better calibrated (see Fig. 4b).
Comparison to other methods - per-scene evaluation. We compare our method to other
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APmesh Alignment Accuracy
AP50 APmean AP50 APmean AP50 APmean class instance

r 0.3 0.3 0.5 0.5 0.7 0.7 - -
ROCA [14] 1.8 0.4 10.8 3.0 20.3 7.1 16.1 18.4
SPARC [24] 2.4 0.5 9.8 3.0 19.1 7.0 15.9 17.4

Ours 11.6 3.4 27.0 11.5 36.4 18.7 28.1 31.3

Table 2: Per-image alignment accuracy and APmesh score on ScanNet [8]. Both AP
scores and alignment accuracies are reported in %. The r value controls the threshold for
computing the F1 score in the AP calculation. Smaller r values require points sampled from
the predicted aligned CAD model and the GT aligned CAD model to be closer together and
therefore more accurate poses. Before computing the F1 score both CAD models are re-
scaled isotropically such that the longest side of the 3D bounding box of the GT CAD model
is equal to 10. Therefore for a typical object of maximum width and height equal to 1 m
r = 0.5 requires points sampled from the predicted CAD model to be within 5 cm of the GT
CAD model and vice versa.

state-of-the-art CAD model alignment procedures [14, 21, 24, 27]. Quantitatively compar-
ing against those methods we find that we improve significantly upon the instance alignment
accuracy from 31.8% to 40.3% and the class mean accuracy from 24.9% to 30.3%. We also
improve in most categories with the notable exception of displays. Here our learned classifi-
cation score struggles to distinguish between front and back-facing displays which look very
similar when only sparse pixels are provided (see Fig. 3 last column).
Comparison to other methods - per-image evaluation. The advantages of our method
compared to previous methods are even more pronounced on the per-image evaluation then
they were on the per-scene evaluation (see Tab. 2). The class and instance alignment accu-
racy almost double compared to previous methods (28.1% vs. 16.1% and 31.3% vs. 18.4%).
AP50 and APmean show even greater relative improvements, e.g. at r = 0.5 AP50 improves
from 10.8% to 27.0% and APmean improves from 3.0% to 11.5%. The reason why the im-
provements of our method compared to the previous ones are even more pronounced on the
per-image compared to the per-scene evaluation is that the per-scene evaluation requires only
one very accurate prediction for each object from any frame whereas the per-image evalua-
tion has a high number of challenging viewpoints. Here both the multi-object predictions as
well as the synthetic pre-training significantly increase the accuracy of the predictions.

6 Conclusion
We introduced a novel render-and-compare approach that jointly aligns multiple CAD mod-
els to objects in an image. This provides advantages for both speed and accuracy at test time,
improving the run-time by a factor of up to 5 and improving the instance alignment accu-
racy on ScanNet [8] from 31.8% to 40.3%. We demonstrate that some of this improvement
stems from pre-training our network on a large number of random synthetic scenes. The
fact that those scenes contain objects different to the ones the network is tested on highlights
the ability of our render-and-compare approach to generalise. Furthermore, we learn to pre-
dict not just pose updates but also classification scores that can be used for selecting a final
pose from different candidates. In the future we would like to extend render-and-compare to
multi-view scenarios as well as using larger foundational models in a render-and-compare
setting to reconstruct 3D scenes.
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Supplementary Material
Here we provide additional information to our main work. Sec. A provides information for
the training of the surface normal and depth estimation networks. In Sec. B we explain in
detail what training examples are used for training Multi-SPARC-Net to predict pose updates
and classification scores. Sec. C provides ablation experiments for the maximum number of
joint predictions and the size of the latent space. Sec. D explains what CAD models were
used for the synthetic pre-training. Finally, we highlight the major points of the provided
video showing qualitative results on ScanNet in Sec. E.

A Details for Training Surface Normal and Depth
Networks

We utilize a lightweight convolutional encoder-decoder architecture [1] to estimate both sur-
face normals (NImg) and depth (DImg). The per-pixel probability distribution for each task is
predicted, and the network is trained by minimizing the negative log-likelihood (NLL) of the
ground truth. Learning parameters of probability distributions allows the networks to pre-
dict high uncertainty around object edges where GT annotations can often be wrong. This
improves the quality of training [4]. The distribution for surface normals is parameterized
using the Angular vonMF distribution proposed in [4], while the depth distribution is param-
eterized with a Gaussian distribution. After training, we only consider the predicted mean
values, discarding the uncertainty. The ground truth surface normals are provided by [16],
and the ground truth depth is obtained from ScanNet [8], following the train/test split. For
depth estimation, we train the network on the available two million train images, while for
surface normals, we train on the annotated images provided by [16] within the train image
set, resulting in approximately 200K train images. Both networks are trained for ten epochs
using the AdamW optimizer [25], and the learning rate is scheduled using the 1cycle policy
[30] with lrmax = 3.5⇥ 10�4 (same as [5]). A batch size of four is used for training both
surface normals and depth networks. The steps described are consistent with the training
protocol of [24].

B Joint Training Pose Updates and Pose Classifier
We train Multi-SPARC-Net to predict both pose updates as well as a classification score s in-
dicating whether the initial pose is correct. Similar to our evaluation a pose is classified to be
correct if its translation DT is within 20 cm, its rotation DR within 20� and its scale DS within
20% of the ground truth values. If we simply trained the network to predict classification
scores from the initialisation used for learning pose updates, the classification scores would
be heavily biased towards correct alignments as even after just a single CAD pose update the
vast majority of poses would classify as correct. We therefore sample separate examples for
training the pose classifier. For these separate examples no loss is backpropagated for the
predicted pose updates (similar no loss is backpropagated from the classification score for
the examples used to train the pose updates). Examples for training the pose classifier versus
the pose updates are sampled with a ratio of 1:3.
Sampling poses for training the pose classifier. Those examples are sampled from the
five different regions stated in Tab. 3. Here DR, DT and DS denote the maximum bounds
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Region DR [tilt, azim, elev] in [�] DT [cm] DS[%] Discrete Rotation Sampling Frequency
Region 1 [7,10,10] 13 13 False 0.4
Region 2 [7,10,10] 13 13 True 0.2
Region 3 [7,45,20] 30 30 False 0.2
Region 4 [7,45,20] 30 30 True 0.1
Region 5 [20,45,20] 60 60 True 0.1

Table 3: Different pose regions for drawing samples when learning to classify poses.
DR, DT and DS denote the maximum bounds from the ground truth values in which range
rotation R, translation T and scale S are sampled uniformly. When discrete rotation is set
to True the rotation is randomly rotated (with equal probability) by 0�, 90�, 180� and 270�
around the vertical. The sampling frequencies denote the relative frequency for sampling
from the different regions.

from the ground truth values in which range rotation R, translation T and scale S are sam-
pled uniformly. Note that DR denotes the difference to the ground truth rotation in terms
of Euler angles for tilt, azimuthal and elevation angle (in order). DT denotes the maximum
difference to the ground truth translation in cm for x, y and z component. DS indicates the
maximum difference in % to the ground truth scale values in the three axes. Discrete rotation
implies that the rotation is randomly rotated (with equal probability) by 0�, 90�, 180� and
270� around the vertical. This is to ensure that the network is exposed to examples with the
correct translation and scale but with a wrong rotation which it will encounter at test time
as we use the classification score to select the final alignment from different rotation initial-
isation. Note that the symmetry of objects is taken into account when determining if a pose
should be classified as correct or not. Poses from these regions are sampled with frequency
as indicated in the last column in Tab. 3. While the exact numbers in the sampling regions
above do not matter, it is important to roughly balance the number of correct and incorrect
poses and to ensure that the poses the network is likely to encounter at test time are covered
in the training examples.
Sampling poses for training the pose updates. For learning the pose updates we sample
the initial pose as follows. T is sampled by uniformly sampling a point within the pre-
dicted bounding box and then lifting that point into 3D by providing a z value sampled
z ⇠ Uniform(1,5) in metres. The scale S is sampled uniformly within the range of the mini-
mum object scale and maximum object scale for all CAD model alignments of this category
on ScanNet [8] by [2]. Finally, R is sampled uniformly within 10� tilt, 45� azimuthal and
20� elevation angle of the ground truth rotation.

C Simultaneous Prediction for Larger Number of CAD
models

In Tab. 4 we show results when varying the maximum number of joint predictions Nmul and
the number of latents Nlatent dedicated to each alignment. Here we observe that compared to
our main setup (highlighted in yellow) we can reduce the number of latents by a factor of two
while still achieving very similar accuracies. Further, we note that increasing the number of
joint alignments also achieves similar results. This brings extra advantages for speed when
reconstructing scenes containing many objects.
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Method bathtub bed bin bkshlf cabinet chair display sofa table class instance time [ms]
Number of Instances # 120 70 232 212 260 1093 191 113 553 9 2844 -
Nmul = 5 , Nlatent = 40 20.0 24.3 41.4 12.7 16.2 60.2 3.7 28.3 23.7 25.6 36.4 848
Nmul = 5 , Nlatent = 80 20.0 28.6 40.1 13.7 20.4 59.9 0.5 36.3 23.0 26.9 36.7 864

Nmul = 10 , Nlatent = 20 20.0 25.7 40.1 11.8 20.4 60.7 4.7 29.2 19.5 25.8 36.1 944
Nmul = 10 , Nlatent = 40 16.7 27.1 41.8 13.7 18.8 57.8 2.6 31.9 21.5 25.8 35.4 960

Table 4: Ablation. Alignment Accuracy on ScanNet [2, 8] when varying the number of CAD
models Nmul for which predictions are made jointly and the number of latents Nlatent dedi-
cated to the processing of the information for each alignment. Times are for reconstructing
a scene containing containing 5 or 10 objects respectively. Note that doubling the number of
objects only leads to a marginal increase in time. The yellow row highlights the main setup
for which no pre-training was performed from the results table in the paper.

D Artifacts Rendering ShapeNet Normals
For the synthetic pre-training we render CAD models in a large number of random poses
and train Multi-SPARC-Net on those poses. Objects in the scenes from ScanNet [8] were
annotated by [2] with CAD models from ShapeNet [6]. Those CAD models are used for
the main training and evaluation. However, when rendering ShapeNet [6] CAD models with
PyTorch3D [29] we get the semi-random patterns for surface normals as seen in Fig. 5a. This
is because the simple Normal Shader we implemented in PyTorch3D [29] identifies which
CAD model face is rendered into a given pixel and then interpolates the per-vertex surface
normal value from the three vertices of the given face. The issue with rendering the original
ShapeNet [6] models is that many of them are not closed or contain doubly-meshed faces,
meaning that the mesh contains two identical faces with the order of two vertices swapped
such that their surface normals will point in opposite directions. Rendering these means that
front or back-facing surface normals will be selected at random for the interpolation, leading
to the wrong surface normal renderings in Fig. 5a. We try to make ShapeNet [6] CAD
models watertight with consistently oriented faces using [17]. While this allows us now to
render CAD normals (Fig 5b) the generated surface normal renders sometimes still suffer
from noise when the procedure for making the CAD models watertight did not succeed.
Further, making the models watertight using [17] increases the median number of vertices
from just 600 to 130 K which makes the CAD models impractical for us to use as it massively
increases the rendering time. Instead we choose to perform our synthetic training on CAD
models from 3D Future [11] which are already watertight and yield correct surface normals
when rendering in PyTorch3D [29] (see Fig. 5c).

E Video with Qualitative Visualisation
We provide a video comparing our predictions qualitatively to ROCA [14] and SPARC [24]
on ScanNet [8] (https://www.youtube.com/watch?v=NtOU5BOmagw). Note that
for our predictions the color indicates the value of the learned classification score. For ROCA
[14] and SPARC [24] the color indicates the value of the 2D detection score which is not up-
dated based on the refinement for SPARC [24]. As explained in Sec. 3.3 of the main paper
we initialise CAD models from four different rotations. In the video we only show those
alignments corresponding to that rotation initialisation which led to the highest classification
score after three refinements. This is why some of the initialisation between SPARC [24] and
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ShapeNet CAD models - original
RGB Normal Depth RGB Normal Depth

3D Future CAD modelsShapeNet CAD models - watertight
RGB Normal Depth RGB Normal Depth RGB Normal Depth RGB Normal Depth

a) b) c)

Figure 5: Comparison when rendering ShapeNet [6] CAD models and 3D Future [11]
CAD models using PyTorch3d [29]. We find that rendering normals for the original (a)
as well as the processed watertight ShapeNet [6] CAD models (b) results in artifacts and
therefore use CAD models from 3D Future [11] instead which result in correct renders (c).

Figure 6: Video with Qualitative Visualisations.

ours are different. However, apart from selecting the rotation initialisation, the initialisations
between SPARC [24] and ours are the same.
While ROCA’s [14] predictions are often inaccurate, suffering from displacements and wrong
scale predictions, we find that our predictions are accurate. Particularly, they are are also
more accurate than SPARC’s [24] predictions, matching object outlines more closely due to
the synthetic pretraining and yielding more accurate alignments for objects in close proxim-
ity to each other due to the mulit-object training and predictions. Interestingly, we find that
Multi-SPARC-Net learns to rotate objects by more than 90� around the vertical over multiple
refinements even though at train time it only ever learned to predict updates that were less
than 45� away from the correct rotation.
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