
A Background of Embedding Table Placement

In this section, we provide a background of embedding table placement problem (also called em-
bedding table sharding [27, 8] since it essentially partitions the tables across different devices). In
Section A.1, we introduce a background of distributed training of recommendation models. Sec-
tion A.2 lists some important table features, which characterize the table accessing patterns and are
highly related to computation/communication costs. Section A.3 further provides an in-depth analysis
of the correlation between the computation/communication costs and the table features. Finally, we
discuss the difference between forward and backward communication times in Section A.4.

A.1 Distributed Training of Recommendation Models and Embedding Tables

Industrial recommendation models often require massive memory consumption and high training
throughput. Thus, distributed training solutions have been developed to train recommendation models.
While various recommendation models have been developed in the past decades, they often rely on
embedding tables to map sparse categorical features to dense vectors [8, 9, 7, 70, 71, 72]. We take
DLRM [3] as an example to introduce distributed training design since DLRM is the core of the
official package of PyTorch for recommendation models3 and is commonly used in both academia
and industry.
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Figure 9: A typical distributed training framework for recommendation models [3]. The figure is
adapted from [33].
Figure 9 shows an overview of the DLRM model. DLRM processes two types of features, i.e., dense
features, and sparse features. Dense features are numerical values and are directly processed with
MLPs in DLRM. Sparse features are categorical features. For example, in the context of YouTube
video recommendation, a possible sparse feature can be video IDs. For the sparse features, DLRM
adopts embedding tables to map the categorical features to dense vectors. Specifically, each row
of an embedding table corresponds to a feature value (i.e., video ID), and the number of columns
corresponds to the vector dimension. Given a list of feature values, an embedding table lookup is
performed to obtain the vectors. For each feature value, a corresponding vector is obtained from
the table via hashing. Then all the obtained vectors are summed to obtain a fixed-dimension vector.
The embedding lookup is performed for all the tables. The obtained vectors are processed by MLPs,
and then will be interacted with the dense representations to obtain the final representation. The

3https://github.com/pytorch/torchrec
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final MLP will be processed by another MLP, which maps the representation to the predictions (e.g.,
click-through rate).

However, in real-world applications, the embedding tables can become extremely large and can not be
fed into a single GPU. Meanwhile, the dataset can also be extremely large so using one GPU may not
meet the high training throughput requirement. To accommodate the massive memory and training
throughput requirements, DLRM adopts a combination of data-parallelism and model-parallelism.
For the data-parallelism, DLRM replicates MLPs on each device and partitions training data into
different devices. In this way, each device only needs to process its own mini-batch of data, achieving
higher training throughput. For the model-parallelism, the embedding tables are placed on different
devices. With this design, in the forward pass, the embedding lookup for a certain feature value will be
performed by querying the device that actually holds the corresponding table. For example, suppose a
feature value in the training data of device 1 corresponds to table 1. If table 1 is unfortunately placed
in device 2, then device 1 will query device 2 to obtain the vector via communication. The above
communication is essentially very frequent if we feed a batch of data for training. Thus, in actual
implementations, such communication is often batched by sending a batch of data at a time (termed
all-to-all communication since there is often communication between each pair of the devices). In the
backward pass, the accumulated gradients will be similarly sent back to the device that actually holds
the table. In the above example, device 1 will calculate the gradient and send the gradient tensor back
to device 2 to update the embedding table.

We summarize the overall training procedure of DLRM as follows. In the forward pass, each
device samples its own mini-batch of data, which contains a batch of dense features and a batch
of sparse features. The dense features will be simply processed by the duplicated MLP to obtain
dense representations. The sparse features (i.e., feature values, or the indices of embedding tables)
will be sent to the corresponding devices for embedding lookup. Then each device will perform
the embedding lookup for the tables that are placed on the device (forward computation). The
obtained vectors are sent back to the device that launches the query, which is essentially an all-
to-all communication since each device will communicate with all the other devices (forward
communication). The obtained vectors will be interacted with the dense vectors to obtain a final
representation, followed by a prediction head to make the predictions. In the backward pass, the
gradient will be passed backwardly from the prediction loss. Updating the dense part is straightforward
since it is the same as the standard backpropagation. For the sparse counterpart, the gradient of each
vector needs to be sent back to the device that actually holds the corresponding table, which leads to
another all-to-all communication (backward communication). Then, the gradient will be applied to
the embedding tables to update the embedding weights (backward computation). At the end of the
backward pass, the weights of the duplicated MLP will be synchronized.

We only focus on optimizing the cost of the sparse part of the model, i.e., the cost of embedding
tables, including forward computation, forward communication, backward communication, back-
ward computation. This is because the costs of embedding computation and communication often
dominate the overall training efficiency. For example, in our internal training pipeline of production
recommendation models (which is already well optimized with numerous iterations), the cost of
embedding tables account for 48% and 65% of the total computation and communication costs,
respectively. Meanwhile, the embedding table cost is orthogonal to other costs, such as data loading,
dense feature processing, etc. This means embedding table cost optimization can be considered
as an independent task, which will contribute to the overall training throughput. We note that the
embedding computation and communication can be performed simultaneously with the computation
of the dense MLP. The bottleneck depends on which part takes more time. However, we observe in
production models that embedding cost is often significantly larger than the dense MLP cost due to
the extremely large embedding tables, which aligns with the observations from previous studies [8, 6].
Thus, the dense MLP cost is often “hidden“ by the embedding table cost, and embedding table cost
becomes the bottleneck during model training.

Optimizing the embedding table cost is very challenging because it has very complex computation and
communication patterns. First, embedding computation or communication alone has very complex
relationship with the embedding lookup patterns (we will provide detailed quantitative analysis of
this in Section A.3. Second, the forward/backward computation/communication costs can have
interactive effects. For example, if the forward communication of a device is significantly larger
than those of the other devices. Then the other devices need to wait until this device finishes the
forward computation so that they can obtain the queried embedding vectors. Similarly, the backward
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computation for a device can only start after the device receives all the gradients in the backward
communication.

As a result, different embedding table placements will significantly impact the embedding cost in
several aspects. First, a good combination of embedding tables may lead to faster forward/backward
computation since it may enable a more efficient kernel implementation. Second, balancing the
forward computation time can reduce the waiting time before the forward communication starts.
Third, balancing the backward computation time will also reduce the waiting time. Forth, balancing
the number of amount of data being sent can accelerate the all-to-all communication.

However, optimizing embedding table placement is very challenging. This partition problem is
known to be NP-hard4, which means the number of possible placements grows exponentially with
more tables. Additionally, due to the complexity of the embedding table cost discussed above, it is
hard to optimize the placement in an analytical way. This motivates our work of DreamShard, which
leverages RL to optimize the embedding table placement in a trial-and-error fashion.

A.2 Embedding Table Features

We define several embedding table features to characterize embedding tables. These table features
are highly correlated to the computation and communication workloads. Thus, in DreamShard, they
serve as the input of the cost network and the policy network. In total, we use 21 features, which are
defined as follows.

• Dimension (dim, 1 feature): It is the dimension of each embedding vector, i.e., the number
of columns of the embedding table. It is a critical table feature since it determines the
workloads of both computation and communication. For computation, the forward pass
requires fetching the embedding vectors, and the backward pass will apply gradients to the
embedding vectors, both of which have a computational complexity that increases linearly
with the vector dimension. For communication, the vector dimension determines the data
size, which will impact the communication time.

• Hash size (1 feature): It is the number of embedding vectors in the embedding table, i.e., the
number of rows of the table. It is called hash size because embedding lookup is essentially a
hashing operation. While hashing is often believed to have O(1) time complexity, which
means the lookup time does not depend on the hash size, we find that hash size can still
impact the lookup time because of caching mechanism. Specifically, modern GPUs often
have L1/L2 caches, which are small but faster memories. If hash size is small, a larger
portion of the embedding vectors can be put into the caches such that the lookup will be
faster. In contrast, a large hash size will lead to a smaller portion of the embedding vectors
being cached such that the lookup time will be larger.

• Pooling factor (1 feature): It is the number of embedding indices in a lookup. For example,
in YouTube video recommendation, a user may have watched multiple videos in the past.
If a feature corresponds to “all the videos that were watched in the past”, then we need
to fetch all the embedding vectors that correspond to these video IDs from the table. In
this context, pooling factor refers to the number of video IDs. Like dimension, pooling
factor decides the workload of computation. In the forward pass, a larger pooling factor will
result in more embedding vectors being fetched and summed, which will naturally lead to
more computation. Similarly, in the backward pass, more computation will be required to
update the embedding vectors with the gradients. Note that pooling factor usually will not
impact communication since it does not decide the data size in communication. Since we
often adopt mini-batch training, which means a batch of indices will be used to perform
embedding lookup, we use the mean pooling factor as the table feature. Specifically, for a
batch of indices, we calculate mean value of the pooling factors of all the training samples
in the batch.

• Table size (1 feature): Table size is the memory consumption of the embedding table in
GBs. It can help the agent reason about satisfying the memory constraints of devices.

• Distribution (17 feature): It refers to the accessing frequencies of all the indices of a
table. Specifically, certain indices can be accessed far more frequently than other indices.

4https://en.wikipedia.org/wiki/Partition_problem
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Modern embedding table implementation will exploit such patterns with caching. The
indices that are frequently accessed will tend to be put into the L1/L2 cache for acceleration.
For a batch of 65, 536 indices, we use 17 bins, including (0, 1], (1, 2], (2, 4], (4, 8], (8, 16],
(16, 32], (32, 64], (64, 128], (128, 256], (256, 512], (512, 1024], (1024, 2048], (2048, 4096],
(4096, 8192], (8192, 16384], (16384, 32768], and (32768,∞). We count the number of
appearances of each index and assign the count to the corresponding bin. Finally, we
normalize the counts and make them sum to 1, which leads to a probability distribution with
17 table feature values.

A.3 Quantitative Analysis of Computation and Communication Times

Embedding table placement is a very challenging problem because it is hard to estimate the costs
without running the operations on GPUs. The main challenges include the non-linear relationship
between the table cost and table features, operation fusion, and complex communication patterns.
Here, we provide a quantitative analysis of these phenomena. All the results are collected using a
modern embedding bag implementation from FBGEMM5 [22] from 2080Ti GPUs. Note that the
results in Section A.3.1 and Section A.3.2 are originally collected in [33].

A.3.1 Relationship Between Table Cost and Table Features

Recall that in Section A.2, we have defined some table features, which can quantify the workloads
of computation. However, due to the parallelism of GPUs, the actual table cost has a non-linear
relationship with the table features. Here, we study the relationship between single-table cost and
dimension, hash size, pooling factor, and distribution (table size is excluded because it can be
essentially inferred from dimension and hash size). Dimension and hash size describe the table itself
since they define the numbers of rows and columns of the table, respectively. The pooling factor and
distribution characterize the indices assessing patterns, where the pooling factor measures the overall
workload, and the distribution features measure the sparsity of the indices distributions. Now we
analyze the above two types of features separately with synthetic embedding tables and indices.
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Figure 10: Influence of the hash size and the dimension on single-table cost. The results are originally
collected from [33].
We study the impact of dimension and hash size with the pooling factor fixed as 32 and indices to
be uniformly distributed. We vary the hash size from 2 × 105 to 6 × 105 and dimension from 22

to 210. We measure the kernel time (the sum of the forward and backward computation times) of
the embedding operation for each of the combinations of hash size and dimension. The heat map of
embedding cost is shown in Figure 10. We make three observations. First, a higher dimension will
significantly increase the kernel time. This is expected since the embedding dimension corresponds
to the size of the data to be fetched in the forward pass and the size of the data to be updated with the
gradients in the backward pass. Second, while hash size only has a moderate impact on the table cost,
a large hash size leads to a higher table cost. This also aligns with our intuition since a larger hash

5https://github.com/pytorch/FBGEMM/
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size will lead to a smaller portion of the indices being cached. Third, we find that the table cost has a
non-linear relationship with both dimension and hash size.

Next, we study the impact of pooling factor and indices distributions with the hash size fixed as
106 and dimension fixed as 32. We vary the mean pooling factor from 20 to 28. For the indices
distribution, some indices could be accessed far more frequently than others [8]. We simulate this
phenomenon in our synthetic indices by only allowing a subset of all the embedding vectors to be
accessed. Specifically, we define accessed indices ratio as the ratio of the embedding vectors that can
be accessed in the embedding table. For example, a ratio of 1.0 suggests the indices are uniformly
distributed. A ratio of 10−3 means only 0.1% of all the embedding vectors can be accessed. This
means that those 0.1% of embedding vectors are “warm” vectors and can be accelerated with caching.
Note that there can be many ways to simulate the indices distributions. Here, we only focus on
the most simple one, which masks a subset of the embedding vectors. The impacts of the pooling
factor and accessed indices ratio are illustrated in Figure 11. We make three observations. First,
a larger pooling factor will significantly increase the table cost. This is because a larger pooling
factor suggests more computation cost of fetching and updating the embedding vectors. Second,
sparser indices distribution tends to have lower table cost, which could be explained by the caching
mechanism. Third, the table cost has a complex and non-linear relationship with pooling factor and
indices distributions.
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Figure 11: Influence of the indices distribution and the pooling factor on single-table cost. The results
are originally collected from [33].
In the above analysis, we separately studied two table features with the other features fixed. However,
it is possible that these features have an interaction effect, which could make the table cost even more
challenging to estimate. Thus, when developing DreamShard, we are motivated to use a cost network
to directly predict the table cost in a data-driven manner.

A.3.2 Analysis of Operation Fusion

Operation fusion [21] is a common acceleration strategy that uses a single operation to subsume the
computation performed by multiple operations. It is particularly effective for embedding tables due
to batching. It can often lead to significant speedup in operation computation time. Unfortunately,
the operation fusion also makes the multi-table costs hard to predict. Here, we analyze the operation
fusion by randomly sampling 10 tables from the DLRM dataset and comparing its multi-table cost
and the sum of the single-table costs. We consider the sum of the single-table costs as the baseline
because it represents the case without any acceleration. We repeat the sampling 50 times and plot the
results in Figure 12.

We make two observations as follows. First, the multi-table cost is significantly lower than that of
single-table cost. This is expected since operation fusion can accelerate the operation. The results
show that operation fusion can lead to roughly 1.5X speedup when we have 10 tables. Second, while
the multi-table cost is in general positively correlated with the sum of single-table costs, they are
not linearly correlated. Specifically, the actual speedup is case-by-case, which may depend on many
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Figure 12: Mult-table cost = the sum of single-table costs? Mult-table cost is smaller than the sum
of single-table costs, where the speedup ranges from 1X to 3X. They do not have a clear linear
correlation. Assuming that the multi-table cost has a linear correlation with the sum of single-table
costs and the single table cost estimation is perfect, we grid-search the correlation efficiency in the
range of [1.0, 2.0] with a step size of 0.001. The best MSE we found is 77.97, which is significantly
worse than our cost network (our cost network can have less than 1.0 MSE). The results are originally
collected from [33].

factors. The results suggest that simply using the sum of single-table costs to estimate the multi-table
cost is inaccurate.

In our embedding placement process, we inevitably need to estimate the multi-table costs. Unfor-
tunately, the above analysis suggests that we may not be able to get an accurate estimation without
actually running the multi-table operations on GPUs. This motivates us to develop a neural cost
network to directly approximate the multi-table costs.

A.3.3 Analysis of Communication

Embedding tables in recommendation models have very complex communication patterns because
of combined model-parallelization and data-parallelization. Specifically, we require all-to-all com-
munication to send the embedding vectors or gradients from device to device. Since there are often
limited bandwidths among GPUs, if the data are not distributed in a balanced way, then it may take
significantly more time for communication. Here, we analyze the communication costs with different
degrees of balance.

The communication cost depends on the amount of data to be sent to each device. In the context of
embedding table placement, we mainly need to send the summed embedding vectors, whose sizes
are determined by the batch size and the table dimension. Since batch size is pre-determined, the
communication cost is essentially decided by the sum of table dimensions in each GPU device. Thus,
in our empirical analysis, we adjust the sums of table dimensions for the GPUs to simulate different
levels of imbalance. Specifically, we fix the batch size to be 65, 536 and construct 16 embedding
tables, where each table has a dimension of 64. Then we place these tables on the GPU devices to
simulate different degrees of balance.

Table 4 presents the communication costs under different degrees of balance using 4 GPUs. We
can see that when the sums of table dimensions become more imbalanced, the communication cost
also increases. Thus, we need to balance the table dimensions to minimize communication costs.
However, balancing dimension alone cannot achieve an overall good result, since a placement with a
balanced dimension may still be not balanced in computation. To tackle this challenge, DreamShard
jointly optimizes both computation and communication in a data-driven manner with RL.

A.4 Why Backward Communication Time but not Forward Communication Time?

Forward communication and backward communication will send data of the same size in all-to-all
communication (but in different directions). Specifically, in the forward pass, the obtained sparse
representations will be sent, while in the backward pass, the gradient of the sparse representations will
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Table 4: Communication time of 4 GPUs with different sums of table dimensions (the tables have
1, 024 dimensions in total) in each device with a batch size of 65, 536. We highlight the max
communication time across devices since the slowest device becomes the bottleneck.

Category Sum of Table dimensions Communication cost Max costGPU 1 GPU 2 GPU 3 GPU 4 GPU 1 GPU 2 GPU 3 GPU 4

Perfectly Balanced 256 256 256 256 11.24±0.17 11.15±0.12 11.08±0.17 11.08±0.17 11.24±0.17

Slightly Imbalanced

192 256 320 384 13.20±0.16 13.88±0.04 14.18±0.04 14.15±0.06 14.15±0.06
192 192 320 320 11.74±0.08 13.01±0.13 12.89±0.10 12.93±0.11 13.01±0.13
128 192 320 384 12.28±0.06 13.82±0.08 14.03±0.08 14.02±0.07 14.03±0.08
128 128 384 384 12.02±0.10 14.67±0.09 14.73±0.08 14.47±0.11 14.73±0.08

Very Imbalanced

64 128 384 448 12.91±0.80 16.00±0.81 16.11±0.81 15.82±0.08 16.11±0.81
64 64 448 448 12.50±0.05 16.65±0.06 16.67±0.08 16.29±0.06 16.67±0.08
64 64 320 576 12.56±0.13 15.61±0.15 16.93±0.17 16.89±0.11 16.93±0.17
64 64 64 832 13.01±0.14 12.96±0.15 17.65±0.21 17.65±0.22 17.65±0.21

be sent back. Recall that the cost network in DreamShard only predicts the backward communication
cost instead of the forward communication cost. One may ask why they are different given that the
amount of data is the same.

We do not predict forward communication because we find that a considerable portion of the forward
communication time is not spent on communication, but instead on idle time waiting for other devices.
For example, if a device finishes forward computation very quickly, then it has to wait for other
devices to finish computation before it can start communication. However, such waiting time is
also counted in the forward communication with PyTorch even though it does not communicate.
On the contrary, the devices will be “synced” when the forward communication is finished, so
that the backward communication often does not have idle time. Thus, we only predict backward
communication, which can better reflect the true communication cost.

B Implementation Details

In this section, we introduce the implementation details of DreamShard. We will first introduce the
neural architectures of the cost network and the policy network. Then we provide more details of the
training and inference procedures. Further, we summarize the hyperparameter configurations. Finally,
we describe the hardware and software used in our experiments. To ensure reproducibility, we will
open-source our code.

B.1 Neural Architecture of cost network

The cost network consists of three sub-networks, including 1) a shared feature extraction MLP
(denoted as MLPtable), which maps the 21 table features to latent representations, 2) back-
ward/communication/forward heads, which predict cost features based on the device representation,
and 3) an overall cost head, which takes the final representation for all the devices as input and
predicts the overall cost.

We provide the detailed procedure of a forward pass as follows. For a raw state st, we first use an
MLP to process all the raw table features with htable

i = MLPtable(ei) ∈ Rl, where l is the hidden
dimension, and MLPtable is shared across all the tables. This leads to a set of hidden representations
for each device {htable

i |i ∈ Pd}. Then we obtain the device representation with element-wise sum
by hdevice

d =
∑

i∈Pd
htable
i ∈ Rl, which has a fixed dimension regardless of the number of tables

in the device. The motivation for using element-wise sum is that htable
i is expected to describe the

computational cost patterns of a table so it is natural to accumulate htable
i to represent the potentially

accumulated computational costs when we have multiple tables. Then hdevice
d serves as the input

of the backward/communication/forward heads to predict the cost features qt,d. To predict the
overall cost, we similarly obtain a fixed-dimension representation for all the devices h by applying
an element-wise max to hdevice

d , i.e., h is defined by hk := max1≤d≤D hdevice
d,k , where hk and hdevice

d,k

denote the kth element of h, and hdevice
d , respectively. The motivation of element-wise max is that the

slowest device is usually the bottleneck of the overall cost. Then h is followed by an overall cost
head to predict the reward
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We elaborate on the neural architectures of the three sub-networks as follows.

• Shared table feature extraction MLP: The dimension of the latent representation is set to
be 32. We instantiate the shared feature extraction MLP with a 2-layer neural network with
a size of 21-128-32.

• Backward/communication/forward heads: We use three MLPs to implement these three
heads. Each MLP is a 2-layer neural network with a size of 32-64-1.

• Overall cost head: Similarly, we instantiate it with a 2-layer neural network with a size of
32-64-1.

For all the above three sub-networks, we use the ReLU activation function and the default parameter
initialization in PyTorch.

B.2 Neural Architecture of Policy Network

The policy network consists of three sub-networks, including 1) a shared feature extraction MLP that
is independent of that of the cost network (denoted as M̃LPtable), which maps the 21 table features
to latent representations, 2) cost feature MLP, which processes the cost features by mapping them
to latent representations, and 3) a policy head, which maps device representations to probability
distributions.

We provide the detailed procedure of a forward pass as follows. First, following the cost network,
another MLP is used to process the raw table features st with h̃table

i = M̃LPtable(ei) ∈ Rl, where
M̃LPtable is shared across all the tables (but independent of MLPtable in fcost). A fixed-dimension
device representation for each device can be similarly obtained with element-wise sum by h̃device

d =∑
i∈Pd

h̃table
i ∈ Rl. Second, we augment h̃device

d with the cost features qt,d. Specifically, we
use an MLP to process qt,d by hcost

d = MLPcost(qt,d) ∈ Rl, where MLPcost is shared across
the cost features of all the devices. The augmented device representation is the concatenation
of h̃device

d and hcost
d , denoted as [h̃device

d ;hcost
d ]. Third, we use a shared policy head to process the

augmented device representation, followed by a Softmax layer to produce action probabilities.
Let MLPpolicy be the policy head. The probabilities for all the legal actions are obtained by p =

Softmax{MLPpolicy[h̃
device
d ;hcost

d ]|d ∈ At}, where MLPpolicy is shared across all the devices. Finally,
we sample an action at based on the action probabilities p. Our design allows π to be trained on one
task and generalize to other tasks with different numbers of tables and/or devices.

We elaborate on the neural architectures of three sub-networks as follows.

• Shared table feature extraction MLP: It has the same architecture like that of the cost
network (but the weights are not shared). The dimension of the latent representation is set to
be 32. We instantiate the shared feature extraction MLP with a 2-layer neural network with
a size of 21-128-32.

• Cost feature MLP: This network maps the three cost features into a 32-dimension cost
representation. We instantiate it with an MLP of size 3-64-32.

• Policy head: It takes as input the concatenated representation of the device representation
and the cost representation. Thus, its input size is 64 (32 for the device representation
and 32 for the cost representation). Then we use a 1-layer MLP of size 64-1 to map the
representations to a “confidence score”. After obtaining the score for each device, we use a
Softmax layer to produce the action probabilities, i.e., the probability of selecting each of
the devices.

For all the above three sub-networks, we use the ReLU activation function and the default parameter
initialization in PyTorch.

B.3 Comparison of Different Reductions

Recall that we use the element-wise sum to aggregate table representations in a device and element-
wise max to aggregate device representations. Here, we justify our design choices by comparing with
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other reduction methods. Specifically, we randomly sample 10,000 cost data points from the DLRM-
50 (4) dataset. Then we use 20% for testing and vary the size of the training data to compare the
performances of different reductions using different numbers of data points. For all the experiments,
we use a batch size of 64, an Adam optimizer with a learning rate of 0.0005, and we train 50,000
batches. We report the sum of testing MSE for all the predicted costs. All the experiments are
repeated 5 times, and the mean and standard deviation are reported.

In the first experiment, we try max and mean reductions for the table representations and use max
reduction for the device representations . The results are reported in Figure 13. We observe that
sum reduction is the best choice for table representations. In the second experiment, we try sum and
mean reductions for the device representations and use sum reduction for the table representations.
The results are reported in Figure 14. We observe that max reduction is the best choice for table
representations. Thus, in DreamShard we use sum reduction for the table representations and max
reduction for the device representations.
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Figure 13: Comparison of different reductions for table representations (max reduction is applied to
device representations).

101 102 103 104

Number of Training Data Points

0

100

200

300

400

500

600

Te
st
in
g
M
SE

Max
Sum
Mean

Figure 14: Comparison of different reductions for device representations (sum reduction is applied to
table representations).

B.4 Details of DreamShard Training and Inference

In this subsection, we elaborate on the training and inference procedures. We will first present the
loss functions for updating the cost network and the policy network. Then we summarize the training
procedure. Finally, we describe how DreamShard performs inference on unseen embedding table
placement tasks.

B.4.1 Loss Functions

We update the cost network with mean squared error (MSE). Recall that we use a buffer to collect
cost data by using the current policy π to interact with the environment (we will elaborate on this
procedure in Section B.4.2). Suppose we have already collected some cost data. Then we use the
cost data to update the cost network. Specifically, the cost network maps the raw state st into the
predicted cost features {q̂t,d}Dd=1 and the predicted overall cost ĉ. Let {qt,d}Dd=1 and c(a) be the
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ground truth of the cost features and the overall cost, respectively. We use the sum of their mean
squared errors (MSE) to update the cost network:

Lcost =

D∑
d=1

MSE(q̂t,d − qt,d) + MSE(ĉ, c(a)), (1)

where MSE(·, ·) represents the MSE loss. Note that it is possible to use a weighted loss to prioritize
the prediction of the cost features or the overall cost by introducing additional hyperparameters. We
will explore this possibility in our future work.

We update the policy network π with the standard policy gradient loss [73] enhanced by a baseline to
reduce the variance, and an entropy loss to enhance exploration:

LRL =

M−1∑
t=0

log π(ai|si)(
M∑
j=i

rj − bj) + wentropy

D∑
a=1

π(a|si) log π(a|si), (2)

where π(a|s) is the predicted probability probability of performing action a in state s, wentropy is the
weight of the entropy. bj is the reward obtained at step t; rj is the negative of the overall cost when
j = M , and rj is 0 for all the other steps. Thus,

∑M
j=i rj essentially reduces to rM (we use

∑M
j=i rj

so that it is consistent with the formulas used in the RL literature)6. bj is a baseline to reduce variance
and stabilize training. In each update step, we run Nepisode episodes at a time and use their mean
reward as bj . Then we update the policy π by calculating the loss with a batch of episodes. The
policy network π can be updated with the loss using the standard backpropagation.

B.4.2 Training Procedure

The training procedure is iterative. In each iteration, we sequentially do the following: 1) use the
current policy π to sample some placements, collect the costs from GPUs, and store the collected
cost data into the buffer, 2) update the cost network with the cost data collected in the buffer, and
3) update the RL agent by interacting with the estimated MDP simulated by the cost network. We
provide details for each of the three stages below.

Data collection. In this stage, we use the current policy π to generate table placements and evaluate
the placements on GPUs. Specifically, we first randomly select a training task from Ttrain. Then we
generate a placement for this task by interacting with the estimated MDP with π. Before starting an
episode, we first sort the tables in descending order based on the single-table cost, which is predicted
using the cost network. The motivation is that it will be more likely to achieve a good balance if
we put the costly table at the beginning of the MDP. Then we follow the MDP to place the tables
one by one, where in each step, we obtain the augmented state using the current cost network, and
then feed the augmented state to the policy π to predict the action probabilities. Then we sample an
action based on the action probabilities to make the placement decision. After generating a placement,
we evaluate the placement on GPUs to collect the computation and communication costs using
PARAM Benchmark 7, which is the official micro-benchmarking tool for PyTorch. To precisely
measure the cost, the benchmarking consists of three steps: 1) the initialization step will initialize
the operators with the specified embedding table arguments and load the indices data to the GPU,
2) the warmup step will run all the computation and communication for 5 times to allow CUDA to
complete the necessary preparations, and 3) the benchmarking step will run all the computations and
communications again for 10 times. The median latency in the benchmarking step will be returned
since the median value is less sensitive to outliers. The returned latency will be stored in a buffer for
training the cost network later. We find that the above benchmarking strategy is very stable, and the
obtained latency has very low variance. There is one hyperparameter in this stage, i.e., Ncollect, which
specifies the number of placements to be generated.

Training the cost network. In this stage, we sample multiple mini-batches of cost data from the
buffer to update the cost network. Specifically, in each update step, we sample a batch of cost data
with a size of Nbatch. Then we feed the data to the cost network and update it based on the loss in

6In the RL literature, a discount factor is often applied to make the early decisions have a smaller reward. In
our context, we simply set the discount factor to be 1 (i.e., no discount) because the reward in the MDP is sparse
and the early decisions are very important.

7https://github.com/facebookresearch/param
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Eq. 1. We update it for Ncost times. Nbatch and Ncost are hyperparameters controlling the update of
the cost network.

Training the policy network. We use the current policy π to interact with the estimated MDP, which
is akin to the data collection stage. The only difference is that we do not evaluate the generated
placement on GPUs. Instead, the final reward is simply obtained by a forward pass of the cost
network. The design of the estimated MDP can significantly improve the training efficiency of RL
since it isolates the RL training from the evaluation on GPUs. In each update step of RL, we first
randomly select a training task. Then we generate Nepisode episodes through interacting with the
estimated MDP. Next, we update the policy network π based on Eq. 2. We repeat the above procedure
NRL times.

B.4.3 Inference Procedure

The inference of DreamShard is straightforward. The procedure is similar to the data collection
except that we choose the action with the highest predicted probability instead of sampling an action
based on the probabilities. This is because in training, we require the agent to explore different
actions and discover the best strategy. Whereas, during inference, we no longer need exploration. As
such, we can simply choose the most confident action. We summarize the procedure of performing
inference on testing tasks in Algorithm 2. We note that the inference does not require GPUs.
Algorithm 2 Inference of DreamShard

1: Input: Some testing tasks Ttest, the trained cost network, trained policy network
2: for each task in Ttest do
3: for step = 1, 2, ... until episode ends do
4: Construct the augmented state using the cost network
5: Predict the action probability using the policy network
6: Take and record the action that has the highest probability
7: end for
8: Record the action sequence (placement)
9: end for

B.5 Hyperparameter Configuration

We summarize all the hyperparameters of DreamShard below.

• Data collection: We set Ncollect = 10.

• cost network training: We set Ncost = 300, and Nbatch = 64.

• Policy network training: We set NRL = 10, Nepisode = 10, and the entropy weight
wentropy = 0.001.

• Optimizer: For both the cost prediction and policy networks, we adopt Adam optimizer
with an initial learning rate of 0.0005, with the other hyperparameters as default. A linear
scheduler is used to linearly decay the learning rate to zero throughout the training process.

• Embedding operation: We use the embedding bag implementation in FBGEM5 [22]. For
the parameters of embedding tables, we randomly initialize them with fp16 precision.

B.6 Hardware and Software Description

For the DLRM dataset, all the experiments are conducted on a server with 48 Intel(R) Xeon(R) Silver
4116 CPU @ 2.10GHz processors, 188 GB memory, and four NVIDIA GeForce RTX 2080 Ti GPUs.
For the Prod dataset, the server has similar hardware configurations but with NVIDIA V100 GPUs to
accommodate the larger sizes of the tables. For software, we use Python 3.8.4, and PyTorch 1.9.1.

C Details of the Datasets

We note that our goal is not to evaluate the accuracy of a recommendation model, but rather the
training efficiency of embedding tables. The public recommendation datasets are not suitable for
evaluation since they cannot match the scale of real-world industrial models. They are often too small
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with very few categorical features so the latency of embedding operations will always be very small
no matter how the embedding tables are placed.

Table 5: Comparison of embedding table feature statistics between some popular public recommen-
dation datasets and the industrial-scale DLRM dataset. Our production data has an even larger scale
than the DLRM dataset (details are not shown due to data privacy). The public datasets are not
suitable to evaluate embedding table placement algorithms. They only have very few small tables,
and the average pooling factor is only 1, which suggests there is only one feature in each table per
instance when performing embedding lookup.

Dataset # of Tables Avg. hash size Avg. pooling factor

Public
Criteo8 26 17,839 1
Avazu9 23 67,152 1
KDD10 10 601,908 1

Industrial-Scale DLRM 856 4,107,458 15

Fortunately, Meta recently released the DLRM2 dataset, which is a synthetic dataset that shares
memory access reuse patterns similar to those arising in Meta production recommendation workloads.
This dataset is an ideal benchmark to evaluate embedding table placement algorithms because it can
well simulate the real workloads under different table placements in industrial models, and the results
obtained on it will be reproducible since the dataset is open-sourced. Table 5 compares the scales of
some large-scale public recommendation datasets and the DLRM dataset. We can observe a clear
gap between the public datasets and the DLRM dataset. The DLRM dataset has around one order of
magnitude more tables, average hash size (i.e., the number of rows of the table), and average pooling
factor (i.e., the number of rows extracted in a table for one instance when performing lookup). In
what follows, we introduce and visualize the DLRM dataset. We will not provide more details of our
production dataset due to data privacy.

C.1 Data Format of the DLRM Dataset

The DLRM dataset is stored as three PyTorch tensors, which are pickled in a single file. The three
tensors include an indices tensor, an offsets tensor, and a length tensor. For brevity, we denote them
as indices, offsets, and lengths, respectively. indices is a vector, where each element is an
integer. The indices are ordered by the keys of (table_id, batch_offset). For example, the
first batch of indices (the size is determined by the offset) is for the first table, and the second batch of
indices (the size is determined by another offset) is for the second table, etc. offsets is also a vector.
It indicates the starting position and the ending position of indices for one lookup. It is also ordered
by (table_id, batch_offset). For instance, suppose the batch size is 45. Then offsets[45]
and offsets[46] specify the starting and ending positions of the 45th indices lookup in the first table.
The slice between the starting and ending positions, i.e., indices[offsets[45]:offsets[46]]
corresponds to the 45th instance in the batch for the first table. lengths is a matrix and is of the shape
of [num_tables, batch_size], where each element is the pooling factor of the corresponding
indices lookup. lengths is provided for correctness validation purposes.

C.2 Data Visualization of the DLRM dataset

We visualize the 856 tables in the DLRM dataset. Specifically, we focus on the distributions of hash
size, mean pooling factor, and the relation between the hash size and pooling factor. We also visualize
the distribution of indices accessing frequency since it may impact the caching mechanism. Note that
all the results are originally collected in [33].

Figure 15 visualizes the distribution of hash size. We observe that the hash sizes for most tables are
around 106, while some can reach 107. The tables with large hash sizes could lead to very large
tables, making it challenging to balance the size of the tables.

Figure 16 shows the distribution of mean pooling factors. We find that the pooling factor generally
follows a power-law distribution. Most of the tables have a pooling less than 5, while there are few
tables that have a pooling factor larger than 100 (some certain tables can have a pooling factor of up
to 200). Recall that the pooling factor is one of the most important factors that decide the computation
workloads. The power-law distribution will make the computation easily imbalanced across devices.
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Figure 15: Hash size distribution.
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Figure 16: Pooling factor distribution.

We are interested in studying whether the pooling factor and the hash size have a positive correlation.
The intuition is that if a table has more values, more rows could be selected when performing
embedding lookup. If they have a positive correlation, balancing one of them could also lead to
a balance of the other. We plot their relationship in Figure 17. We observe that there is no clear
relationship between the hash size and pooling factor. Thus, an ideal algorithm may need to balance
both of them to achieve the best results.
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Figure 17: Hash size vs. pooling factor.
Figure 18 illustrates the indices accessing frequency distribution. We observe that most of the indices
are accessed less than ten times, while some of them can reach 105. Similarly, the diverse indices
accessing frequency will easily lead to imbalances.
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Figure 18: Indices frequency distribution.

Overall, we find that the table features are quite diverse, and can easily lead to imbalances. Specifically,
if we do not carefully partition the tables, some tables with high computation costs can be easily put
into the same device, resulting in a very high cost for the device. Meanwhile, the imbalances may
also lead to heavy communication costs. Thus, an ideal placement algorithm need to globally balance
different aspects to achieve the best results. This motivates us to develop learning-based algorithms
for embedding table placement.

C.3 Data Processing

Since the DLRM dataset does not specify the table dimension, we set the table dimension to be 16
for all the tables. We purposely make the dimensions small to facilitate reproducibility on GPUs
with small memory. Note that our production dataset in general has a much larger table dimension
that is up to 768. In addition, each table can have a different dimension. The large and diverse table
dimensions will make the embedding table placement problem more challenging since imbalanced
dimensions will significantly and negatively impact both the computation and the communication
times. Nevertheless, our results in Table 1 suggest that DreamShard can well deal with the tables that
have larger and more diverse dimensions, showing the effectiveness and flexibility of our algorithm.

D Details of the Baselines

We compare DreamShard with two types of baselines, including human expert strategies [27, 8, 28],
and an RNN-based placement algorithm [13]. We will elaborate on them below.

D.1 Human Expert Strategies

These strategies have been mentioned or used in previous work of distributed recommender sys-
tems [27, 8, 28], and we have adopted them in our internal training workflow for years. The main idea
is to use a greedy algorithm to balance the costs, where the costs are estimated based on a specific
table feature, or a combination of the table features. These strategies consist of two steps as follows.

• Cost function: Each table will be assigned an estimated cost, which serves as the target to
be balanced.

• Greedy algorithm: The greedy algorithm tries to balance the sum of the costs in each
device. Specifically, it first sorts all the embedding tables in descending order based on their
costs. In this way, we can more easily achieve a balance if placing the tables greedily. Then
starting from the table with the highest cost, we make a greedy decision in each step by
placing the current table to the device that has the lowest sum of the cost so far. In the end,
each device will roughly have the same or a similar sum of the costs so that we can achieve
the goal of load balance.

28



The various expert strategies mainly differ in how the cost function is designed, i.e., the balancing
objective. Specifically, the following cost functions are used as baselines to balance different aspects
of the workloads:

• Size-based: We use the table size to estimate the cost. The intuition is that the table size is
related to both the dimension and the hash size, which can reflect the workloads. In addition,
balancing the size can reduce the risk of memory explosion.

• Dim-based: We use the table dimension to estimate the cost. Recall that in Section A.3, table
dimension can determine both computation and communication workloads. In particular,
dimension is the only factor for communication workloads theoretically. Thus, balancing
the sums of dimensions is a natural idea.

• Lookup-based: We use the product of the table dimension and the pooling factor to estimate
the cost. The motivation is that the table dimension and the pooling factor determine the
computation workload in lookup.

• Size-lookup-based: We use the product of the table dimension, the pooling factor, and the
table size to estimate the cost. This is the most comprehensive estimation (but it may not
necessarily be the best).

The human expert strategies have several drawbacks. First, the estimation could be inaccurate. As
shown in Section A.3.1, the actual cost has a non-linear relationship with all the table features and
can not be simply approximated with products. Second, it only optimizes the sum of the costs and
can not model the operation fusion, as analyzed in Section A.3.2. Third, while these strategies
could achieve good performance in different scenarios, none of them can accommodate all scenarios.
For example, if the communication bandwidths are low and communication is the bottleneck, the
dim-based strategy could work better. Whereas, if the computation is the bottleneck, the lookup-based
strategy may work better. It is difficult to select the most suitable one for real-world applications.

DreadShard addressed all of the above drawbacks with a learning-based cost network and a learning-
based placement policy. The cost network directly approximates the multi-table costs in a data-driven
manner, which can model the non-linear relationship between the cost and the table features. It can
also inherently consider the operation fusion effect since it directly approximates the multi-table
costs. Moreover, the RL-based placement policy makes decisions in a data-driven manner so that it
can accommodate different scenarios.

D.2 RNN-based Algorithm

The main motivation for adopting this baseline is that embedding table placement also belongs
to general device placement problems. The state-of-the-art algorithms leverage RL to optimize
the device placement [13, 15, 16]. Thus, adapting the existing device placement algorithms to the
embedding table placement problem is a natural idea. We focus on the RNN-based method proposed
in [13] because it is a pioneering work that applies RL to device placement problems, and many of
the follow-up studies are motivated by and developed based on this work.

The original RNN-based algorithm uses an RNN controller to sequentially make decisions for device
placement, and the RNN controller is updated with the RL loss. First, each operation is represented as
some operation features, such as data types and output shapes. Second, the operation representations
are sequentially fed into an RNN architecture. Third, an attention layer is applied to the hidden states.
Fourth, the representation obtained after the attention layer is followed by a policy head to make
predictions. Finally, the RNN controller will be updated using the standard policy gradient loss.

We have adapted the original RNN-based algorithm so that it can be applied to our embedding table
placement problem. Specifically, we replace the operation features with the 21 table features used in
DreamShard. Additionally, we use the same feature extraction MLP with the same architecture as
DreamShard. The policy head of the RNN-based baseline also has the same architecture as the policy
head in DreadShard. The main difference is that we use an RNN and an attention layer to process
the feature representations. We note that such design can not generalize across different numbers of
devices due to architecture constraints of RNN.
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E Details of the Experimental Configurations

In this section, we provide more details of how we perform the experiments to test the generalizability
of DreamShard. We consider three types of generalizability, including 1) unseen placement tasks
(i.e., the combination of the tables is different, but the individual tables may or may not be seen in
training), 2) unseen embedding tables, and 3) different numbers of tables/devices. Our experiments
are designed to maximally test all these three types of generalizability.

To test 1) and 2), we control the table pools for training and testing. Specifically, we divide all the ta-
bles in half to construct a training pool and a testing pool, where the training tasks are constructed only
based on the training pool, and the testing tasks are constructed only based on the testing pool. Since
there is no overlap of tables between training and testing pools, all the tables in the testing tasks are
unseen. To construct each training/testing task, we randomly sample a subset of tables from the corre-
sponding pool, and the number of tables varies from the set {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
that is, we consider different combinations of the tables, and we consider the cases from very few
tables to many tables. All the table combinations in the testing tasks are naturally unseen by the
algorithm. To test 3), we conducted experiments by directly transferring a trained DreamShard to a
task with a different number of tables and/or devices without fine-tuning.

Our comprehensive analysis shows that DreamShard can generalize across different table combina-
tions and numbers of tables and/or devices, making it desirable for real-world applications.

F Additional Results of DreamShard against Baselines

Table 6: Additional results of running time in milliseconds and relative speedups over random
placement on DLRM tasks, measured on 4 GPUs.

Task No strategy Human Experts RL
Random Size-based Dim-based Lookup-based Size-lookup-based RNN-based DreamShard

DLRM-10 (4) Train 14.8±0.3 13.0±0.0 (+13.8%) 12.8±0.0 (+15.6%) 11.9±0.0 (+24.4%) 12.0±0.0 (+23.3%) 13.3±0.3 (+11.3%) 11.6±0.3 (+27.6%)
Test 13.6±0.3 13.0±0.0 (+4.6%) 12.6±0.0 (+7.9%) 11.1±0.0 (+22.5%) 9.6±0.0 (+21.4%) 12.4±0.1 (+9.7%) 10.9±0.3 (+24.8%)

DLRM-30 (4) Train 32.3±0.5 31.0±0.0 (+4.2%) 28.8±0.1 (+12.2%) 26.1±0.0 (+23.8%) 26.2±0.0 (+23.3%) 30.7±0.8 (+5.2%) 25.4±0.3 (+27.2%)
Test 31.8±0.2 30.3±0.0 (+5.0%) 28.4±0.1 (+12.0%) 25.4±0.0 (+25.2%) 25.5±0.0 (+24.7%) 29.7±0.5 (+7.1%) 24.6±0.2 (+29.3%)

DLRM-50 (4) Train 49.8±0.6 49.7±0.0 (+0.2%) 46.5±0.0 (+7.1%) 41.2±0.0 (+20.9%) 41.7±0.1 (+19.4%) 48.2±1.2 (+3.3%) 40.4±0.5 (+23.3%)
Test 49.8±0.3 49.8±0.0 (0.0%) 45.8±0.1 (+8.7%) 41.3±0.0 (+20.6%) 41.4±0.0 (+20.3%) 48.1±1.2 (+3.5%) 40.4±0.6 (+23.3%)

DLRM-70 (4) Train 66.3±1.0 67.8±0.1 (-2.2%) 63.1±0.0 (+5.1%) 56.6±0.1 (+17.1%) 57.5±0.1 (+15.3%) 70.8±13.2 (-6.4%) 55.2±0.4 (+20.1%)
Test 66.7±0.7 69.4±0.1 (-3.9%) 61.9±0.2 (+7.8%) 56.5±0.0 (+18.1%) 57.2±0.0 (+16.6%) 71.8±15.3 (-7.1%) 55.2±0.8 (+20.8%)

DLRM-90 (4) Train 83.0±1.5 82.9±0.0 (+0.1%) 77.9±0.3 (+6.5%) 73.1±0.0 (+13.5%) 73.5±0.0 (+12.9%) 92.4±13.3 (-10.2%) 70.0±0.4 (+18.6%)
Test 82.3±1.4 87.2±0.2 (-5.6%) 77.9±0.4 (+5.6%) 71.8±0.2 (+14.6%) 72.3±0.2 (+13.8%) 92.9±15.6 (-11.4%) 69.4±0.7 (+18.6%)

Table 7: Running time in milliseconds and relative speedups over random placement on DLRM tasks,
measured on 2 GPUs. We observe that DreamShard is comparable with human experts (slightly
better than the size-lookup-based method). A possible reason is that these tasks are relatively simple
so the expert placements are already near-optimal. Nevertheless, DreamShard still shows strong
performance for all the tasks and achieves the best performance in 7 out of 10 tasks.

Task No strategy Human Experts RL
Random Size-based Dim-based Lookup-based Size-lookup-based RNN-based DreamShard

DLRM-10 (2) Train 17.9±0.2 16.4±0.0 (+9.1%) 16.5±0.0 (+8.5%) 14.8±0.0 (+20.9%) 14.7±0.0 (+21.8%) 17.0±0.2 (+5.3%) 15.1±0.3 (+18.5%)
Test 16.5±0.4 16.0±0.1 (+3.1%) 16.0±0.0 (+3.1%) 13.9±0.0 (+18.7%) 13.7±0.1 (+20.4%) 16.0±0.2 (+3.1%) 13.9±0.2 (+18.7%)

DLRM-20 (2) Train 31.6±0.6 30.8±0.0 (+2.6%) 30.6±0.0 (+3.3%) 27.4±0.0 (+15.3%) 27.3±0.0 (+15.8%) 30.6±0.2 (+3.3%) 27.1±0.2 (+16.6%)
Test 29.9±0.4 29.3±0.0 (+2.0%) 28.8±0.0 (+3.8%) 26.3±0.0 (+13.7%) 26.0±0.0 (+15.0%) 28.8±0.2 (+3.8%) 25.8±0.2 (+15.9%)

DLRM-30 (2) Train 44.6±0.6 43.4±0.0 (+2.8%) 43.0±0.0 (+3.7%) 39.5±0.0 (+12.9%) 39.3±0.0 (+13.5%) 43.1±0.5 (+3.5%) 39.3±0.3 (+13.5%)
Test 43.7±0.4 42.6±0.1 (+2.6%) 42.1±0.0 (+3.8%) 38.9±0.1 (+12.3%) 38.5±0.0 (+13.5%) 42.4±0.1 (+3.1%) 38.6±0.4 (+13.2%)

DLRM-40 (2) Train 58.7±0.6 57.1±0.1 (+2.8%) 56.2±0.1 (+4.4%) 53.0±0.0 (+10.8%) 52.5±0.0 (+11.8%) 57.5±0.7 (+2.1%) 52.3±0.3 (+12.2%)
Test 58.6±0.7 56.9±0.0 (+3.0%) 56.9±0.0 (+3.0%) 52.5±0.0 (+11.6%) 52.4±0.0 (+11.8%) 56.5±0.4 (+3.7%) 51.9±0.1 (+12.9%)

DLRM-50 (2) Train 72.2±1.2 71.2±0.0 (+1.4%) 70.0±0.0 (+3.1%) 66.0±0.0 (+9.4%) 65.5±0.0 (+10.2%) 71.5±0.4 (+1.0%) 65.5±0.2 (+10.2%)
Test 72.7±0.6 70.6±0.0 (+3.0%) 70.7±0.0 (+2.8%) 65.7±0.0 (+10.7%) 65.6±0.0 (+10.8%) 70.8±0.5 (+2.7%) 65.5±0.3 (+11.0%)

G Additional Results of Generalizability
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Table 8: Additional results of the generalization performance of DreamShard from source tasks to
target tasks w.r.t. to different numbers of tables. In general, DreamShard can transfer to tasks with
different numbers of tables with competitive or even better performances.

Source
Target DLRM-20 (4) DLRM-40 (4) DLRM-60 (4) DLRM-80 (4) DLRM-100 (4)

DLRM-20 (4) - 32.5±0.3 47.8±0.2 62.8±0.4 77.9±0.4
DLRM-40 (4) 17.6±0.1 - 47.8±0.4 62.7±0.5 78.0±0.5
DLRM-60 (4) 17.7±0.1 32.5±0.2 - 63.1±0.4 78.2±0.5
DLRM-80 (4) 17.6±0.1 32.4±0.2 47.8±0.3 - 78.1±0.5
DLRM-100 (4) 17.7±0.3 32.7±0.4 48.1±0.6 63.2±0.9 -

DreamShard trained on target 17.6±0.2 32.4±0.3 47.9±0.7 62.7±0.3 77.8±0.8

Table 9: Additional results of the generalization performance of DreamShard from source tasks with
4 GPUs to target tasks with 2 GPUs w.r.t. to different numbers of tables. In general, DreamShard can
transfer to tasks with different numbers of tables and fewer GPUs with competitive or even better
performances.

Source
Target DLRM-10 (2) DLRM-20 (2) DLRM-30 (2) DLRM-40 (2) DLRM-50 (2)

DLRM-10 (4) 14.1±0.2 26.2±0.3 38.7±0.5 52.2±0.7 65.3±1.2
DLRM-20 (4) 13.9±0.1 25.8±0.1 38.1±0.1 51.4±0.2 64.5±0.1
DLRM-30 (4) 14.1±0.1 26.1±0.2 38.5±0.2 52.0±0.2 65.2±0.2
DLRM-40 (4) 14.3±0.1 26.2±0.1 38.6±0.2 52.0±0.3 65.1±0.2
DLRM-50 (4) 14.3±0.4 26.3±0.3 38.6±0.3 52.1±0.4 65.3±0.6

DreamShard trained on target 13.9±0.2 25.8±0.2 38.6±0.4 51.9±0.1 65.5±0.3

Table 10: Additional results of the generalization performance of DreamShard from source tasks with
2 GPUs to target tasks with 4 GPUs w.r.t. to different numbers of tables. In general, DreamShard can
transfer to tasks with different numbers of tables and more GPUs with competitive or even better
performances.

Source
Target DLRM-10 (4) DLRM-20 (4) DLRM-30 (4) DLRM-40 (4) DLRM-50 (4)

DLRM-10 (2) 10.8±0.3 18.3±0.4 25.6±0.6 33.8±0.7 41.7±0.9
DLRM-20 (2) 10.6±0.1 17.8±0.3 25.0±0.4 32.9±0.4 40.7±0.6
DLRM-30 (2) 10.9±0.3 18.0±0.4 25.0±0.6 32.9±0.7 40.7±0.7
DLRM-40 (2) 10.8±0.1 17.8±0.2 24.8±0.2 32.6±0.3 40.2±0.3
DLRM-50 (2) 10.7±0.1 17.6±0.1 24.6±0.1 32.3±0.2 40.0±0.3

DreamShard trained on target 10.9±0.3 17.6±0.2 24.6±0.2 32.4±0.3 40.4±0.6

H Additional Results of Training Efficiency
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Figure 19: Performance (↓) of DreamShard w.r.t. the numbers of iterations. DreamShard achieves
strong performance with very few iterations.
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Figure 20: Performance (↓) of DreamShard w.r.t. running time. DreamShard achieves strong
performance in a short time.
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I Additional Results of Hyperparameter Study
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Figure 21: Impact of the number of RL update steps NRL. In general, a too small NRL will degrade
the performance. However, when NRL > 10, increasing NRL does not lead to a clear benefit, but may
cause more computation cost in training RL.
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Figure 22: Impact of the cost network update steps Ncost. In general, a too small Ncost will degrade
the performance. However, when Ncost > 300, increasing Ncost does not lead to a clear benefit, but
may cause more computation cost in training the cost network.
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J Additional Results of Ablation Study

Table 11: Ablation Study. The pooling factor and the dimension appear to be the most important
table features. The proposed cost features are very effective since w/o cost has poor performances.

Task w/o dim w/o row w/o pooling factor w/o table size w/o distribution w/o cost w/ RNN DreamShard

DLRM-10 (4) Train 11.8±0.2 11.5±0.1 12.9±0.2 11.5±0.0 11.8±0.3 13.4±0.6 11.7±0.1 11.6±0.3
Test 10.9±0.0 10.7±0.0 12.4±0.2 10.7±0.0 11.0±0.4 12.4±0.6 10.8±0.0 10.9±0.3

DLRM-20 (4) Train 18.5±0.1 18.6±0.3 21.6±0.1 18.3±0.1 18.8±0.2 22.0±0.1 18.7±0.2 18.6±0.2
Test 17.7±0.2 17.7±0.3 20.4±0.2 17.5±0.1 18.0±0.0 20.8±0.3 17.8±0.2 17.6±0.2

DLRM-30 (4) Train 25.3±0.2 25.5±0.1 29.6±0.2 25.2±0.1 25.7±0.4 29.8±0.5 25.2±0.2 25.4±0.3
Test 24.7±0.3 24.9±0.1 29.2±0.4 24.5±0.1 24.9±0.2 29.0±0.6 24.7±0.3 24.6±0.2

DLRM-40 (4) Train 33.1±0.8 32.9±0.3 37.9±0.3 33.2±0.4 32.9±0.1 38.1±0.2 32.6±0.2 32.8±0.3
Test 33.3±0.8 32.4±0.2 37.9±0.6 32.9±0.4 32.5±0.2 37.2±0.1 32.3±0.1 32.4±0.3

DLRM-50 (4) Train 40.8±0.4 40.7±0.1 46.3±0.3 40.8±0.4 40.6±0.2 47.5±1.2 40.5±0.2 40.4±0.5
Test 40.9±0.6 40.6±0.3 47.2±0.1 40.6±0.7 40.5±0.2 46.3±0.1 40.5±0.1 40.4±0.6

DLRM-60 (4) Train 48.5±0.7 47.6±0.4 54.3±0.2 47.8±0.3 48.0±0.1 53.9±1.3 47.5±0.0 47.6±0.4
Test 48.9±0.5 47.7±0.4 54.8±0.3 48.0±0.3 48.1±0.3 54.7±0.8 47.7±0.1 47.9±0.7

DLRM-70 (4) Train 56.0±0.5 55.2±0.1 62.9±0.2 55.5±0.2 55.3±0.1 62.5±0.6 55.0±0.1 55.2±0.4
Test 56.1±0.2 55.5±0.2 62.8±0.6 55.5±0.2 55.6±0.0 58.3±0.5 55.0±0.0 55.2±0.8

DLRM-80 (4) Train 64.2±0.6 62.8±0.1 70.3±0.7 62.6±0.1 62.9±0.1 71.4±0.7 62.5±0.2 62.2±0.2
Test 64.2±0.6 62.6±0.1 71.0±1.1 62.9±0.0 63.0±0.4 71.1±1.4 62.1±0.4 62.7±0.3

DLRM-90 (4) Train 71.8±1.1 71.0±0.7 79.1±1.0 70.7±0.1 70.4±0.4 79.8±0.9 70.8±0.3 70.0±0.4
Test 70.8±1.2 70.3±0.8 77.5±0.4 69.6±0.3 70.1±0.0 79.0±1.3 70.2±0.1 69.4±0.7

DLRM-100 (4) Train 79.6±0.3 79.1±0.6 87.6±0.6 78.7±0.2 78.9±0.1 89.1±2.8 78.6±0.6 78.4±0.6
Test 78.1±0.8 78.1±0.5 86.2±0.8 78.0±0.4 78.0±0.2 87.7±1.5 77.8±0.6 77.8±0.8

Table 12: Ablation study of the table features on the Prod dataset. We did not use the DLRM
dataset because its tables have the same table dimension, which could make the prediction less
dependent on the table dimension. We collect a million samples and split 80%/10%/10% as train-
ing/validation/testing sets. We fully train a cost network with 100 epochs and report the MSE on the
testing set with each individual feature being removed. We find that each table feature contributes to
the prediction accuracy, and the most contributing features are table dimension, pooling factor, and
distribution features.

Features Testing MSE

w/o dimension 13.746
w/o hash size 0.307
w/o pooling factor 0.635
w/o table size 0.305
w/o distribution features 0.437
All features 0.303

K Additional Results on Ultra-Large Industrial Recommendation Model

Table 13: Scalability test. We apply each placement algorithm (excluding the RNN-based method
since we find it is very unstable and can not deliver a reasonable performance) to an ultra-large
industrial recommendation model, which contains nearly a thousand embedding tables that demand
multi-terabyte memory. We run all the placement algorithms on a training cluster with 128 GPUs. We
measure the embedding cost and the overall training throughput, which includes embedding lookup,
dense computation, data loading, etc. We report the relative improvement over random placement.
Since the production model has already been optimized with many iterations, a 5% improvement
of training throughput is considered significant. DreamShard shows 27.6% improvement over the
strongest baseline.

Sharding Algorithm Embedding Cost Training Throughput Improvement

Random 118.3 0.00%
Size-based 107.6 (+10.0%) +4.0%
Dim-based 90.8 (+30.3%) +13.9%
Lookup-based 102.4 (+15.6%) +11.9%
Size-lookup-based 109.2 (+8.3%) +12.8%
DreamShard 61.59 (+92.2%) +45.3%

34



L Additional Good/Bad Case Study on Tasks with 50 Tables and 4 GPUs
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Figure 23: Good case 1: visualization of DreamShard, the best heuristic algorithm, and random
placement on a task of placing 50 tables to 4 GPUs. DreamShard outperforms the baselines with a
better balance.
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Figure 24: Good case 2: visualization of DreamShard, the best heuristic algorithm, and random
placement on a task of placing 50 tables to 4 GPUs. DreamShard achieves better balance as well as
less communication time, leading to significantly lower overall cost.
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Figure 25: Good case 3: visualization of DreamShard, the best heuristic algorithm, and random
placement on a task of placing 50 tables to 4 GPUs. While DreamShard does not achieve a very good
overall balance, the communication time appears to be less than those of the baselines potentially due
to a better balance in terms of communication. As such, it still leads to a significant overall speedup.
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Figure 26: Bad case 1: visualization of DreamShard, the best heuristic algorithm, and random
placement on a task of placing 50 tables to 4 GPUs. The costs of DreamShard are not very balanced.
Nevertheless, DreamShard still slightly outperforms the baselines.
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Figure 27: Bad case 2: visualization of DreamShard, the best heuristic algorithm, and random
placement on a task of placing 50 tables to 4 GPUs. The costs of DreamShard are slightly worse than
the best heuristic. However, we find that this is actually a very rare case. In most tasks, DreamShard is
either significantly better than the best heuristic or has a competitive performance with the heuristic.
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Figure 28: Bad case 3: visualization of DreamShard, the best heuristic algorithm, and random
placement on a task of placing 50 tables to 4 GPUs. While DreamShard achieves better results in
the forward pass, it suffers from an imbalance in the backward pass. While it outperforms the best
heuristic, it is still very likely to have room for improvement.
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