
A Optimal K-priors for GLMs

We present theoretical results to show that K-priors with limited memory can achieve low gradient-
reconstruction error. We will discuss the optimal K-prior which can theoretically achieve perfect
reconstruction error. Note that the prior is difficult to realize in practice since it requires all past
training-data inputs X . Our goal here is to establish a theoretical limit, not to give practical choices.

Our key idea is to choose a few input locations that provide a good representation of the training-data
inputs X . We will make use of the singular-value decomposition (SVD) of the feature matrix,

Φ> = U∗1:KS∗1:K(V∗1:K)>

where K ≤ min(N,P ) is the rank, U∗1:K is P × K matrix of left-singular vectors u∗i , V∗1:K is
N ×K matrix of right-singular vectors v∗i , and S∗1:K is a diagonal matrix with singular values si as
the i’th diagonal entry.

We defineM∗ = {u∗1,u∗2, . . . ,u∗K}, and the following K-prior,

Kopt(w; w∗,M∗) =

K∑
j=1

β∗j `
(
h(fw∗(u

∗
j )), h(fw(u∗j ))

)
+ 1

2δ‖w −w∗‖2. (19)

Here, each functional divergence is weighted by β∗j which refers to the elements of the following,

β∗ = D−1
u S∗1:KV>1:Kdx

where dx is an N -length vector with entries h(f iw)− h(f iw∗) for all i ∈ X , while Du is a K ×K
diagonal matrix with diagonal entries h(fw(u∗j ))− h(fw∗(u

∗
j )) for all j = 1, 2, . . . ,K. The above

definition departs slightly from the original definition where only a single τ is used. The weights β∗j
depend on X , so it is difficult to compute them in practice when the memory is limited. However, it
might be possible to estimate them for some problems.

Nevertheless, with β∗j , the above K-prior can achieve perfect reconstruction. The proof is very similar
to the one given in Equations 9 and 10, and is shown below,

∇Kopt(w; w∗,M∗) =

K∑
j=1

β∗ju
∗
j

[
h(fw(u∗j ))− h(fw∗(u

∗
j ))
]

+ δ(w −w∗),

= U∗1:KDuβ∗ + δ(w −w∗),

= U∗1:KS∗1:KV>1:Kdx + δ(w −w∗),

= Φ>dx + δ(w −w∗),

=
∑
i∈X

φi
[
h(f iw)− h(f iw∗)

]
+ δ(w −w∗),

=
∑
i∈D

φi
[
h(f iw)− yi

]
+ δw︸ ︷︷ ︸

=∇¯̀(w).

−
������������∑
i∈D

φi
[
h(f iw∗)− yi

]
− δw∗︸ ︷︷ ︸

=0.

.

The first line is simply the gradient, which is then rearranged in the matrix-vector product in the
second line. The third line uses the definition of β∗, and the fourth line uses the SVD of Φ. In the
fifth line we expand it to show that it is the same as Eq. 9, and the rest follows as before.

Due to their perfect gradient-reconstruction property, we call the prior in Eq. 19 the optimal prior.
When only top-M singular vectors are chosen, the gradient reconstruction error grows according to
the leftover singular values. We show this below where we have chosenM∗M = {u∗1,u∗2, . . . ,u∗M}
as the set of top-M singular vectors,
eopt(w; w,M∗M ) = ∇¯̀(w)−∇Kopt(w; w∗,M∗M )

= ∇¯̀(w)−∇Kopt(w; w∗,M∗) +∇Kopt(w; w∗,M∗)−∇Kopt(w; w∗,M∗M )

= ∇Kopt(w; w∗,M∗)−∇Kopt(w; w∗,M∗M )

=

K∑
j=M+1

β∗ju
∗
j

[
h(fw(u∗j ))− h(fw∗(u

∗
j ))
]
,

= U∗M+1:KS∗M+1:KV>M+1:Kdx.

15



The first line is simply the definition of the error, and in the second line we add and subtract the
optimal K-prior with memoryM∗. The next few lines use the definition of the optimal K-prior and
rearrange terms.

Using the above expression, we find the following error,

‖eopt(w; w,M∗M )‖ =
√

ΣKj=M+1s
2
j (a

x
j )2

where axj is the j’th entry of a vector a = V>1:Kdx. The error depends on the leftover singular values.
The error is likely to be the optimal error achievable by any memory of size M , and establishes a
theoretical bound on the best possible performance achievable by any K-prior.

B Additional Examples of Adaptation with K-priors

Here, we briefly discuss the K-prior regularization for the other adaptation tasks.

B.1 The Change Regularizer task

For Change Regularizer task, we need to slightly modify the K-prior of Eq. 8. We replace the
weight-space divergence in Eq. 8 with a Bregman divergence defined using two different regularizers
(see Proposition 5 in Nielsen [42]),

BGR(w‖w∗) = G(w) +R∗(η∗)−w>η∗, (20)

where η∗ = ∇R(w∗) is the dual parameter and R∗ is the convex-conjugate of R. This is very
similar to the standard Bregman divergence but uses two different (convex) generating functions.

To get an intuition, consider hyperparameter-tuning for the L2 regularizerR(w) = 1
2δ‖w‖

2, where
our new regularizer G(w) = 1

2γ‖w‖
2 uses a hyperparameter γ 6= δ. Since the conjugateR∗(η) =

1
2‖η‖

2/δ and η∗ = ∇R(w∗) = δw∗, we get

BGR(w‖w∗) = 1
2 (γ‖w‖2 + δ‖w∗‖2 − 2δw>w∗).

When γ = δ, then this reduces to the divergence used in Eq. 8, but otherwise it enables us to
reconstruct the gradient of the past objective but with the new regularizer. We define the following
K-prior where the weight-divergence is replaced by Eq. 20, and use it to obtain ŵG ,

K(w; w∗,M) =
∑
i∈M

`
(
h(f iw∗), h(f iw)

)
+ BGR(w‖w∗),

ŵG = arg min
w∈W

K(w; w∗,M)
(21)

The following theorem states the recovery of the exact solution.
Theorem 2. ForM = X and strictly-convex regularizers, we have wG = ŵG .

The derivation is very similar to Eq. 10, where δ(w −w∗) is replaced by ∇G(w)−∇R(w∗).

B.2 The Change Model Class task

We discuss the ‘Change Model Class’ task through an example. Suppose we want to remove the last
feature from φi so that w ∈ RP is replaced by a smaller weight-vector θ ∈ RP−1. Assuming no
change in the hyperparameter, we can simply use a weighting matrix to ‘kill’ the last element of w∗.
We define the matrix A = IP−1×P whose last column is 0 and the rest is the identity matrix of size
P − 1. With this, we can use the following training procedure over a smaller space w̄,

K(θ) =
∑
i∈M

`
(
h(f iw∗), h(fθ(xi))

)
+ BR(θ‖Aw∗), θ̂∗ = arg min

θ∈Θ
K(θ) (22)

If the hyperparameters or regularizer are different for the new problem, then the Bregman divergence
shown in Eq. 20 can be used, with an appropriate weighting matrix.

Model compression is a specific instance of the ‘Change Model Class’ task, where the architecture
is entirely changed. For neural networks, this also changes the meaning of the weights and the

16



regularization term may not make sense. In such cases, we can simply use the functional-divergence
term in K-priors,

K(θ) =
∑
i∈M

`
(
h(f iw∗), h(fθ(xi))

)
, θ̂∗ = arg min

θ∈Θ
K(θ) (23)

This is equivalent to knowledge distillation (KD) in Eq. 15 with λ = 0 and T = 1.

Since KD performs well in practice, it is possible to use a similar strategy to boost K-prior, e.g., we
can define the following,

θ̂∗ = arg min
θ∈Θ

λ
∑
i∈M

`(yi, h(f iθ)) + (1− λ)K(θ) (24)

We could even use limited-memory in the first term. The term λ lets us trade-off teacher predictions
with the actual data.

We can construct K-priors to change multiple things at the same time, for example, changing
the regularizer, the model class, and adding/removing data. A K-prior for such situations can be
constructed using the same principles we have detailed.

C Derivation of the K-priors Gradients for Deep Learning

The gradient is obtained similarly to (10) where we add and subtract yi in the first term in the first
line below,

∇K(w) =
∑
i∈X
∇f iw

[
h(f iw)− h(f iw∗)

]
+ δ(w −w∗),

=
∑
i∈D
∇f iw

[
h(f iw)− yi

]
+ δw︸ ︷︷ ︸

=∇¯̀(w)

−
∑
i∈D
∇f iw[h(f iw∗)− yi]− δw∗︸ ︷︷ ︸
6=∇¯̀(w∗), because∇fi

w 6=∇fi
w∗

,

The second term is not zero because∇f iw 6= ∇f iw∗ to get∇¯̀(w∗) in the second term.

The gradient of the KD objective can be obtained in a similar fashion, where we add and subtract yi
in the second term in the first line to get the second line,

∇`KD(w) = λ
∑
i∈D
∇f iw

[
h(f iw)− yi

]
+ (1− λ)

∑
i∈D
∇f iw

[
h(f iw)− h(f iw∗)

]
,

=
∑
i∈D
∇f iw

[
h(f iw)− yi

]
− (1− λ)

∑
i∈D
∇f iw

[
h(f iw∗)− yi

]
.

D Proof for Adaptation for Bayesian Learning with K-priors

To prove the equivalence of (18) to the full batch variational inference problem with a Gaussian
q(w) = N (w|µ,Σ), we can use the following fixed point of the variational objective (see Section
3 in [27] for the expression),

0 = ∇µEq[L(w)] |µ=µ+,Σ=Σ+
= Eq[∇wL(w)]|µ=µ+,Σ=Σ+

, (25)

Σ−1
+ = ∇ΣEq[L(w)]|µ=µ+,Σ=Σ+

= Eq[∇2
wL(w)]

∣∣
µ=µ+,Σ=Σ+

, (26)

where L(w) = [`j(w) + ¯̀(w) +R(w)], µ+ and Σ+ are the mean and covariance of the optimal
q+(w) for the ‘Add Data’ task. For GLMs, both the gradient and Hessian of ¯̀(w) is equal to those of
K(w) defined in (8), which proves the equivalence.

For equivalence to GPs, we first note that, similarly to the representer theorem, the mean and
covariance of q+(w) can be expressed in terms of the two N -length vectors α and λ [43, 26, 28],

µ+ = Φ>+α, Σ+ = (Φ>+ΛΦ+ + δI)−1,

17



where Λ is a diagonal matrix with λ as the diagonal. Using this, we can define a marginal q(fi) =

N (fi|mi, vi), where fi = φ>i w, with the mean and variance defined as follows,

mi = φ>i µ+ = k>i,+α, vi = φ>i Σ+φi = kii,+ − k>i,+
(
Λ−1 + δK+

)−1
ki,+,

where kii,+ = φ>i φi. Using these, we can now rewrite the optimality conditions in the function-space
to show equivalence to GPs.

We show this for the first optimality condition (25),

∇µEq[L(w)]|µ=µ+,Σ=Σ+
=
∑
i∈D∪j

EN (εi|0,1)

[
∇f `(yi, h(f))|

f=φ>i µ++(φ>i Σ+φi)
1/2

εi

]
φi + δµ+

Multiplying it by Φ+, we can rewrite the gradient in the function space,

0 =
∑
i∈D∪j

EN (εi|0,1)

[
∇f `(yi, h(f))|

f=mi+v
1/2
i εi

]
ki,+ + δK+α

=
∑
i∈D∪j

∇miEq(fi) [`(yi, h(fi))] ki,+ + δK+α

where m is the vector of mi. Setting this to 0, gives us the first-order condition for a GP with respect
to the mean, e.g., see Equation 3.6 and 4.1 in Chapelle [14]. It is easy to check this for GP regression,
where `(yi, h(fi)) = (yi − fi)2, in which case, the equation becomes,

0 =
∑
i∈D∪j

(mi − yi)ki,+ + δK+α ⇒ α = (K+ + δI)−1y,

which is the quantity which gives us the posterior mean. A similar condition condition for the
covariance can be written as well.

Clearly, when we use a limited memory, some of the data examples are removed and we get a sparse
approximation similarly to approaches such as informative vector machine which uses a subset of
data to build a sparse approximation [23]. Better sparse approximations can be built by carefully
designing the functional divergence term. For example, we can choose the matrix B in the divergence,

Df (f(w)‖f(w∗)) = 1
2d>mBdm ⇒ ∇Df (f(w)‖f(w∗)) = ∇f(w)>Bdm

This type of divergence is used in Pan et al. [45], where the matrix B is set to correlate the examples
inM with the examples in D. Design of such divergence function is a topic which requires more
investigation in the future.

E Further experimental results

We provide more details on all our experiments, such as hyperparameters and more results.

E.1 Adaptation tasks

Logistic Regression on the ‘UCI Adult’ dataset. In Fig. 2(a) we show results for the 4 adaptation
tasks on the UCI Adult dataset, and provide experimental details in Sec. 5. Note that for all but the
‘Change Model Class’ task, we used polynomial degree 1. For all but the ‘Change Regularizer’ task,
we use δ = 5.

We optimize using LBFGS (default PyTorch implementation) with a learning rate of 0.01 until
convergence. Throughout our experiments in the paper, we used the same memorable points for
Replay as for K-priors (the points with the highest h′(f iw∗)), and used τ = 1 (from Eq. 6). In Fig. 4
we provide an ablation study for Replay with different strategies: (i) we choose points by h′(f iw∗) and
use τ = N/M , (ii) we choose points randomly and use τ = 1, (iii) we choose points randomly and
use τ = N/M . Recall that N is the past data size (the size of D) and M is the number of datapoints
stored in memory (the size ofM). We see that choosing points by h′(f iw∗) and using τ = 1 performs
very well, and we therefore choose this for all our experiments.

18



V
al

id
at

io
n 

ac
c 

(%
)

Add new data

Memory size (% of past data)

Figure 4: This figure shows using τ = 1 works well for Replay, both for random selection of memory
and choosing memory by sorting h′(f iw∗). We compare different methods for Replay on the Adult
‘Add Data’ task. ‘Random’ means the points in memory are chosen randomly as opposed to choosing
the points with highest h′(f iw∗). We also consider using τ = N/M instead of τ = 1. Choosing
randomly or by h′(f iw∗) are within standard deviations in this task, so we choose to report memory
chosen by h′(f iw∗) in other experiments (this is then consistent with the memory in K-priors).

Logistic Regression on the ‘USPS odd vs even’ dataset. For all but the ‘Change Model Class’ task,
we used polynomial degree 1. For all but the ‘Change Regularizer’ task, we use δ = 50. We optimize
using LBFGS with a learning rate of 0.1 until convergence.

Neural Networks on the ‘USPS odd vs even’ dataset. For all but the ‘Change Regularizer’ task,
we use δ = 5. We optimize using Adam with a learning rate of 0.005 for 1000 epochs (which is long
enough to reach convergence).

Neural Networks on the ‘MNIST’ dataset. We show results on 10-way classification with MNIST
in Fig. 5, which has 60,000 training images across 10 classes (handwritten digits), with each image
of size 28 × 28. We use a two hidden-layer MLP with 100 units per layer, and report means and
standard deviations across 3 runs. For the ‘Add Data’ task, we start with a random 90% of the dataset
and add 10%. For the ‘Change Regularizer’ task, we change δ = 1 to 5 (we use δ = 1 for all other
tasks). For the ‘Change Architecture’ task, we compress to a single hidden layer with 100 hidden
units. We optimize using Adam with a learning rate of 0.001 for 250 epochs, using a minibatch size
of 512.

V
al

id
at

io
n 

ac
c 

(%
)

Memory size (% of past data)

Add new data Change regularizer Change architecture

Memory size (% of past data) Memory size (% of past data)

Figure 5: K-priors work well on MNIST (with an MLP), similar to other results on the USPS and
UCI Adult datasets. For details on the experiments, see App. E.1.

Neural Networks on the ‘CIFAR-10’ dataset. We provide results for CIFAR-10 using 10-way
classification. CIFAR-10 has 60,000 images (50,000 for training), and each image has 3 channels,
each of size 32 × 32. We report mean and standard deviations over 3 runs. We use the CifarNet
architecture from Zenke et al. [62].We optimize using Adam with a learning rate of 0.001 for 100
epochs, using a batch size of 128.

In Fig. 6 we also provide results on the ‘Change Regularizer’ task, where we change δ = 1 to 0.5 (we
use δ = 1 for all the other tasks). We also provide results on the ‘Change Architecture’ task, where
we change from the CifarNet architecture to a LeNet5-style architecture. This smaller architecture
has two convolution layers followed by two fully-connected layers: the first convolution layer has
6 output channels and kernel size 5, followed by the ReLU activation, followed by a Max Pool
layer with kernel size 2 (and stride 2), followed by the second convolution layer with 16 output
channels and kernel size 5, followed by the ReLU activation, followed by another Max Pool layer
with kernel size 2 (and stride 2), followed by a fully-connected layer with 120 hidden units, followed

19



by the last fully-connected layer with 84 hidden units. We also use ReLU activation functions in the
fully-connected layers.

V
al

id
at

io
n 

ac
c 

(%
)

Change regularizer Change architecture

Memory size (% of past data) Memory size (% of past data)

Figure 6: Results for two adaptation tasks on CIFAR-10 with CNNs. See also Fig. 3(c) for results
on the ‘Add Data’ task. K-priors perform well, especially on the ‘Change Regularizer’ task. The
‘Change Architecture’ task is more difficult, but we note that we do not use a temperature. Having a
temperature greater than 1 is known to help in similar settings, such as knowledge distillation [24].

For the knowledge distillation task, we used K-priors with a temperature, similar to the temperature
commonly used in knowledge distillation [24]. We note that there is some disagreement in the
literature regarding how the temperature should be applied, with some works using a temperature
only on the teacher’s logits (such as in Eq. 15) [37], and other works having a temperature on both
the teacher and student’s logits [24]. In our experiments, we use a temperature T on both the student
and teacher logits, as written in the final term of Eq. 27. We also multiply the final term by T 2 so that
the gradient has the same magnitude as the other data term (as is common in knowledge distillation).

`KD,expt(w) = λ
∑
i∈D

`
(
yi, h(f iw)

)
+ δ‖w‖2 + (1− λ)T 2

∑
i∈D

`
(
h(f iw∗/T ), h(f iw/T )

)
. (27)

We used λ = 0.5 in the experiment. We performed a hyperparameter sweep for the temperature
(across T = [1, 5, 10, 20]), and used T = 5. For K-priors in this experiment, we optimize for 10
epochs instead of 100 epochs, and use τ = 1.

In Fig. 3(c) we also showed initial results using a temperature on the ‘Add Data’ task on CIFAR-10.
We used the same temperature from the knowledge distillation experiment (T = 5 and λ = 0.5), but
did not perform an additional hyperparameter sweep. We find that using a temperature improved
results for CNNs, and we expect increased improvements if we perform further hyperparameter
tuning. Note that many papers that use knowledge distillation perform more extensive hyperparameter
sweeps than we have here.

E.2 Weight-priors vs K-priors

In Fig. 7 we provide results comparing with weight-priors for all the ‘Add Data’ tasks. We see that for
homogeneous data splits (such as UCI Adult, MNIST and CIFAR), weight-priors perform relatively
well. For inhomogeneous data splits (USPS with logistic regression and USPS with neural networks),
weight-priors perform worse.

V
al

id
at

io
n 

ac
c 

(%
)

Memory size (% of past data)

(a) Adult, logistic regression (b) USPS, NN (c) MNIST, NN (d) CIFAR-10, NN

Memory size (% of past data) Memory size (% of past data) Memory size (% of past data)

Figure 7: Results on the ‘Add Data’ task, with a comparison to weight-priors. (a), (c), (d) For
homogeneous data splits, weight-priors can perform relatively well. (b) For inhomogeneous data
splits, weight-priors perform worse (see also Fig. 3(b)).

20



E.3 K-priors ablation with weight-term

In this section we perform an ablation study on the importance of the weight-term 1
2δ‖w −w∗‖2 in

Eq. 8. In Fig. 8 we show results on logistic regression on USPS where we do not have w∗ in this term
(the update equation is the same as Eq. 8 except the weight-term is 1

2δ‖w‖
2 instead of 1

2δ‖w−w∗‖2).
We see that the weight-term is important: including the weight-term always improves performance.

V
al

id
at

io
n 

ac
c 

(%
)

Add new data Remove old data Change regularizer

Memory size (% of past data) Memory size (% of past data) Memory size (% of past data)

Figure 8: Comparing K-priors with a version of K-priors without the weight-term on USPS logistic
regression. We see that the weight-term is important, especially on the ‘Add Data’ task.

E.4 K-priors with random initialization

In all experiments so far, when we train on a new task, we initialize the parameters at the previous
parameters w∗. Note that this is not possible in the “Change architecture” task, where weights were
initialized randomly. Our results are independent of initialization strategy: we get the same results
whether we use random initialization or initializing at previous values. The only difference is that
random initialization can sometimes take longer until convergence (for all methods: Batch, Replay
and K-priors).

For GLMs, where we always train until convergence and there is a single optimum, it is clear that
the exact same solution will always be reached. We now also provide the result for ‘USPS odd vs
even’, with random initialization in Fig. 9, for the 3 tasks where we had earlier initialized at previous
values (compare with Fig. 1 (right)). We use exactly the same hyperparameters and settings as in
Fig. 1 (right), aside from initialization method.

V
al

id
at

io
n 

ac
c 

(%
)

Memory size (% of past data)

Add new data Remove old data Change regularizer

Memory size (% of past data) Memory size (% of past data)

Figure 9: K-priors obtain the same results when randomly initializing the weights for the ‘Add new
data’, ‘Remove old data’ and ‘Change regularizer’ tasks on USPS odd vs even with neural networks.
Previous results, including Fig. 1 (right), initialized parameters at previously learnt values. The
‘Change architecture’ task originally used random initialization and so is not repeated here.

E.5 K-priors converge cheaply

In this section, we show that K-priors with limited memory converge to the final solution cheaply,
converging in far fewer passes through data than the batch solution. This is because we use a limited
memory, and only touch the more important datapoints.

Table 1 shows the “number of backprops” until reaching specific accuracies (90% and 97%) on USPS
with a neural network (using the same settings as in Fig. 1 (right)). This is one way of measuring the
“time taken”, as backprops through the model are the time-limiting step. For K-priors and Replay, we
use 10% of past memory. All methods use random initializations when starting training on a new
task.

21



We see that K-priors with 10% of past data stored are quicker to converge than Batch, even though
both eventually converge to the same accuracy (as seen in Fig. 1 (right)). For example, to reach
97% accuracy for the Change Regularizer task, K-priors only need 54,000 backward passes, while
Batch requires 2,700,000 backward passes. We also see that Replay is usually very slow to converge.
This is because it does not use the same information as K-priors (as Replay uses hard labels), and
therefore requires significantly more passes through data to achieve the same accuracy. In addition,
Replay with 10% of past data cannot achieve high accuracies (such as 97% accuracy), as seen in
Fig. 1 (right).

Table 1: Number of backpropagations required to achieve a specified accuracy on USPS with a neural
network (1000s of backprops). K-priors with 10% past memory require much fewer backprops to
achieve the same accuracy as Batch, while Replay with 10% memory cannot achieve high accuracies.

Accuracy Method Add Remove Change Change
achieved new data old data regularizer model class
90% Batch 87 94 94 86
90% Replay (10% memory) 348 108 236 75
90% K-prior (10% memory) 73 53 13 22
97% Batch 1,900 1,800 2,700 3,124
97% Replay (10% memory) – 340 – –
97% K-prior (10% memory) 330 120 54 68

E.6 Further details on Fig. 1 (middle), moons dataset.

To create this dataset, we took 500 samples from the moons dataset, and split them into 5 splits of
100 datapoints each, with each split having 50 datapoints from each task. Additionally, the splits
were ordered according to the x-axis, meaning the 1st split were the left-most points, and the 5th
split had the right-most points. In the provided visualisations, we show transfer from ‘past data’
consisting of the first 3 splits (so, 300 datapoints) and the ‘new data’ consisting of the 4th split (a new
100 datapoints). We store 3% of past data as past memory in K-priors, chosen as the points with the
highest h′(f iw∗).

F Changes in the camera-ready version compared to the submitted version

This section lists the major changes we made for the camera-ready version of the paper, incorporating
reviewer feedback.

• Added a paragraph on the optimal K-prior after Eq. 12, as well as a detailed explanation in
App. A.

• Updated Fig. 3(d), following a more extensive sweep of hyperparameters.
• Added App. E.4, showing K-priors with random initialization give the same results as

K-priors that are initialized at the previous model parameters.
• Added App. E.5, showing that K-priors with limited memory converge to the final solution

cheaply, requiring fewer passes through the data than the batch solution.

22



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the last paragraph of the

results section. Also see line 193 where we discuss the relations with weight priors.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We

generally believe that this has positive impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Theorem 1
and 2.

(b) Did you include complete proofs of all theoretical results? [Yes] These are in the
Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We provide a
link to a github repo to reproduce some of the results.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5. We also add details in Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Fig. 2 and 3.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [N/A] We did not use such huge
resources in this paper.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

23


