
A Proof of scale invariance of primal weight initialization scheme

Proposition 1. Suppose that K̂ = γK, ĉ = γαyc, q̂ = γαxq, l̂ = αxl, and û = αxu for
αy, αx, γ ∈ (0,∞) with ‖c‖2, ‖q‖2, ‖ĉ‖2, ‖q̂‖2 > εmach. Consider the PDHG algorithm given in
(3) with ω = InitializePrimalWeight(c, q). Let zk be the PDHG iterates on the original
problem and ẑk be the PDHG iterates on the scaled problem with x̂0 = αxx

0 and ŷ0 = αyy
0, then:

x̂k = αxx
k, ŷk = αyy

k for all k ∈ {0} ∪ N.

Proof. We will prove this by induction. By definition the result holds for k = 0. Define η̂ = η/γ,
and ω̂ = ‖ĉ‖/‖q̂‖2 = ω(αy/αx). Then,

x̂k+1 = proj
X̂

(
x̂k − η̂/ω̂(ĉ− K̂>ŷk)

)
= proj

X̂

(
αxx

k − αxη/ω(c−K>yk)
)

= αx proj
X

(
xk − η/ω(c−K>yk)

)
= αxx

k+1.

Similarly,

ŷk+1 = proj
Ŷ

(
ŷk − η̂ω̂(q̂ − K̂(2x̂k+1 − x̂k))

)
= proj

Ŷ

(
αyy

k − αyηω(q −K(2xk+1 − xk))
)

= αy proj
Y

(
αyy

k − αyηω(q −K(2xk+1 − xk))
)

= αyy
k+1.

B MIP Relaxations dataset
MIPLIB 2017 [34] is a collection of mixed integer programming (MIP) problems used primarily
for developing and benchmarking MIP solvers. MIPLIB contains both a larger collection set (1056
instances) and a smaller benchmark set (240 instances). We select 383 instances from the collection
set that satisfy the following criteria:

• Not tagged as numerically unstable

• Not tagged as infeasible

• Not tagged as having indicator constraints

• Finite optimal objective (if known)

• The constraint matrix has between 100, 000 and 10, 000, 000 nonzero coefficients.

For comparison, the MIPLIB benchmark set excludes instances whose constraint matrix has more
than 1, 000, 000 nonzero coefficients. The upper limit of 10, 000, 000 was chosen for the convenience
of running experiments. Our set both excludes small instances that may be in the benchmark set and
includes instances deemed too large for the benchmark set. From each MIP instance we derive an LP
instance by removing the integrality constraints.

C Ablation study
To study the impact of PDLP’s improvements over baseline PDHG, we performed an ablation study,
in which we evaluate the consequences of disabling each enhancement separately and evaluate
alternative choices. All experiments in this section are performed on the MIP Relaxations dataset.
Each of these experiments is run with a limit of 100,000 KKT passes and 6 hours. If the instance is
unsolved, the KKT passes are set to 100,000, and the solve time to 6 hours.

16

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Stepsize Tol 1E-04

Fixed step-size
PDLP
Best per-instance MP settings
Best fixed MP setting

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Stepsize Tol 1E-08
Fixed step-size
PDLP
Best per-instance MP settings
Best fixed MP setting

Figure 3: Step size ablation experiments on MIP Relaxations

Table 3: Performance statistics: MIP Relaxations Stepsize Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

Fixed step-size 336 6207.9 91.3
PDLP 349 3058.3 51.1
Best fixed MP setting 352 3855.6 58.5
Best per-instance MP settings 363 2869.7 41.4

C.1 Step size choice
We compare PDLP’s adaptive step size rule against three alternatives:

• “Fixed step size”: (baseline PDHG) The step size η is fixed to η = 0.9/‖K‖2 where ‖K‖2
is estimated via power iteration,

• “Best fixed Malitsky-Pock (MP) setting”: Malitsky and Pock [43], tuning the hyperparame-
ters via a hyperparameter search, and

• “Best per-instance Malitsky-Pock (MP) setting”: Malitsky and Pock [43], choosing the best
hyperparameters separately for each instance. This is a “virtual” solver that combines 42
hyperparameter configurations.

The results, in Figure 3 and Tables 3 and 4, show that PDLP is slightly better than tuned Malitsky-Pock,
and at high accuracy, almost as good as per-instance tuned Malitsky-pock.

Description of Malitsky and Pock hyperparameters. Our implementation depends on three hy-
perparameters: breaking_factor, downscaling_factor, and interpolation_coefficient.
We explain the role of each one by summarizing the linesearch rule. Suppose the algorithm finished
iteration k and it does not execute a restart. Thus, the primal weight doesn’t not change ωk = ωk+1.
Mimicking the notation in [43] we define:

θk =
ηk−1

ηk
.

Then, the algorithm does the following at iteration k + 1:

1. Update primal iterate xk+1 ← projX

(
xk − ηk

ωk

(
c−K>yk

))
.

Table 4: Performance statistics: MIP Relaxations Stepsize Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

Fixed step-size 242 17339.5 469.9
Best fixed MP setting 275 11660.4 260.1
PDLP 283 9773.3 216.0
Best per-instance MP settings 289 9778.7 193.8

17

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Restarts Tol 1E-04

No restart
Adaptive restart (theory)
PDLP

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Restarts Tol 1E-08
No restart
Adaptive restart (theory)
PDLP

Figure 4: Restart ablation experiments on MIP Relaxations

Table 5: Performance statistics: MIP Relaxations Restarts Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

No restart 335 4387.9 70.2
Adaptive restart (theory) 340 3680.5 64.0
PDLP 349 3058.3 51.1

2. Pick a candidate for the next step size η̂k+1 ∈ [ηk,
√

1 + θkηk]. By letting

η̂k+1 ← ηk+interpolation_coefficient·
(√

1 + θk − 1
)
ηk and θ̂k+1 ←

ηk
η̂k+1

.

3. Compute a candidate for next dual iterate yk+1:

ŷk+1 ← proj
Y

(
yk + ωk+1η̂k+1

(
q −K

(
xk+1 + θ̂k+1(xk+1 − xk)

)))
.

4. Check if the linesearch is done;

If η̂k‖K>(ŷk+1 − yk)‖ ≤ breaking_factor · ‖ŷk+1 − yk‖:

ηk+1 ← η̂k+1, θk+1 ← θ̂k+1, and yk+1 ← ŷk+1.

Else: reduce the step size as follows and then go to Step 3:

η̂k+1 ← downscaling_factor · η̂k+1, θ̂k+1 ←
ηk
η̂k+1

.

In our experiments, we fix breaking_factor = 1 on guidance from the authors of [43].
We then perform a grid search on downscaling_factor ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and
interpolation_coefficient ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

The single best configuration (by count of solved instances) for both ε = 10−4 and ε = 10−8 is
downscaling_factor = 0.5 and interpolation_coefficient = 0.4.

Table 6: Performance statistics: MIP Relaxations Restarts Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

No restart 197 22488.2 960.5
Adaptive restart (theory) 263 12175.6 308.0
PDLP 283 9773.3 215.5

18

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Primalweight Tol 1E-04

PDLP
Best per-instance PW
Best fixed PW

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Primalweight Tol 1E-08
PDLP
Best per-instance PW
Best fixed PW

Figure 5: Primal weight ablation experiments on MIP Relaxations

Table 7: Performance statistics: MIP Relaxations Primalweight Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

Best fixed PW 291 6548.0 184.4
PDLP 349 3058.3 51.5
Best per-instance PW 354 2091.3 41.2

C.2 Adaptive restarts

For PDLP, we use βsufficient = 0.9, βnecessary = 0.1, and βartificial = 0.5 as the restart parameters. For
“Adaptive restart (theory)” mode we match [7] and by setting βsufficient = βnecessary = 0.37 = exp(−1).
This is equivalent to removing condition (ii) from the restart criteria. For “no restart” mode we disable
restarts. For this setting primal weight updates still occur when an artificial restart would have been
triggered. In other words, the primal weights are updated on iteration 2, 22, 23,

The performance of adaptive restarts are summarized in Figure 4 and Tables 5 and 6. We can see
PDLP outperforms “Adaptive restart (theory)” mode which in turn beats ‘no restart” mode. This
difference is much more pronounced at high accuracy.

C.3 Primal weight updates

In PDLP, the smoothing parameter is set to θ = 0.5. As baselines for PDLP’s primal weight
(PW) updating rule, we compare with using fixed primal weights, setting the primal weight to
ω = ξ · InitializePrimalWeight(c, q) with the bias ξ ∈ {10−5, 10−4, . . . , 100, . . . , 104, 105}
chosen by grid search. For these experiments, the smoothing parameter is set to θ = 0 to fix the
primal weight during the solve.

We compute both the single best value of ξ (by count of solved instances), and the best per-instance
value, which defines a “virtual” solver. The single best value of ξ is 0.1 at both ε = 10−4 and
ε = 10−8. Qualitatively, the performance of ξ = 1, which is a natural default, is very similar to that
of ξ = 0.1.

From Figure 5 and Tables 7 and 8, we conclude that PDLP is competitive with the best per-instance
fixed primal weight at low accuracy, and outperforms it at high accuracy.

Table 8: Performance statistics: MIP Relaxations Primalweight Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

Best fixed PW 214 17852.7 707.2
Best per-instance PW 277 9846.8 246.0
PDLP 283 9773.3 216.8

19

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Presolve Tol 1E-04
PDLP
No presolve

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Presolve Tol 1E-08
PDLP
No presolve

Figure 6: Presolve ablation experiments on MIP Relaxations

Table 9: Performance statistics: MIP Relaxations Presolve Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

No presolve 332 3615.3 89.9
PDLP 349 3058.3 51.0

C.4 Presolve
Figure 6 and Tables 9 and 10 measure the impact of presolve. Note that the impact on solve time
is greater than the impact on KKT passes, because presolve also makes each KKT pass faster by
making the problem smaller.

C.5 Diagonal preconditioning
Tables 11 and 12 compare the performance of the four diagonal preconditioning techniques as men-
tioned in Section 3.5. As we can see, the number of solved problems of our proposed preconditioner
(Ruiz and Pock-Chambolle) significantly outperform no scaling and the baselines (Pock-Chambolle
or Ruiz individually).

Furthermore, Figure 7 shows the number of solved instances as a function of KKT passes for the four
different diagonal preconditioners, which further shows a clear separation between PDLP and the
baselines.

D Additional details on the PageRank LP formulation
Based on Nesterov [50], we formulate the problem of finding a maximal right eigenvector of a
stochastic matrix S as a feasible solution of the LP problem:

find x

subject to: Sx ≤ x

1>x = 1

x ≥ 0

(7)

Nesterov [50] states the constraint ‖x‖∞ ≥ 1 to enforce x 6= 0. We instead use 1>x = 1 which is
equivalent under scaling.

For a random scalable collection of pagerank instances, we used Barabási-Albert [9] preferential
attachment graphs, using the Julia LightGraphs.SimpleGraphs.barabasi_albert generator

Table 10: Performance statistics: MIP Relaxations Presolve Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

No presolve 269 10030.6 318.0
PDLP 283 9773.3 215.8

20

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Scaling Tol 1E-04
No scaling
Pock-Chambolle
Ruiz
Ruiz + Pock-Chambolle

102 103 104 105

KKT matrix passes SGM10
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ro
bl

em
s s

ol
ve

d

MIP Relaxations Scaling Tol 1E-08
No scaling
Pock-Chambolle
Ruiz
Ruiz + Pock-Chambolle

Figure 7: Diagonal preconditioning ablation experiments on MIP Relaxations

Table 11: Performance statistics: MIP Relaxations Scaling Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

No scaling 261 6700.9 254.1
Ruiz 326 4487.7 88.3
Pock-Chambolle 331 3941.3 78.0
Ruiz + Pock-Chambolle 349 3058.3 50.9

with degree set to 3. We then computed the adjacency matrix and scaled the columns to make the
matrix stochastic; call this matrix S′. Following the standard PageRank formulation we apply a
damping factor to S′ and consider S := λS′ + (1− λ)J/n (where J = 11> is the all-ones matrix).
Intuitively, S encodes a random walk that follows a link in the graph with probability λ or jumps to a
uniformly random node with probability 1− λ.

The direct approach to the damping factor results in a completely dense matrix. Instead we use the
fact that Jx = 1 to rewrite the constraint Sx ≤ x in (7) as

λ(S′x)i + (1− λ)/n ≤ xi ∀i . (8)

E Additional PDLP improvements results
Tables 13 and 14 give a tabular version of the impact of PDLP’s improvements on the MIP
Relaxations dataset (corresponding to Figure 1a). Tables 15 and 16 give a tabular version of
the impact of PDLP’s improvements on the LP benchmark dataset (corresponding to Figure 1b).
Tables 17 and 18 give a tabular version of the impact of PDLP’s improvements on the Netlib dataset
(corresponding to Figure 1c).

F Additional baseline comparison results
Tables 19 and 20 give a tabular version of the comparison of PDLP with other first-order baselines
on the MIP Relaxations dataset, Tables 21 and 22 give a tabular version of the comparison of
PDLP with other first-order baselines on the LP benchmark dataset, and Tables 23 and 24 give a
tabular version of the comparison of PDLP with other first-order baselines on the Netlib dataset
(corresponding to Figure 2). Each of these experiments is run with a time limit of 1 hour. If the
instance is unsolved, the KKT passes are set to 100,000, and the solve time to 1 hour.

Table 12: Performance statistics: MIP Relaxations Scaling Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

No scaling 207 19770.0 787.1
Ruiz 252 14028.2 379.9
Pock-Chambolle 256 12960.0 366.2
Ruiz + Pock-Chambolle 283 9773.3 218.0

21

Table 13: Performance statistics: MIP Relaxations Improvements Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 113 38958.0 1088.3
+restarts 140 29739.6 770.4
+scaling 221 14801.5 313.6
+primal weight 315 7228.1 110.8
+step size 332 3615.3 67.6
+presolve (= PDLP) 349 3058.3 42.1

Table 14: Performance statistics: MIP Relaxations Improvements Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 48 68588.8 2232.6
+restarts 101 47301.1 1284.0
+scaling 162 25985.7 595.7
+primal weight 223 18273.4 331.3
+step size 269 10091.0 181.8
+presolve (= PDLP) 283 9773.3 131.5

Table 15: Performance statistics: LP Benchmark Improvements Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 10 64120.0 2148.5
+restarts 10 58285.8 2033.9
+scaling 17 44984.7 1600.3
+primal weight 37 22232.1 880.1
+step size 36 13003.7 542.5
+presolve (= PDLP) 36 14721.1 630.7

Table 16: Performance statistics: LP Benchmark Improvements Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 4 87478.5 2784.6
+restarts 7 69299.7 2210.4
+scaling 10 58808.8 1929.2
+primal weight 14 52872.7 1644.8
+step size 23 38630.3 1336.5
+presolve (= PDLP) 23 35106.0 1281.7

Table 17: Performance statistics: Netlib Improvements Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 14 84783.8 1879.2
+restarts 15 83879.8 1816.4
+scaling 43 55967.3 485.9
+primal weight 94 14227.5 30.3
+step size 98 9443.3 20.4
+presolve (= PDLP) 103 5405.0 11.8

Table 18: Performance statistics: Netlib Improvements Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 4 97135.7 2962.2
+restarts 8 90532.9 2432.7
+scaling 22 71722.9 1217.9
+primal weight 67 36843.2 167.1
+step size 85 23264.1 61.0
+presolve (= PDLP) 88 13419.9 41.2

22

Table 19: Performance statistics: MIP Relaxations Baselines Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 159 45720.5 922.9
SCS (matrix-free) 287 37027.2 257.0
SCS 317 - 149.7
Enh. Extragradient 351 6028.7 75.2
PDLP 371 3236.6 38.4

Table 20: Performance statistics: MIP Relaxations Baselines Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 80 79085.1 2026.7
SCS (matrix-free) 124 40486.1 1006.9
SCS 156 - 675.3
Enh. Extragradient 302 21216.9 207.4
PDLP 334 11381.1 106.4

Table 21: Performance statistics: LP Benchmark Baselines Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 12 67792.0 2009.5
SCS (matrix-free) 25 51040.9 1118.7
SCS 26 - 1155.6
Enh. Extragradient 27 25808.3 944.2
PDLP 32 16679.4 613.8

Table 22: Performance statistics: LP Benchmark Baselines Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 6 92556.5 2693.1
SCS (matrix-free) 7 63771.2 2155.6
SCS 9 - 2017.1
Enh. Extragradient 13 54795.9 1693.4
PDLP 22 37937.0 1213.4

Table 23: Performance statistics: Netlib Baselines Tol 1E-04

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 63 360059.0 558.2
Enh. Extragradient 110 15722.3 13.2
SCS (matrix-free) 110 26134.0 15.4
PDLP 113 6708.7 6.9
SCS 113 - 11.5

Table 24: Performance statistics: Netlib Baselines Tol 1E-08

Experiment Solved count KKT passes SGM10 Solve time secs SGM10

PDHG 44 391013.9 1376.2
SCS (matrix-free) 46 47943.8 559.1
SCS 52 - 345.0
Enh. Extragradient 105 42993.3 30.6
PDLP 108 18866.1 18.2

23

G Instructions for reproducing experiments
This section documents the precise commands and command-line arguments for each experiment in
the paper. These instructions are supplemental to the READMEs in the FirstOrderLp code directory
(https://github.com/google-research/FirstOrderLp.jl). We assume that readers have
already followed the instructions in the READMEs to set up and “instantiate” the Julia environment,
and collect or generate all the datasets. Examples assume that the current working directory is
FirstOrderLp.

The full suite of experiments takes approximately 12, 500 CPU-hours to run, and hence requires use
of a cluster or cloud computing environment. Given the idiosyncrasies of these environments, we do
not provide additional utilities for distributing the experiments. See Section 4.1 for details on the
computing platforms we used.

The following base invocations show how to run the two main scripts without any custom argu-
ments.

Listing 1: solve_qp.jl base invocation
julia --project=scripts scripts/solve_qp.jl

--instance_path=$INSTANCE
--output_dir=$OUTPUT_DIR

Listing 2: solve_lp_external.jl base invocation
julia --project=scripts scripts/solve_lp_external.jl

--instance_path=$INSTANCE
--output_dir=$OUTPUT_DIR

solve_qp.jl runs methods implemented in the FirstOrderLp module. solve_lp_external.jl
runs external solvers (specifically, SCS).

G.1 Benchmark collection
The commands used to collect the MIP Relaxations, LP Benchmark, and Netlib bench-
marks are described in the benchmarking subdirectory of the FirstOrderLp code direc-
tory. README.md provides more detailed instructions, and collect_mip_relaxations.sh,
collect_lp_benchmark.sh, and collect_netlib_benchmark.sh give illustrative scripts for
collecting the benchmarks.

G.2 Tolerances
In experiments we often solve at termination tolerances ε = 10−4 and ε = 10−8. The following
command-line arguments to solve_qp.jl are used to set these tolerances.

Listing 3: solve_qp.jl arguments for ε = 10−4

--relative_optimality_tol 1e-4 --absolute_optimality_tol 1e-4

Listing 4: solve_qp.jl arguments for ε = 10−8

--relative_optimality_tol 1e-8 --absolute_optimality_tol 1e-8

G.3 Improvements experiment
This section documents the command-line settings corresponding to the experiments in Section 4.2
that measure the impact of PDLP’s improvements over baseline PDHG.

The following common settings apply for each run:

Listing 5: Common settings for each run
--kkt_matrix_pass_limit =100000
--restart_to_current_metric=gap_over_distance --verbosity =0
--method=pdhg

24

https://github.com/google-research/FirstOrderLp.jl

For each solve, use the base invocation for solve_qp.jl (Listing 1), a tolerance setting (Section G.2),
common settings (Listing 5), and one set of parameters below. See the documentation in READMEs
and source code for how to set $OUTPUT_DIR and process the results.

For example, the following command solves the “+ scaling” setting with ε = 10−4:

julia --project=scripts scripts/solve_qp.jl
--instance_path=$INSTANCE
--output_dir=$OUTPUT_DIR
--relative_optimality_tol=1e-4
--absolute_optimality_tol=1e-4
--kkt_matrix_pass_limit=100000
--restart_to_current_metric=gap_over_distance
--verbosity=0 --method=pdhg
--step_size_policy=constant
--primal_weight_update_smoothing=0.0
--scale_invariant_initial_primal_weight=false

Parameter settings:

1. “PDHG”: (on original un-presolved dataset)

--step_size_policy=constant --l_inf_ruiz_iterations =0
--pock_chambolle_rescaling=false --l2_norm_rescaling=false
--restart_scheme=no_restart --primal_weight_update_smoothing =0.0
--scale_invariant_initial_primal_weight=false

2. “+ restarts”:

--step_size_policy=constant --l_inf_ruiz_iterations =0
--pock_chambolle_rescaling=false --l2_norm_rescaling=false
--primal_weight_update_smoothing =0.0
--scale_invariant_initial_primal_weight=false

3. “+ scaling”:

--step_size_policy=constant --primal_weight_update_smoothing =0.0
--scale_invariant_initial_primal_weight=false

4. “+primal weight”:

--step_size_policy=constant

5. “+step size”: No additional parameters

6. “+presolve (= PDLP)”: Switch to presolved dataset.

G.4 Comparison with other first-order baselines
This section documents the command-line settings corresponding to the experiments in Section 4.3
that compare PDLP with SCS and enhanced Extragradient.

G.4.1 SCS (solve_lp_external.jl)
SCS is invoked via solve_lp_external.jl. The following common settings apply for all SCS
runs:

Listing 6: Common settings for SCS runs
--scs -normalize=true --iteration_limit =1000000000

Because SCS does not support time limits, we use the timeout command to stop SCS after one hour.
For example:

timeout 1h julia --project=scripts scripts/solve_lp_external.jl
--solver=scs -direct ...

25

The following arguments4 are used to set ε = 10−4.

Listing 7: SCS arguments for ε = 10−4

--tolerance =1e-4 --scs -acceleration_lookback =0

The following arguments are used to set ε = 10−8.

Listing 8: SCS arguments for ε = 10−8

--tolerance =1e-8

The following arguments5 select SCS in matrix-free mode:

Listing 9: Configuration for SCS (matrix-free)
--solver=scs -indirect --scs -cg_rate =1.01

The following arguments select SCS in its default mode that uses a cached LDL factorization to
solve the linear system that arises at each iteration:

Listing 10: Configuration for SCS (default)
--solver=scs -direct

G.4.2 PDLP and Extragradient (solve_qp.jl)
PDLP and enhanced Extragradient are invoked via solve_qp.jl.

The following common settings apply to both PDLP and Extragradient.

Listing 11: Common settings for PDLP and Extragradient
--time_sec_limit =3600 --restart_to_current_metric=gap_over_distance
--verbosity =0

The following two settings select either the PDLP or enhanced Extragradient methods.

Listing 12: Configuration for PDLP
--method=pdhg

Listing 13: Configuration for enhanced Extragradient
--method=mirror -prox

G.5 PDLP versus simplex and barrier
This section lists the commands corresponding to the experiments in Section 4.4 that compare PDLP
with Gurobi’s simplex and barrier algorithms.

Listing 14: Command for Gurobi Barrier
gurobi_cl TimeLimit =3600 Method =2 Crossover =0 Threads =1 $INSTANCE

Listing 15: Command for Gurobi Primal Simplex
gurobi_cl TimeLimit =3600 Method =0 Threads =1 $INSTANCE

Listing 16: Command for Gurobi Dual Simplex
gurobi_cl TimeLimit =3600 Method =1 Threads =1 $INSTANCE

4In preliminary experiments on the MIP relaxations dataset, SCS performed better at 10−4 with this custom
setting of acceleration lookback, which disables Anderson Acceleration.

5In preliminary experiments on the MIP relaxations dataset, SCS (matrix-free) performed better with
cg_rate=1.01, which controls the rate at which the conjugate gradient convergence tolerance decreases as a
function of the iteration number.

26

Listing 17: Command for PDLP
julia --project=scripts scripts/solve_qp.jl

--instance_path=$INSTANCE
--output_dir=$OUTPUT_DIR
--relative_optimality_tol =1e-8
--absolute_optimality_tol =1e-8
--time_sec_limit =3600
--restart_to_current_metric=gap_over_distance
--verbosity =0
--method=pdhg

G.6 Large-scale application: PageRank
This section describes the commands corresponding to the experiments in Section 4.5 that compares
PDLP, SCS, and Gurobi’s methods on PageRank instances.

The commands for Gurobi methods are the same as in Listings 14, 15, and 16. The command for
PDLP is the same as in Listing 17. The command for SCS follows:

Listing 18: Command for SCS
timeout 1h julia --project=scripts scripts/solve_lp_external.jl

--instance_path=$INSTANCE
--output_dir=$OUTPUT_DIR
--scs -normalize=true
--iteration_limit =1000000000
--tolerance =1e-8
--solver=scs -indirect
--scs -cg_rate =1.01

G.7 Ablation study
In the ablation study, PDLP is invoked as:

Listing 19: PDLP configuration for the ablation study
julia --project=scripts scripts/solve_qp.jl

--instance_path=$INSTANCE
--output_dir=$OUTPUT_DIR
--relative_optimality_tol $TOLERANCE
--absolute_optimality_tol $TOLERANCE
--method=pdhg
--restart_to_current_metric=gap_over_distance
--kkt_matrix_pass_limit =100000
--verbosity =0

on the MIP Relaxations dataset (to which presolve has been applied).

G.8 Step size choice
This section describes the commands corresponding to the ablation experiments in Section C.1 on the
step size choice.

The fixed step-size rule is invoked by appending the following argument to the command in List-
ing 19:

--step_size_policy=constant

The Malitsky and Pock step size rule is invoked by appending the following arguments to the
command in Listing 19:

--step_size_policy=malitsky -pock
--malitsky_pock_breaking_factor =1.0
--malitsky_pock_downscaling_factor=$DOWNSCALING_FACTOR
--malitsky_pock_interpolation_coefficient=$INTERPOLATION_COEFFICIENT

27

G.8.1 Adaptive restarts
This section describes the commands corresponding to the ablation experiments in Section C.2 on
restarts.

The “No restart” setting is invoked by appending the following argument to the command in List-
ing 19:

--restart_scheme=no_restart

The “Adaptive restart (theory)” setting is invoked by appending the following arguments to the
command in Listing 19:

--restart_to_current_metric=no_restart_to_current
--sufficient_reduction_for_restart =0.37
--necessary_reduction_for_restart =0.37

G.8.2 Primal weight updates
This section describes the commands corresponding to the ablation experiments in Section C.3 on
primal weights.

The primal weight is fixed, with the bias $XI = ξ, by appending the following arguments to the
command in Listing 19:

--primal_weight_update_smoothing =0.0
--primal_importance=$XI

G.8.3 Presolve
For the presolve ablation study in Section C.4, the “No presolve” setting is evaluated by ap-
plying PDLP to the original (non-presolved) version of the MIP Relaxations dataset. See
benchmarking/README.md for more information on the dataset generation.

G.8.4 Diagonal preconditioning
This section describes the commands corresponding to the ablation experiments in Section C.5 on
diagonal preconditioning.

The “No scaling” setting corresponds to appending the following arguments to the command in
Listing 19:

--l_inf_ruiz_iterations =0
--pock_chambolle_rescaling=false

The “Ruiz” setting corresponds to appending the following argument to the command in List-
ing 19:

--pock_chambolle_rescaling=false

The “Pock-Chambolle” setting corresponds to appending the following argument to the command in
Listing 19:

--l_inf_ruiz_iterations =0

The “Ruiz + Pock-Chambolle” setting is PDLP.

28

