
Appendix389

Our implementation is based on PyTorch [53], PyG [20], e3nn [28] and timm [82]. We include code390

for experiments on QM9 in appendix and will release code reproducing all main results in the future.391

Additionally, we update the results of IS2RE with IS2RS auxiliary task by using Noisy Nodes [30]392

data augmentation and summarize them in Table 7 and 8. As of May 20, 2022, Equiformer achieves393

the best results on IS2RE task when only IS2RE and IS2RS data are used.394

Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

GNS [30] 0.54 0.65 0.55 0.59 0.5825 - - - - -
Noisy Nodes [30] 0.47 0.51 0.48 0.46 0.4800 - - - - -
Graphormer [66] 0.4329 0.5850 0.4441 0.5299 0.4980 - - - - -

Equiformer 0.4222 0.5420 0.4231 0.4754 0.4657 7.23 3.77 7.13 4.10 5.56
+ Noisy Nodes 0.4156 0.4976 0.4165 0.4344 0.4410 7.47 4.64 7.19 4.84 6.04

Table 7: Results on OC20 IS2RE validation set when IS2RS node-level auxiliary task is adopted
during training. “GNS” denotes the 50-layer GNS trained without Noisy Nodes data augmentation,
and “Noisy Nodes” denotes the 100-layer GNS trained with Noisy Nodes. Compared to the main
text, we add the result of “Equiformer + Noisy Nodes”, which use data augmentation of interpolating
between initial structure and relaxed struture and adding Gaussian noise as described by Noisy
Nodes [30].

Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

GNS + Noisy Nodes [30] 0.4219 0.5678 0.4366 0.4651 0.4728 9.12 4.25 8.01 4.64 6.5
Graphormer [66]† 0.3976 0.5719 0.4166 0.5029 0.4722 8.97 3.45 8.18 3.79 6.1

Equiformer + Noisy Nodes 0.4171 0.5479 0.4248 0.4741 0.4660 7.71 3.70 7.15 4.07 5.66

Table 8: Results on OC20 IS2RE testing set when IS2RS node-level auxiliary task is adopted
during training. † denotes using ensemble of models trained with both IS2RE training and validation
sets. In contrast, we use the same single Equiformer model in Table 7, which is trained with only the
training set, for evaluation on the testing set.

A Additional Mathematical Background395

In this section, we provide additional mathematical background on group equivariance helpful for396

the discussion of the proposed method. Other works [73, 81, 44, 1, 23, 5] also provide similar397

background. We encourage interested readers to see these works [87, 17] for more in-depth and398

pedagogical presentations.399

A.1 Group Theory400

Definition of Groups. A group is an algebraic structure that consists of a set G and a binary401

operator ◦ : G×G → G and is typically denoted as G. Groups satisfy the following four axioms:402

1. Closure: g ◦ h ∈ G for all g, h ∈ G.403

2. Identity: There exists an identity element e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G.404

3. Inverse: For each g ∈ G, there exists an inverse element g−1 ∈ G such that g ◦ g−1 =405

g−1 ◦ g = e.406

4. Associativity: f ◦ g ◦ h = (f ◦ g) ◦ h = f ◦ (g ◦ h) for all f, g, h ∈ G.407

In this work, we focus on 3D rotation, translation and inversion. Relevant groups include:408

1. The Euclidean group in three dimensions E(3): 3D rotation, translation and inversion.409

2. The special Euclidean group in three dimensions SE(3): 3D rotation and translation.410
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3. The orthogonal group in three dimensions O(3): 3D rotation and inversion.411

4. The special orthogonal group in three dimensions SO(3): 3D rotation.412

Group Representations. The actions of groups define transformations. Formally, a transformation413

acting on vector space X parametrized by group element g ∈ G is an injective function Tg : X → X .414

A powerful result of group representation theory is that these transformations can be expressed as415

matrices which act on vector spaces via matrix multiplication. These matrices are called the group416

representations. Formally, a group representation D : G → GL(N) is a mapping between a group417

G and a set of N × N invertible matrices. The group representation D(g) : X → X maps an418

N -dimensional vector space X onto itself and satisfies D(g)D(h) = D(g ◦ h) for all g, h ∈ G.419

How a group is represented depends on the vector space it acts on. If there exists a change of basis420

P in the form of an N × N matrix such that P−1D(g)P = D′(g) for all g ∈ G, then we say the421

two group representations are equivalent. If D′(g) is block diagonal, which means that g acts on422

independent subspaces of the vector space, the representation D(g) is reducible. A particular class423

of representations that are convenient for composable functions are irreducible representations or424

“irreps”, which cannot be further reduced. We can express any group representation of SO(3) as a425

direct sum (concatentation) of irreps [87, 17, 28]:426

D(g) = P−1

(⊕
i

Dli(g)

)
P = P−1

(
Dl0(g)

Dl1(g)
......

)
P (9)

where Dli(g) are Wigner-D matrices with degree li as metnioned in Sec. 2.3.427

A.2 Equivariance428

Definition of Equivariance and Invariance. Equivariance is a property of a function f : X → Y429

mapping between vector spaces X and Y . Given a group G and group representations DX(g) and430

DY (g) in input and output spaces X and Y , f is equivariant to G if DY (g)f(x) = f(DX(g)x) for431

all x ∈ X and g ∈ G. Invariance corresponds to the case where DY (g) is the identity I for all g ∈ G.432

Equivariance in Neural Networks. Group equivariant neural networks are guaranteed to to make433

equivariant predictions on data transformed by a group. Additionally, they are found to be data-434

efficient and generalize better than non-symmetry-aware and invariant methods [4, 55, 22]. For435

3D atomistic graphs, we consider equivariance to the Euclidean group E(3), which consists of 3D436

rotation, translation and inversion. For translation, we operate on relative positions and therefore437

our networks are invariant to 3D translation. We achieve equivariance to rotation and inversion by438

representing our input data, intermediate features and outputs in vector spaces of O(3) irreps and439

acting on them with only equivariant operations.440

A.3 Equivariant Features Based on Vector Spaces of Irreducible Representations441

Irreps Features. As discussed in Sec. 2.3 in the main text, we use type-L vectors for SE(3)-442

equivariant irreps features1 and type-(L, p) vectors for E(3)-equivariant irreps features. Parity p443

denotes whether vectors change sign under inversion and can be either e (even) or o (odd). Vectors444

with p = o change sign under inversion while those with p = e do not. Scalar features correspond445

to type-0 vectors in the case of SE(3)-equivariance and correspond to type-(0, e) in the case of446

E(3)-equivariance whereas type-(0, o) vectors correspond to pseudo-scalars. Euclidean vectors447

in R3 correspond to type-1 vectors and type-(1, o) vectors whereas type-(1, e) vectors correspond448

to pseudo-vectors. Note that type-(L, e) vectors and type-(L, o) vectors are considered vectors of449

different types in equivariant linear layers and layer normalizations.450

Spherical Harmonics. Euclidean vectors r⃗ in R3 can be projected into type-L vectors f (L) by451

using spherical harmonics Y (L): f (L) = Y (L)( r⃗
||r⃗|| ) [69]. This is equivalent to the Fourier transform452

of the angular degree of freedom r⃗
||r⃗|| , which can be optionally weighted by ||r⃗||. In the case of453

1In SEGNN [5], they are also referred to as steerable features. We use the term “irreps features” to remain
consistent with e3nn [28] library.
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SE(3)-equivariance, f (L) transforms in the same manner as type-L vectors. For E(3)-equivariance,454

f (L) behaves as type-(L, p) vectors, where p = e if L is even and p = o if L is odd.455

Vectors of Higher L and Other Parities. Although previously we have restricted concrete ex-456

amples of vector spaces of O(3) irreps to commonly encountered scalars (type-(0, e) vectors) and457

Euclidean vectors (type-(1, o) vectors), vector of higher L and other parities are equally physical. For458

example, the moment of inertia (how an object rotates under torque) transforms as a 3× 3 symmetric459

matrix, which has symmetric-traceless components behaving as type-(2, e) vectors. Elasticity (how460

an object deforms under loading) transforms as a rank-4 or 3× 3× 3× 3 symmetric tensor, which461

includes components acting as type-(4, e) vectors.462

A.4 Tensor Product463

Tensor Product for O(3). We use tensor products to interact different type-(L, p) vectors. We464

extend our discussion in Sec. 2.4 in the main text to include inversion and type-(L, p) vectors. The465

tensor product denoted as ⊗ uses Clebsch-Gordan coefficients to combine type-(L1, p1) vector466

f (L1,p1) and type-L2 vector g(L2,p2) and produces type-(L3, p3) vector h(L3,p3) as follows:467

h(L3,p3)
m3

= (f (L1,p1) ⊗ g(L2,p2))m3
=

L1∑
m1=−L1

L2∑
m2=−L2

C
(L3,m3)
(L1,m1)(L2,m2)

f (L1,p1)
m1

g(L2,p2)
m2

(10)

p3 = p1 × p2 (11)

The only difference of tensor products for O(3) as described in Eq. 10 from those for SO(3) described468

in Eq. 2 is that we additionally keep track of the output parity p3 as in Eq. 11 and use the following469

multiplication rules: e× e = e, o× o = e, and e× o = o× e = o. For example, the tensor product470

of a type-(1, o) vector and a type-(1, e) vector can result in one type-(0, o) vector, one type-(1, o)471

vector, and one type-(2, o) vector.472

Clebsch-Gordan Coefficients. The Clebsch-Gordan coefficients for SO(3) are computed from473

integrals over the basis functions of a given irreducible representation, e.g., the real spherical474

harmonics, as shown below and are tabulated to avoid unnecessary computation.475

C
(L3,m3)
(L1,m1)(L2,m2)

= |L1m1;L2m2⟩ ⟨L3m3| =
∫

dΩY (L1)∗
m1

(Ω)Y (L2)∗
m2

(Ω)Y (L3)
m3

(Ω) (12)

For many combinations of L1, L2, and L3, the Clebsch-Gordan coefficients are zero. The gives rise476

to the following selection rule for non-trivial coefficients: −|L1 + L2| ≤ L3 ≤ |L1 + L2|.477

Examples of Tensor Products. Tensor products generally define the interaction between different478

type-(L, p) vectors in a symmetry-preserving manner and consist of common operations as follows:479

1. Scalar-scalar multiplication: scalar (L = 0, p = e) ⊗ scalar (L = 0, p = e) → scalar480

(L = 0, p = e).481

2. Scalar-vector multiplication: scalar (L = 0, p = e) ⊗ vector (L = 1, p = o) → vector482

(L = 1, p = o).483

3. Vector dot product: vector (L = 1, p = o) ⊗ vector (L = 1, p = o)→ scalar (L = 0, p =484

e).485

4. Vector cross product: vector (L = 1, p = o) ⊗ vector (L = 1, p = o) → pseudo-vector486

(L = 1, p = e).487

B Related Works488

B.1 Graph Neural Networks for 3D Atomistic Graphs489

Graph neural networks (GNNs) are well adapted to perform property prediction of atomic systems490

because they can handle discrete and topological structures. There are two main ways to represent491
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atomistic graphs [76], which are chemical bond graphs, sometimes denoted as 2D graphs, and 3D492

spatial graphs. Chemical bond graphs use edges to represent covalent bonds without considering 3D493

geometry. Due to their similarity to graph structures in other applications, generic GNNs [31, 29, 42,494

85, 80, 6] can be directly applied to predict their properties [60, 57, 58, 36, 35]. On the other hand,495

3D spatial graphs consider positions of atoms in 3D spaces and therefore 3D geometry. Although496

3D graphs can faithfully represent atomistic systems, one challenge of moving from chemical bond497

graphs to 3D spatial graphs is to remain invariant or equivariant to geometric transformation acting498

on atom positions. Therefore, invariant neural networks and equivariant neural networks have been499

proposed for 3D atomistic graphs, with the former leveraging invariant information like distances and500

angles and the latter operating on geometric tensors like type-L vectors.501

B.2 Invariant GNNs502

Previous works [64, 84, 77, 26, 25, 54, 49, 68, 43] extract invariant information from 3D atomistic503

graphs and operate on the resulting invariant graphs. They mainly differ in leveraging different504

geometric information such as distances, bond angles (3 atom features) or dihedral angles (4 atom505

features). SchNet [64] uses relative distances and proposes continuous-filter convolutional layers506

to learn local interaction between atom pairs. DimeNet series [26, 25] incorporate bond angles507

by using triplet representations of atoms. SphereNet [49] and GemNet [43, 27] further extend508

to consider dihedral angles for better performance. In order to consider directional information509

contained in angles, they rely on triplet or quadruplet representations of atoms. In addition to being510

memory-intensive [70], they also change graph structures by introducing higher-order interaction511

terms [11], which would require non-trivial modifications to generic GNNs in order to apply them512

to 3D graphs. In contrast, the proposed Equiformer uses equivariant irreps features to consider513

directional information without complicating graph structures and therefore can directly inherit the514

design of generic GNNs.515

B.3 Attention and Transformer516

Graph Attention. Graph attention networks (GAT) [80, 6] use multi-layer perceptrons (MLP) to517

calculate attention weights in a similar manner to message passing networks. Subsequent works518

using graph attention mechanisms follow either GAT-like MLP attention [8, 41] or Transformer-like519

dot product attention [88, 24, 67, 18, 41, 45]. In particular, Kim et al. [41] compares these two types520

of attention mechanisms empirically under a self-supervised setting. Brody et al. [6] analyzes their521

theoretical differences and compares their performance in general settings.522

Graph Transformer. A different line of research focuses on adapting standard Transformer net-523

works to graph problems [18, 59, 45, 86, 66]. They adopt dot product attention in Transformers [79]524

and propose different approaches to incorporate graph-related inductive biases into their networks.525

GROVE [59] includes additional message passing layers or graph convolutional layers to incorporate526

local graph structures when calculating attention weights. SAN [45] proposes to learn position527

embeddings of nodes with full Laplacian spectrum. Graphormer [86] proposes to encode degree528

information in centrality embeddings and encode distances and edge features in attention biases. The529

proposed Equiformer belongs to one of these attempts to generalize standard Transformers to graphs530

and is dedicated to 3D graphs. To incorporate 3D-related inductive biases, we adopt an equivariant531

version of Transformers with irreps features and propose novel equivariant graph attention.532

C Details of Architecture533

C.1 Equivariant Operation Used in Equiformer534

We illustrate the equivariant operations used in Equiformer in Fig. 2 and provide an alternative535

visualization of depth-wise tensor products in Fig. 3.536

C.2 Equiformer Architecture537

For simplicity and because most works we compare with do not include equivariance to inversion,538

we adopt SE(3)-equivariant irreps features in Equiformer for experiments in the main text and note539

that E(3)-equivariant irreps features can be easily incorporated into Equiformer.540
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Figure 2: Equivariant operations used in Equiformer. (a) Each gray line between input and output
irreps features contain one learnable weight. Note that the number of output channels can be different
from that of input channels. (b) “RMS” denotes the root mean square value (RMS) along the channel
dimension. For simplicity, in this figure, we have removed multiplying by γ. (c) Gate layers are
equivariant activation functions where non-linearly transformed scalars are used to gate non-scalar
irreps features. (d) The left two irreps features correspond to the two input irreps features, and the
rightmost one is the output irreps feature. The two gray lines connecting two vectors in the input
irreps features and one vector in the output irreps feature form a path and contain one learnable
weight. We only show SE(3)-equivariant operations in this figure and note that they can be directly
generalized to E(3)-equivariant features.
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Figure 3: An alternative visualization of the depth-wise tensor product. We follow the visualiza-
tion of tensor products in e3nn [28] and separate paths into three parts based on the types of output
vectors.

We define architectural hyper-parameters like the number of channels in some layers in Equiformer,541

which are used to specify the detailed architectures in Sec. D and Sec. E.542

We use dembed to denote embedding dimension, which defines the dimension of most irreps features.543

Specifically, all irreps features xi, yi in Fig. 1 have dimension dembed unless otherwise stated. Besides,544

we use dsh to represent the dimension of spherical harmonics embeddings of relative positions in all545

depth-wise tensor products.546

For equivariant graph attention in Fig. 1(b), the first two linear layers have the same output dimension547

dembed. The output dimension of depth-wise tensor products (DTP) are determined by that of input548

irreps features. Equivariant graph attention consists of h parallel attention functions, and the value549

vector in each attention function has dimension dhead. We refer to h and dhead as the number of550

heads and head dimension, respectively. By default, we set the number of channels in scalar feature551

f
(0)
ij to be the same as the number of channels of type-0 or type-(0, e) vectors in vij . When non-linear552

messages are adopted in vij , we set the dimension of output irreps features in gate activation to553

be h × dhead. Therefore, we can use two hyper-parameters h and dhead to specify the detailed554

architecture of equivariant graph attention.555

As for feed forward networks (FFNs), we denote the dimension of output irreps features in gate556

activation as dffn. The FFN in the last Transformer block has output dimension dfeature, and we557
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Figure 4: Architecture of equivariant dot product attention without non-linear message passing.
In this figure, “⊗” denotes multiplication, “⊕” denotes addition, and “DTP” stands for depth-wise
tensor product.

∑
within a circle denotes summation over all neighbors. Gray cells indicate

intermediate irreps features. We highlight the difference of dot product attention from multi-layer
perceptron attention in red. Note that key kij and value vij are irreps features and therefore fij in dot
product attention typically has more channels than that in multi-layer perceptron attention.

set dffn of the last FFN, which is followed by output head, to be dfeature as well. Thus, two hyper-558

parameters dffn and dfeature are used to specify architectures of FFNs and the output dimension559

after Transformer blocks.560

Irreps features contain channels of vectors with degrees up to Lmax. We denote CL type-L vectors as561

(CL, L) and C(L,p) type-(L, p) vectors as (C(L,p), L, p) and use brackets to represent concatenations562

of vectors. For example, the dimension of irreps features containing 256 type-0 vectors and 128563

type-1 vectors can be represented as [(256, 0), (128, 1)].564

C.3 Dot Product Attention565

We illustrate the dot product attention without non-linear message passing used in ablation study in566

Fig. 4. The architecture is adapted from SE(3)-Transformer [23]. The difference from multi-layer567

perceptron attention lies in how we obtain attention weights aij from fij . We split fij into two irreps568

features, key kij and value vij , and obtain query qi with a linear layer. Then, we perform scaled dot569

product [79] between qi and kij for attention weights.570

D Details of Experiments on QM9571

D.1 Additional Comparison between SE(3) and E(3) Equivariance572

We train two versions of Equiformers, one with SE(3)-equivariant features denoted as “Equiformer”573

and the other with E(3)-equivariant features denoted as “E(3)-Equiformer”, and we compare them574

in Table 9. Including equivariance to inversion further improves the performance on QM9 dataset.575

As for Table 1, we compare “Equiformer” with other works since most of them do not include576

equivariance to inversion.577
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Task α ∆ε εHOMO εLUMO µ Cν

Methods Units bohr3 meV meV meV D cal/mol K

Equiformer .056 33 17 16 .014 .025
E(3)-Equiformer .054 32 16 16 .013 .024

Table 9: Ablation study of SE(3)/E(3) equivariance on QM9 testing set. “Equiformer” operates
on SE(3)-equivariant features while “E(3)-Equiformer” uses E(3)-equivariant features. Including
inversion further improves mean absolute errors.

Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 5
Maximum learning rate 5× 10−4

Batch size 128
Number of epochs 300
Weight decay 5× 10−3

Dropout rate 0.1, 0.2

Cutoff radius (Å) 5
Number of radial bases 128 for Gaussian radial basis, 8 for radial bessel basis
Hidden sizes of radial functions 64
Number of hidden layers in radial functions 2

Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0), (64, 1), (32, 2)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1), (1, 2)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0), (16, 1), (8, 2)]
Hidden dimension in feed forward networks dffn [(384, 0), (192, 1), (96, 2)]
Output feature dimension dfeature [(512, 0)]

E(3)-Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(128, 0, e), (32, 0, o), (32, 1, e), (32, 1, o), (16, 2, e), (16, 2, o)]
Spherical harmonics embedding dimension dsh [(1, 0, e), (1, 1, o), (1, 2, e)]
Number of attention heads h 4
Attention head dimension dhead [(32, 0, e), (8, 0, o), (8, 1, e), (8, 1, o), (4, 2, e), (4, 2, o)]
Hidden dimension in feed forward networks dffn [(384, 0, e), (96, 0, o), (96, 1, e), (96, 1, o), (48, 2, e), (48, 2, o)]
Output feature dimension dfeature [(512, 0, e)]

Table 10: Hyper-parameters for QM9 dataset. We denote CL type-L vectors as (CL, L) and C(L,p)

type-(L, p) vectors as (C(L,p), L, p) and use brackets to represent concatenations of vectors.

D.2 Training Details578

We normalize ground truth by subtracting mean and dividing by standard deviation. For the task of U ,579

U0, G, and H , where single-atom reference values are available, we subtract those reference values580

from ground truth before normalizing.581

We train Equiformer with 6 blocks with Lmax = 2 following SEGNN [5]. We choose Gaussian582

radial basis [64, 68, 43, 66] for the first six tasks in Table 1 and radial Bessel basis [26, 25] for the583

others. We apply dropout [71] to attention weights aij . The dropout rate is 0.1 for the task of R2584

and 0.2 for others. Table 10 summarizes the hyper-parameters for the QM9 dataset. The detailed585

description of architectural hyper-parameters can be found in Sec. C.2.586

We use one A6000 GPU with 48GB to train each model and summarize the computational cost587

of training for one epoch as follows. Training E(3)-Equiformer for one epoch takes about 14.75588

minutes. The time of training Equiformer, Equiformer with linear messages (indicated by index 2589

in Table 5), and Equiformer with linear messages and dot product attention (indicated by index 3 in590

Table 5) for one epoch is 11 minutes, 6.6 minutes and 7.1 minutes, respectively.591
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Energy MAE (eV) ↓ EwT (%) ↑
Methods ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

Equiformer 0.5088 0.6271 0.5051 0.5545 0.5489 4.88 2.93 4.92 2.98 3.93
E(3)-Equiformer 0.5035 0.6385 0.5034 0.5658 0.5528 5.10 2.98 5.10 3.02 4.05

Table 11: Ablation study of SE(3)/E(3) equivariance on OC20 IS2RE validation set.
“Equiformer” operates on SE(3)-equivariant features while “E(3)-Equiformer” uses E(3)-
equivariant features.

Hyper-parameters Value or description

Optimizer AdamW
Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 2
Maximum learning rate 2× 10−4

Batch size 32
Number of epochs 20
Weight decay 1× 10−3

Dropout rate 0.2

Cutoff radius (Å) 5
Number of radial basis 128
Hidden size of radial function 64
Number of hidden layers in radial function 2

Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(256, 0), (128, 1)]
Spherical harmonics embedding dimension dsh [(1, 0), (1, 1)]
Number of attention heads h 8
Attention head dimension dhead [(32, 0), (16, 1)]
Hidden dimension in feed forward networks dffn [(768, 0), (384, 1)]
Output feature dimension dfeature [(512, 0)]

E(3)-Equiformer

Number of Transformer blocks 6
Embedding dimension dembed [(256, 0, e), (64, 0, o), (64, 1, e), (64, 1, o)]
Spherical harmonics embedding dimension dsh [(1, 0, e), (1, 1, o)]
Number of attention heads h 8
Attention head dimension dhead [(32, 0, e), (8, 0, o), (8, 1, e), (8, 1, o)]
Hidden dimension in feed forward networks dffn [(768, 0, e), (192, 0, o), (192, 1, e), (192, 1, o)]
Output feature dimension dfeature [(512, 0, e)]

Table 12: Hyper-parameters for OC20 dataset under the setting of training without IS2RS aux-
iliary task. We denote CL type-L vectors as (CL, L) and C(L,p) type-(L, p) vectors as (C(L,p), L, p)
and use brackets to represent concatenations of vectors.

E Details of Experiments on OC20592

E.1 Additional Comparison between SE(3) and E(3) Equivariance593

We train two versions of Equiformers, one with SE(3)-equivariant features denoted as “Equiformer”594

and the other with E(3)-equivariant features denoted as “E(3)-Equiformer”, and we compare them595

in Table 11. Including inversion improves the MAE results on ID and OOD Cat sub-splits but596

degrades the performance on the other sub-splits. Overall, using E(3)-equivariant features results in597

slightly inferior performance. We surmise the reasons are as follows. First, inversion might not be the598

key bottleneck. Second, including inversion would break type-1 vectors into two parts, type-(1, e)599

and type-(1, o) vectors. They are regarded as different types in equivariant linear layers and layer600

normalizations, and therefore, the directional information captured in these two types of vectors can601

only exchange in depth-wise tensor products. Third, we mainly tune hyper-parameters for Equiformer602

with SE(3)-equivariant features, and it is possible that using E(3)-equivariant features would favor603

different hyper-parameters.604
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For Table 2, 3 and 4 in the main text and Table 7 and 8 in appendix, we compare “Equiformer” with605

other works since most of them do not include equivariance to inversion.606

E.2 Training Details607

IS2RE without Node-Level Auxiliary Task. We use hyper-parameters similar to those for QM9608

dataset and summarize in Table 12. The detailed description of architectural hyper-parameters can be609

found in Sec. C.2.610

IS2RE with IS2RS Node-Level Auxiliary Task. We increase the number of Transformer blocks611

to 18 as deeper networks can benefit more from IS2RS node-level auxiliary task [30]. We follow the612

same hyper-parameters in Table 12 except that we increase maximum learning rate to 5× 10−4 and613

set dfeature to [(512, 0), (256, 1)]. Additionally, we use stochastic depth with probability 0.05 [37].614

Inspired by Graphormer [66], we add an extra equivariant graph attention module after the last layer615

normalization to predict relaxed structures and use a linearly decayed weight for loss associated with616

IS2RS, which starts at 15 and decays to 1. When Noisy Nodes [30] data augmentation is used, we617

increase the number of epochs to 40.618

We use two A6000 GPUs, each with 48GB, to train models when IS2RS is not included during619

training. Training Equiformer takes about 43.6 hours. Training Equiformer with linear messages620

(indicated by index 2 in Table 6) and Equiformer with linear messages and dot product attention621

(indicated by index 3 in Table 6) takes 30.4 hours and 33.1 hours, respectively. We use four A6000622

GPUs to train Equiformer models when IS2RS node-level auxiliary task is adopted during training.623

Training Equiformer without Noisy Nodes [30] data augmentation takes about 3 days and training624

with Noisy Nodes takes 6 days. We note that the proposed Equiformer in Table 8 achieves competitive625

results even with much less computation. Specifically, training “Equiformer + Noisy Nodes” takes626

about 24 GPU-days when A6000 GPUs are used. The training time of “GNS + Noisy Nodes” [30] is627

56 TPU-days. “Graphormer” [66] uses ensemble of 31 models and requires 372 GPU-days to train628

all models when A100 GPUs are used.629

E.3 Error Distributions630

We plot the error distributions of different Equiformer models on different sub-splits of OC20 IS2RE631

validation set in Fig. 5. For each curve, we sort the absolute errors in ascending order for better632

visualization and have a few observations. First, for each sub-split, there are always easy examples,633

for which all models achieve significantly low errors, and hard examples, for which all models have634

high errors. Second, the performance gains brought by different models are non-uniform among635

different sub-splits. For example, using MLP attention and non-linear messages improves the errors636

on the ID sub-split but is not that helpful on the OOD Ads sub-split. Third, when IS2RS node-level637

auxiliary task is not included during training, using stronger models mainly improves errors that are638

beyond the threshold of 0.02 eV, which is used to calculate the metric of energy within threshold639

(EwT). For instance, on the OOD Both sub-split, using non-linear messages, which corresponds640

to red and purple curves, improves the absolute errors for the 15000th through 20000th examples.641

However, the improvement in MAE does not translate to that in EwT as the errors are still higher than642

the threshold of 0.02 eV. This explains why using non-linear messages in Table 6 improves MAE643

from 0.5657 to 0.5545 but results in almost the same EwT.644
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(c) OOD Cat sub-split.
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Figure 5: Error distributions of different Equiformer models on different sub-splits of OC20
IS2RE validation set.
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