
Under review as a conference paper at ICLR 2022

A PROOF FOR THEOREM 4.1

Theorem 4.1 shows that the LIL problem (as a bilevel optimization problem), i.e,

max
⇡

E(s,a)2DE
[log ⇡(a|s)]

| {z }
1

+Es2DE [logP⇡(s)]| {z }
2

, s.t. P⇡ = argmax
P

Es2D⇡ [logP (s)]. (2)

can be relaxed to a two-stage optimization problem, i.e,

max
⇡

E(s,a)2DE
[log ⇡(a|s)] + Es2D⇡ [logPE(s)], s.t. PE = argmax

P
Es2DE [logP (s)]. (3)

which estimates the expert state distribution PE (in Stage #1), and trains the learner policy ⇡ based
on PE (in Stage #2).

Proof. Given sufficient expert data DE , the expert state distribution PE(s) can be estimated by
maximizing the likelihood of DE as below, which is naturally an upper-bound of component 2 in
eq.(2).

PE = argmax
P

Es2DE [logP (s)],with Es2DE [logPE(s)] � max
⇡

Es2DE [logP⇡(s)].

This indicates that ideally the LIL problem in eq.(2) aims to learn an optimal policy ⇡⇤ with a
state distribution P⇡⇤ matching the expert distribution PE , say, P⇡⇤ = PE . Then, by importance
sampling (Neal, 2001), we have,

Es⇠PE

h
logP⇡(s)

i
= Es⇠P⇡

hPE(s)

P⇡(s)
logP⇡(s)

i
.

With sufficient expert data DE , 2 in eq.(2) can be expressed with Es2D⇡ [
PE(s)
P⇡(s)

logP⇡(s)]. For ease

of notation, we define 2 =g(⇡, P⇡) , Es2D⇡ [
PE(s)
P⇡(s)

logP⇡(s)] which is a function of policy ⇡ and
its state distribution P⇡. We denote the optimal policy as ⇡⇤. Since the optimal state distribution
P⇡⇤ = PE , we have the following inequality, i.e,

g(⇡⇤, P⇡⇤) = g(⇡⇤, PE) = Es2D⇡⇤ [logP⇡⇤(s)] � max
⇡

g(⇡, PE) = max
⇡

Es2D⇡ [logPE(s)],

where equality holds when ⇡ = ⇡⇤, at least. Therefore, eq.(2) can be rewritten as

max
⇡

⇣
E(s,a)2DE

[log ⇡(a|s)] + Es2DE [logP⇡(s)]
⌘

⇡=⇡⇤
= E(s,a)2DE

[log ⇡⇤(a|s)] + Es2DE [logP⇡⇤(s)]

�max
⇡

E(s,a)2DE
[log ⇡(a|s)] + max

⇡
Es2D⇡ [logPE(s)]

�max
⇡

⇣
E(s,a)2DE

[log ⇡(a|s)] + Es2D⇡ [logPE(s)]
⌘
,

as the log likelihood terms are all non-positive. This completes the proof.

B EXPERIMENT SETUPS

Resource usage and running time. All experiments are run on GeForce RTX2080. The training of
PE!⇤ takes roughly 6 hours for CartPole and Reacher, and 12 hours for Hopper and Walker for 200
iterations.

Evaluation setup. We use the same amount of environment interactions and expert demonstrations
in GAIL, GPRIL, DRIL, and SLIL, where information of each task is shown in Tab. 2. For all
approaches, we evaluate their learner policy performances in every iteration. The experiments with
multiple mode task settings all use 18 expert trajectories. We do not subsample expert trajectories for
any of the experiment tasks. The evaluation score is achieved via evaluating the mean and std of 50
trajectories generated with the learner policy.

Model details. All baselines and SLIL shares the same policy network structure in all experiments –
tanh nonlinearlities sandwiched with two hidden layers of 100 units. Consistent with GAIL Ho &

13



Under review as a conference paper at ICLR 2022

Table 2: Parameters for baselines SLIL.

Task Training Number of (s, a) Expert Random policy
iterations per iteration performance performance

CartPole-v0 200 200 200±0 17± 4
Hopper-v2 1000 1000 3624±19 8± 6
Reacher-v2 200 1000 -4.5±1.7 -93.7 ±4.8
Walker-v2 1000 1000 7002±33 -2±3

Figure 15: Results obtained by SLIL (Ours) and baselines on mode coverage. (a): A Reacher task,
with two targets in different colors. (b)-(d) show the mode coverage (i.e, state distribution) with
expert policy (b), GAIL policy (c), and our SLIL policy (d). All the distributions are visualized using
KDE (Sheather & Jones, 1991).

Ermon (2016), value functions in SLIL has the the same neural network architecture as the policy
networks and employs generalized advantage estimation Schulman et al. (2015b) with � = 0.99 and
= � = 0.95 to decrease the gradient variance. The DCNF model features a hypernetwork-Ha et al.
(2016) with hidden dimension of 32 and width of 64. To train it, we use Dopri5 ODE integrator.

Hyperparameter details. For training PE,!⇤ , we schedule a linear noise level decay with �0 = 1
and �200 = 0. The learning rate is 1e� 4 for all tasks. The training of ⇡ also has a learning rate at
1e� 4 with gradient clip 0.1.

C MORE EXPERIMENT RESULTS

We further show the learning curves of DCNF and SoftFlow to better understand the efficacy of the
denoising mechanism in Fig. 14. The figure unfolds that in each training epoch the training loss of
DCNF lies below SoftFlow. This likely indicates that by decreasing the noise level in each training
iteration, the denoising mechanism expose different levels of regularization for optimization. Such
types of regularization enable the DCNF model to find a better local minimum than SoftFlow. We
therefore hypothesize that the denoising mechanism is able to make the loss landscape more smooth
than SoftFlow, and reaches a better minimum entailing better expert state distribution learning. We
omit the learning curves in other tasks as similar observations are made.

Figure 14: Learning curves
of DCNF and SoftFlow in the
Hopper task with 18 demon-
stration trajectories.

Fig. 15 shows the mode coverage results of SLIL (ours) and baselines
over the Reacher task with two target modes. It shows two mode
targets from expert demonstrations Fig. 15(b), where GAIL only
visited the red one and SLIL visited both targets. Tab. 3 shows
detailed results of SLIL and baselines in tasks with single expert
demonstration mode. Fig. 16 shows the learning curves of the test
tasks with a single mode when demonstration number is 4. In all
tasks, SLIL has more stable training curves (with less mean return
perturbation) with higher convergence speed.

Tab. 4 shows the EMD (Ling & Okada, 2007), KL, and reverse KL
(RKL) results between expert and learner final state distributions
in the Reacher2, Reacher4 and HalfCheetah2 tasks. It reflects that
SLIL is better at recovering expert modes than baseline methods.

14



Under review as a conference paper at ICLR 2022

(a) Reacher. (b) Hopper. (c) Walker.

(d) HalfCheetah. (e) Ant. (f) Humanoid.

Figure 16: Learning curve comparision between GAIL and SLIL (Ours). All tasks are shown 4
demonstrations. The y-axis is the obtained return (i.e, total reward).

Table 3: Learned policy performance.

Task Datasize BC GAIL GPRIL DRIL SLIL (Ours)

CartPole

1 59±27 200±0 53±16 200±0 200±0
4 81±31 200±0 187±8 200±0 200±0
7 137 ±27 200 ±0 200 ±0 200±0 200±0
10 167± 30 200 ±0 200 ±0 200±0 200±0

Reacher

4 -10.27±2.14 -26.90±7.48 -12.55±3.54 -9.13±.83 -9.44 ±3.16
11 -9.49±3.66 -12.77±8.90 -10.45±5.21 -7.11±2.23 -6.34± 3.26
18 -8.89±3.83 -7.34±2.63 -9.96±5.01 -6.93±2.37 -6.33±2.52
25 -9.63±3.84 -6.64±2.47 -11.87±4.71 -6.90±2.65 -5.78± 2.50

Hopper

4 2352± 894 3394±37 22± 1 898±132 3381± 183
11 2589± 635 3599± 4 407± 202 3150±184 3500± 31
18 3331± 66 3631± 3 1339± 1390 3611±3 3686± 8
25 3589± 56 3476± 5 1406± 844 3580±8 3595± 8

Walker2d

4 1233± 969 4070 ±1010 557 ±357 555±148 4230± 1108
11 3456± 863 5108± 410 1042± 75 4567±1231 6537± 560
18 4477± 1329 6671± 39 1464± 637 6886±202 6873± 55
25 5294± 1860 6815± 20 2254± 1006 6693±130 6923± 58

Ant

4 4204±289 4218±240 2722±36 3837±259 4613±161
11 4577±145 4105±223 2510±27 4515±239 4540±169
18 4736±75 4690±102 2755±183 4703±40 4752±91
25 4682±89 4735±54 2656±85 4690±75 4825±45

HalfCheetah

4 2070±528 3254±133 558±148 359±266 3687±416
11 3979±61 4015±344 2655±253 4063±50 4052±236
18 3911±416 4393±212 2666±186 4185±30 4531±65
25 4027±91 4423±104 3619±257 4227±26 4416±77

Humanoid
80 6145±1918 8268±1401 2048±1140 8800±639 8404±571

160 6722±1126 9994±1053 6023±1006 9507±832 9771±835
240 8834±998 9430±906 8091±878 9185±492 9294±385

15



Under review as a conference paper at ICLR 2022

Task Approach Measure
EMD KL RKL

Reacher2

BC 1.01 2.60 4.38
GAIL 0.84 2.47 4.51
DRIL 1.00 2.51 4.25
SLIL 0.47 2.39 3.25

Reacher4

BC 0.81 4.23 6.33
GAIL 0.41 4.49 6.22
DRIL 0.55 5.16 6.16
SLIL 0.33 3.94 4.53

HalfCheetah2

BC 1.81 6.74 12.78
GAIL 1.75 4.52 18.13
DRIL 1.83 6.90 12.76
SLIL 1.01 3.89 11.54

Table 4: The EMD (Ling & Okada, 2007), KL and RKL between expert and learned policy state
distribution.

16


	Introduction
	Related Work
	LIL Problem Formulation
	Our SLIL Approach
	SLIL with Expert State Distribution
	DCNF for Learning Expert State Distribution 

	Experimental Evaluation
	Mode Coverage
	Expert State Estimation
	Performance of the Learner Policy from SLIL
	Training Stability of SLIL

	Conclusion
	Proof for Theorem 4.1
	Experiment Setups
	More Experiment Results

