
A SUPPLEMENTRAY MATERIALS

A.1 TRAINING DETAILS

Adult Dataset. The parameter setting of Adult Dataset is shown in table 1. We follow the settings in
Chuang & Mroueh (2021) for data preprocessing. The hidden size of MLP is 200. We use Adam as
the learning optimizer and the batch size is set as 1000 for the DP metric and 2000 for the EO metric
following the setting in Chuang & Mroueh (2021).

Table 1: Setting for Adult Dataset training with MLP.
w.o.FairReg w.o.FairReg - OverSample FairReg(*, noAug) FairReg(*, Aug) DRAlign

Training Epochs for DP 20 20 20 20 20

Training Epochs for EO 20 20 20 20 20

Learning rate 0.001 0.001 0.001 0.001 0.001

Range of λ for DP - - [0.2,0.3,0.4,0.5,0.6] [0.2,0.3,0.4,0.5,0.6] [0.1,0.2,0.3,0.4,0.5]

β for DP - - - - [0.01,0.02,0.03,0.04,0.05]

Range of λ for EO - - [0.5,0.8,1.0,2.0] [0.5,0.8,1.0,2.0] [0.5,0.8,1.0,2.0]

β for EO - - - - [0.05,0.08,0.1,0.2]

CelebA Dataset. The parameter setting of CelebA Dataset is shown in table 2. We follow the settings
in Chuang & Mroueh (2021) for data preprocessing. We use Adam as the learning optimizer and the
batch size is set as 64 for the DP metric and 128 for the EO metric following the setting in Chuang &
Mroueh (2021).

Table 2: Setting for CelebA Dataset training with AlexNet.
w.o.FairReg w.o.FairReg - OverSample FairReg(*, noAug) FairReg(*, Aug) DRAlign

Training Epochs for DP 15 15 15 15 15

Training Epochs for EO 30 30 30 30 30

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001

Range of λ for DP - - [0.2,0.3,0.4,0.5,0.6] [0.2,0.3,0.4,0.5,] [0.2,0.3,0.4,0.5,0.6]

β for DP - - - - 0.01

Range of λ for EO - - [0.1,0.4,0.7,1.0] [0.1,0.4,0.7,1.0] [0.1,0.4,0.7,1.0]

β for EO - - - - 0.01

Credit Dataset. The parameter setting of Credit Dataset is shown in table 3. We follow the settings
in Zhang et al. (2020) for data preprocessing. We use Adam as the learning optimizer and the batch
size is set as 400 for the DP metric and 500 for the EO metric.

Table 3: Setting for Credit Dataset.
w.o.FairReg w.o.FairReg - OverSample FairReg(*, noAug) FairReg(*, Aug) DRAlign

Training Epochs for DP 20 20 20 20 20

Training Epochs for EO 20 20 20 20 20

Learning rate 0.001 0.001 0.001 0.001 0.001

Range of λ for DP - - [0.2,0.8,1.0] [0.2,0.4,0.8,2.0] [1.0,2.0,3.0]

β for DP - - - - 0.005

Range of λ for EO - - [0.2,0.4,0.6,0.8] [0.2,0.4,0.8,1.0] [0.8,1.0,2.0]

β for EO - - - - 0.01

In our paper, we did a rough search for the hyper-parameter β. Taking CelebA dataset as an example,
we mainly search β value in the range 0.001, 0.01, 0.1. When β is set as 0.001, the training process
is close to that of FairReg, which means that our decision rationale alignment item is ignored in
the training because β is too small. When β is 0.1, the training process will optimize the decision
rationale alignment first and cause a detrimental influence on the optimization of other loss items.
We finally choose 0.01 as the β value.
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Algorithm 1: Gradient-guided Parity Alignment
Data: Network F with parametersW = {w0, . . . , wK}, epoch index set E , training data D, batch size B,

network layers L, neurons in the lth layer Kl,hyper-parameters λ and β, learning rate η.
// Training process for EO
for e ∈ E do

for i ∈ I do
// Sample data subgroups from D
[x00,y00]← Sample(D, a=0, y=0, bs);
[x01,y01]← Sample(D, a=0, y=1, bs);
[x10,y10]← Sample(D, a=1, y=0, bs);
[x11,y11]← Sample(D, a=1, y=1, bs);
// Update the model
Lc ← Lcls(F(x00),y00)) + Lcls(F(x01),y01) + Lcls(F(x10),y10)) + Lcls(F(x11),y11);
Lfair ← |mean(F (x00))−mean(F (x10))|+ |mean(F (x01))−mean(F (x11))| ;
for l ∈ L do

for k ∈ Kl do
ga=0,y=0
k = ∂(Lcls(F(x00),y00))

∂wk
; ga=1,y=0

k = ∂(Lcls(F(x10),y10))
∂wk

;

ga=0,y=1
k = ∂(Lcls(F(x01),y01))

∂wk
; ga=1,y=1

k = ∂(Lcls(F(x11),y11))
∂wk

;

ĉa=0,y=0
k ← (ga=0,y=0

k · wk)
2; ĉa=1,y=0

k ← (ga=1,y=0
k · wk)

2;
ĉa=0,y=1
k ← (ga=0,y=1

k · wk)
2; ĉa=1,y=1

k ← (ga=1,y=1
k · wk)

2;

c⃗a=0,y=0
l = [ĉa=0,y=0

0 , ĉa=0,y=0
1 , ..., ĉa=0,y=0

Kl
];

c⃗a=1,y=0
l = [ĉa=1,y=0

0 , ĉa=1,y=0
1 , ..., ĉa=1,y=0

Kl
];

c⃗a=0,y=1
l = [ĉa=0,y=1

0 , ĉa=0,y=1
1 , ..., ĉa=0,y=1

Kl
];

c⃗a=1,y=1
l = [ĉa=1,y=1

0 , ĉa=1,y=1
1 , ..., ĉa=1,y=1

Kl
];

LdF ←
∑L

l=0 cos(⃗c
a=0,y=0
l , c⃗a=1,y=0

l ) +
∑L

l=0 cos(⃗c
a=0,y=1
l , c⃗a=1,y=1

l );
L ← Lc + λLfair − βLdF ;
θ ← θ − η∇ΘL

A.2 ALGORITHM OF DRALIGN WHEN TRAINING WITH EO METRIC

The training algorithm for EO metric is shown in Algorithm 1.

A.3 MORE EXPERIMENTAL RESULTS.

A.3.1 CLASSIFICATION FOR ATTRACTIVE ATTRIBUTE

In our paper, on the CelebA dataset, we show the results of predicting wavy hair attribute. Here, we
also show the results of classifying attractive attribute adopting AlexNet. For better observation, we
show our results in table 4. We find that our method outperforms FairReg(noAug) both in AP and in
the fairness metric.

Table 4: Comparison between DRAlign(ours) and FairReg(*, noAug) when classifying attractive
attribute.

−DP −EO
λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.1 λ = 0.4 λ = 1.0

APDRAlign 0.8956 0.8901 0.8783 0.8742 0.8735 0.8724
FairnessDRAlign -0.320 -0.281 -0.213 -0.0526 -0.0337 −0.027

APFairReg(∗,noAug) 0.8942 0.8733 0.8807 0.8733 0.8707 0.8690

FairnessFairReg(∗,noAug) −0.331 −0.282 −0.238 −0.053 −0.037 -0.024

A.3.2 CLASSIFICATION FOR WAVY HAIR BASED ON RESNET-18

In our algorithm, we expect to reduce the parity score for all layers. However, for some larger
architectures such as ResNet-18, it is relatively difficult to optimize all layers. To address such a
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problem, we here only align the last two layers. We find that only aligning the last two layers could
also improve fairness. The loss function is revised as follows:

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair(F)− β

L∑
l=L−1

cos(⃗ca=0
l , c⃗a=1

l ), (1)

The experimental results are shown in table 5.

Table 5: Comparison between DRAlign(ours) and FairReg(*, noAug) when classifying Wavy hair
attribute using ResNet-18.

−DP −EO
λ = 0.1 λ = 5.0 λ = 10.0 λ = 20.0 λ = 5.0 λ = 10.0

APDRAlign 0.8578 0.8385 0.8179 0.8212 0.7965 0.7703
FairnessDRAlign -0.301 -0.272 -0.248 -0.129 -0.0495 -0.0446

APFairReg(∗,noAug) 0.8506 0.8355 0.8123 0.8063 0.7857 0.7560

FairnessFairReg(∗,noAug) −0.306 −0.279 −0.255 −0.183 −0.0498 −0.0494

A.4 CONNECTION WITH OVER-PARAMETERIZATION UNDER EO METRIC.

We here analyze the connection between decision rationale alignment and over-parameterization
under EO metric. We show the results on the Adult dataset adopting 3-layer MLP models. The
maximum alignment score is 6.0. Here we also conclude that over-parameterization might prevent the
alignment of decision rationale and stricter fairness regularizations require fairer decision rationale.

Table 6: Connection between decision rationale similarity and over-parameterization under EO
metric.

λ = 0.5 λ = 0.8 λ = 1.0 λ = 2.0 λ = 3.0

FairReg(∆EO,noAug), (c10) 6.0 6.0 6.0 6.0 6.0

FairReg(∆EO,noAug), (c20) 5.7 5.7 5.8 6.0 6.0

FairReg(∆EO,noAug), (c50) 5.6 5.7 5.8 6.0 6.0

FairReg(∆EO,noAug), (c200) 5.6 5.7 5.8 6.0 6.0

FairReg(∆EO,Aug), (c10) 6.0 6.0 6.0 6.0 6.0

FairReg(∆EO,Aug), (c20) 6.0 6.0 6.0 6.0 6.0

FairReg(∆EO,Aug), (c50) 5.9 6.0 6.0 6.0 6.0

FairReg(∆EO,Aug), (c200) 5.7 5.9 6.0 6.0 6.0

A.5 TRAINING TIME ESTIMATION.

We here show the time consumption of different methods on the Adult dataset, CelebA dataset, and
Credit dataset in table 7, table 8 and table 9 respectively.

Table 7: Training time estimation when training with Adult dataset under the DP and EO metric.
w.o.FairReg w.o.FairReg - OverSample FairReg(*,noAug) FairReg(*,Aug) DRAlign

DP 8.2s 10.1s 10.5s 14.7s 14.5s

EO 12.5s 14.6s 15.0s 33.2s 30.1s

A.6 THE AP VALUES OF DIFFERENT MODEL ARCHITECTURES.

Tables 10 show the AP values of different model architectures. The model is chosen according to the
performance on the validation dataset.
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Table 8: Training time estimation when training with CelebA dataset and AlexNet under the DP and
EO metric.

w.o.FairReg w.o.FairReg - OverSample FairReg(*,noAug) FairReg(*,Aug) DRAlign

DP 611.3s 725.2s 811.6s 1995.3s 1397.8s

EO 661.8s 761.8s 865.8s 3640.8s 3278.2s

Table 9: Training time estimation when training with Credit dataset under the DP and EO metric.
w.o.FairReg w.o.FairReg - OverSample FairReg(*,noAug) FairReg(*,Aug) DRAlign

DP 6.1s 8.6s 8.7s 12.5s 12.1s

EO 8.5s 10.7s 11.1s 13.5s 13.0s

A.7 VARIOUS FAIRNESS METRICS.

In our paper, we mainly focus on the metric demographic parity (DP) and the equalized odds (EO),
both of which are introduced detailedly in section 3 (main paper). Our method is also applicable to
other fairness metrics that quantify the expected difference between groups. For example, predictive
parity focuses on whether the positive predictive value (PPV) is the same for both groups (Garg
et al., 2020). We should align the decision rationales for the data in both groups predicted as positive.
However, counterfactual fairness (Kusner et al., 2017) quantifies fairness from the perspective of an
individual (Garg et al., 2020), which is beyond our current framework. We will further explore it in
the future.

A.8 COMBINATION WITH DATA AUGMENTATION.

The data augmentation and our decision rationale alignment are two independent ways to enhance
fairness. From Figure 3 (main paper), we can see that on the Credit dataset, FairReg(∆DP , Aug)
achieves better results than DRAlign under the DP metric. Intuitively, we can combine the two
solutions straightforwardly. For example, we can replace the second term in Eq.(6) (main paper) (i.e.,
Lfair) with the data augmentation-embedded term (See (Chuang & Mroueh, 2021) for more details)
and have a new formulation of Eq.(6) (main paper).

L = E(x,y)∼P (Lcls(F(x), y)) + λLaug(F) + β

K∑
k=0

dk, (2)

We denote the above method for DP regularization as DRAlign(∆DP,Aug). We evaluate this version
and compare it to the method without augmentation (i.e., DRAlign(∆DP) on the Credit dataset. We
see that: the fairness score (i.e., -DP) increases from -0.0169 to -0.0155 while the average precision
(AP) also increases from 0.877 to 0.881, which further demonstrates the scalability of our method.

Table 10: The AP Values of Different Model Architectures.
λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

c10 0.781 0.780 0.776 0.768 0.758 0.745 0.731 0.729

c20 0.782 0.780 0.777 0.768 0.757 0.743 0.734 0.728

c50 0.783 0.781 0.776 0.769 0.758 0.741 0.737 0.730

c200 0.784 0.781 0.777 0.769 0.760 0.744 0.744 0.738
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(a) Adult (b) CelebA (c) Credit

A

Figure 1: Accuracy and fairness comparison with error bar.

A.9 WITHOUT THE FAIRNESS REGULARIZATION.

We find that the alignment itself could still slightly improve fairness when fairness regularization is
removed. Specifically, we remove the Lfair term in Eq.(6) (main paper) and retain the classification
loss and the decision rationale alignment loss and compare the results of the two loss functions
L = Lcls and L = Lcls + LDRA. We denote this version as w.o.FairReg-DRAlign. From Figure 2
(main paper), we can see that: compared with the model only trained with the classification loss (i.e.,
w.o.FairReg, w.o.FairReg - Oversample), w.o.FairReg-DRAlign increases the experimental results
(AP, -DP) from (0.776, -0.16 ) to (0.781, -0.14). The results are consistent with our observation that
our decision rationale alignment method could further improve fairness and demonstrate that decision
rationale alignment is actually a favorable supplement for existing fairness regularization terms.

A.10 CONNECTION WITH HUMAN SOCIETY.

Our main idea is similar to human society where people are not only focusing on the outcome jus-
tice (Tyler, 2000) (e.g., fairness in the decision results) but pay increasing attention to the procedural
justice (Tyler, 2003) (e.g., fairness in the decision rationale). The regularization method to improve
fairness can be deemed as achieving the outcome justice directly. Our experiments/analysis show that
procedural justice might be easily violated in DNN models. We propose decision rationale alignment
to further achieve the procedural justice and improve fairness.

A.11 ERROR BAR.

Here, we only show the error bar of our experimental results in Fig. 1 on FairReg(∆DP, noAug) and
DRAlign for better observation. It should be noted that the x-coordinate -DP and y-coordinate AP are
both changing with the random seed. We here plot a rectangular region for the error bar of each data
point. Moreover, we mark a point "A" in the figure of the Adult dataset under -DP metric. Although
we plot a rectangular region for the error bar, it does not mean that point A (-0.073, 0.777) can be
reached by FairReg(∆DP , noAug). It just means the -DP value and the AP value of FairReg(∆DP ,
noAug) could arrive at -0.073 and 0.777 separately with different random seeds.
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