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Abstract

We study the sample complexity (i.e., the number of comparisons needed) bounds
for actively ranking a set of n items from multi-wise comparisons. Here, a multi-
wise comparison takes m items as input and returns a (noisy) result about the best
item (the winner feedback) or the order of these items (the full-ranking feedback).
We consider two basic ranking problems: top-k items selection and full ranking.
Unlike previous works that study ranking from multi-wise comparisons, in this
paper, we do not require any parametric model or assumption and work on the fun-
damental setting where each comparison returns the correct result with probability
1 or a certain probability larger than 1

2 . This paper helps understand whether and to
what degree utilizing multi-wise comparisons can reduce the sample complexity for
the ranking problems compared to ranking from pairwise comparisons. Specifically,
under the winner feedback setting, one can reduce the sample complexity for top-k
selection up to an m factor and that for full ranking up to a logm factor. Under
the full-ranking feedback setting, one can reduce the sample complexity for top-k
selection up to an m factor and that for full ranking up to an m logm factor. We
also conduct numerical simulations to confirm our theoretical results.

1 Introduction

1.1 Background and motivation

Ranking from comparisons is a class of fundamental problems that underpin many areas in machine
learning, and has found various applications in problems involving crowd-sourcing, social choices,
recommendation, and searching. In such ranking problems, there is a hidden ranking among multiple
items to be recovered, where items may refer to candidates, products, movies, advertisements, etc. In
this paper, we study ranking from multi-wise comparisons. A multi-wise comparison refers to a query
on m items about the most preferred one (the winner feedback) or the full ranking (the full-ranking
feedback) of these items. These comparisons may be deterministic or non-deterministic (i.e., noisy or
they may return incorrect results). The noise comes from the uncertain nature of humans, the lack of
information, or the underlying physics. In this paper, we focus on two goals. One is to find the top-k
items (ranking or ordering these items are not necessary), and the other is to find the full ranking.

Our focus is on active ranking (e.g., [4–7, 10, 17–19]), where “active” means that after each compari-
son, the learner can adaptively choose the next items to be compared according to past observations
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and comparison results. Active ranking can be viewed as active learning for ranking problems and the
comparisons refer to the samples. The opposite of active ranking is passive ranking, where the learner
first obtains a set of comparison results and then recovers a ranking from there. Active ranking can
greatly reduce the sample complexity in many scenarios, e.g., if all comparisons return correct results
with probability 2

3 , passively ranking n items needs Ω(n2) comparisons [3], while active ranking
only needs O(n log n)1 comparisons [9, 18].

Most existing works have focused on ranking from pairwise comparisons. In contrast, we focus
on ranking from multi-wise (or m-wise) comparisons. The pairwise comparisons can be viewed
as multi-wise comparisons with m = 2. One motivation is that in many scenarios, multi-wise
comparisons are more common. For instance, in video streaming websites or e-shopping apps,
customers or users are normally presented more than two options, and the choices made by users
can be viewed as multi-wise comparisons that suggest their preferences over these options. Studying
ranking from multi-wise comparisons is useful for these types of applications. Besides, ranking
from multi-wise comparisons may also reduce the cost of the learning process. In some applications,
conducting the comparisons may be expensive. For instance, to find the candidates that are most
preferred by the voters, people may need to do a series of surveys. Each survey contains a query
about the preference order of a voter. In this application, the cost of finding the voter and asking this
voter to fill the survey could far outweigh the cost of filling the survey itself. This means that the cost
of conducting a multi-wise comparison is almost the same as that for a pairwise comparison, and
how to reduce the number of samples by multi-wise comparisons becomes more interesting. Thus, it
is not only interesting but also significant to study whether and to what degree we can reduce the
sample complexity for ranking by using multi-wise comparisons.

We focus on a non-parametric model, where each comparison returns the correct result with a certain
probability q > 1

2 and an arbitrary incorrect result otherwise. When q = 1, the comparisons are
deterministic and always return correct results, and when q < 1, we say the comparisons are non-
deterministic or noisy. This differs from parametric models2 that assume that each item holds a value
representing the users’ preference on this item. In parametric models, the comparisons may provide
more information than the setting in this paper3, and thus, the conclusion drawn under parametric
models cannot be directly applied to this paper.

1.2 Problem formulation

Assume that there are n items, indexed by 1, 2, 3, ...n, that form the item set [n]4. We further assume
that these items have a unique unknown true ranking r1 ≻ r2 ≻ · · · ≻ rn, where for any items i and j,
notation i ≻ j means that item i ranks higher (or is more preferred) than item j. Assume that we can
compare at most m items at a time. The comparisons can be either deterministic or non-deterministic.
We also assume that the comparisons are independent across time, items, and sets, which is standard
in the literature (e.g., [5–7, 10, 11, 13, 17–22]). Here, we note that the independence is based on the
assumption that the hidden parameters and ranking are some fixed values.

When the comparisons are deterministic, the comparisons always return the correct results, i.e., the
best item under the winner feedback model or the true ranking of the compared items under the
full-ranking feedback model. In the deterministic case, our goal is to find the exact top-k items or the
true ranking.

When the comparisons are non-deterministic, we assume that they return the correct results with
a certain fixed probability q ∈ ( 12 , 1). In this case, it is infeasible to rank the items with 100%
confidence, and thus, our goal is to find the ranking with confidence 1− δ for some δ ∈ (0, 1

2 ). We
focus on the case where q = 2

3 . We note that this does not lose much generality. When q > 2
3 , the

1All log in this paper are natural log unless explicitly noted.
2For instance, parametric models can be the Bradley-Terry-Luce (BTL) model [2], the Plackett-Luce (PL)

model [15], or the multinomial logit (MNL) model [14].
3For instance, given three items i, j, k with i being the best and k being the worst, in the setting of this paper

with q = 0.7, the multi-wise comparison returns the best item i with probability 0.7, and return j or k with
some unknown probabilities, which does not provides information about the orders of j and k. In contrast, in
a parametric model, the comparison over {i, j, k} would return i, j, or k with probability 0.7, 0.2, and 0.1,
respectively, which not only provides information about the best one but also information for ordering j and k.

4For any positive integer l, we define [l] := {1, 2, 3, ..., l}.
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algorithms and sample complexity bounds in this paper can be directly applied. When q < 2
3 , we

can use repeated comparisons to simulate one comparison with correct probability at least 2
3 . To see

this, consider a set over which a comparison returns the correct result with probability 1
2 +∆ > 1

2 .
By comparing this set for ⌈ 1

2∆2 log 3⌉ times, the item or permutation that occurs most often is the
correct result with probability at least 2

3 (by Hoeffding Inequality). Thus, we can use the above
method to substitute the comparisons in the algorithms designed for the case where q = 2

3 while only
introducing an additional 1

∆2 factor on the sample complexity.

This ( 12 +∆) m-wise comparison model can also be justified in many scenarios that use an iterative
subroutine to conduct m-wise comparisons over a set in a smaller time-scale. Here, we give a simple
example. We use pi,S to denote the probability that item i wins the comparison performed on set S
(assuming |S| ≤ m) and we use i∗ to denote the best item of S. If pi∗,S ≥ pi,S +∆ for any item
i ̸= i∗ and any set S, then by repeatedly comparing S for Θ( 1

∆2 log |S|) times, one can find the best
item of S with confidence 2

3 . We can use the above procedure as a subroutine in each iteration of our
algorithms, and get the algorithms for this case while only introducing an additional logm factor to
the sample complexities. In more general cases, we can use similar tricks but the additional factors
may vary.

1.3 Main results

The main results of this paper are summarized in Table 1. We note that due to space limitation, all
proofs in this paper are left to the supplementary material.

Table 1: Main results of this paper. All results are established in this paper unless explicitly cited. For
results of non-deterministic feedback, δ is the error probability and we assume that all comparisons
return correct results with probability 2

3 .
Problem Top-k Selection Full Ranking

Winner
Feedback Model

Deterministic
Feedback Θ( n

m + k) Θ(n logn
logm ) [17]

Non-Deterministic
Feedback

O(( n
m + k) log k logm

δ )

Ω(k + n
m log k

δ )
Θ(n log n

δ )

Full-Ranking
Feedback Model

Deterministic
Feedback Θ( n

m ) Θ( n logn
m logm )

Non-Deterministic
Feedback

O( n
m log min{n/m,k} logm

δ )

Ω( n
m logm

k
δ )

O( n
m log n

mδ )

Ω( n
m logm

n
δ )

2 Related works

When m = 2 and the comparisons are deterministic, the top-k selection problem becomes the
classical pairwise k-selection problem, which requires Θ(n) comparisons [1], and the full ranking
problem becomes the classical pairwise sorting problem, which requires Θ(n log n) comparisons.
Thus, ranking from multi-wise comparisons can also be viewed as extensions of these foundational
problems. Surprisingly, these extensions have not been well understood.

For top-k selection from non-deterministic pairwise comparisons, the authors of [9] showed that
Θ(n log k

δ ) comparisons are necessary and sufficient to reach confidence level 1− δ. For probably
approximately correct (PAC)5 top-k selection with error tolerance ϵ > 0, the authors of [5, 7] proved
a Θ( n

ϵ2 log
1
δ ) bound for k = 1, and the authors of [16, 18] proved a Θ( n

ϵ2 log
k
δ ) bound for k ≤ n

2 .

For full ranking from non-deterministic pairwise comparisons, an early work was [9], whose authors
proved that when the comparisons of all pairs have the same noise level, then to get the full ranking
with confidence 1 − δ, Θ(n log n

δ ) comparisons are necessary and sufficient. The authors of [17]

5The PAC setting means that we want to find the ranking approximately with an error tolerance ϵ and a
confidence 1− δ, where the ϵ tolerance means that for any two items i and j, item i is viewed to rank higher
than item j if item i wins the comparisons over item j with probability 1

2
− ϵ or higher.
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extend the above results to the case where the comparisons on different pairs have different noise
levels, and also obtained the Θ(n log n

δ ) bounds. The authors of [5–7] showed the Θ( n
ϵ2 log

n
δ )

order-wise tight upper and lower bounds for PAC full ranking with error tolerance ϵ > 0.

Thus, we can see that for m = 2 (i.e., ranking from pairwise comparisons), people have already
established optimal sample complexity bounds for top-k selection and full ranking. However, the
corresponding multi-wise ranking problems have been relatively under-explored. Most of these works
have focused on parametric models such as the PL model and the MNL model. Under the MNL
model, the work in [4] showed that under certain cases, one can get an m-reduction from m-wise
comparisons over ranking from pairwise comparisons. However, for most cases, using m-wise
comparisons does not reduce the sample complexity (ignoring constant factors). For multi-wise full
ranking under the MNL model, the works in [16, 17] showed that the lower bound is the same as
that using pairwise comparisons, i.e., there is no reduction by using m-wise comparisons. Under the
list-wise PL model with certain types of feedback, we may achieve up to m-reduction in the sample
complexity according to [19].

In contrast to the above works, we do not assume any parametric model, and instead use a non-
parametric model where each comparison returns a correct result with a certain fixed probability q.
As noted in Section 1.1, the results drawn from the parametric models cannot be directly applied
to this non-parametric model. Multi-wise ranking under this non-parametric setting is even less
under-explored in the literature. The most related work to this paper is [17], where the authors showed
a Θ(n logn

logm ) bound for full ranking from the winner feedback, which solves one of the eight cases
(top-k selection or full ranking, winner feedback or full-ranking feedback, deterministic feedback or
non-deterministic feedback) that is studied in this paper and shown in Table 1. We will study the rest
seven cases in this paper.

3 Top-k selection from winner feedback

3.1 Deterministic feedback

Lower bound. We first state an Ω( n
m + k) lower bound in Theorem 1. When m = 2, this lower

bound reduces to Ω(n), the same as that for the pairwise k-selection problem.

Theorem 1. To find the top-k items from n items by m-wise deterministic winner feedback, any
algorithm needs to conduct at least Ω( n

m + k) comparisons.

Upper bound When m = 2, the problem reduces to the basic pairwise k-selection problem, which
requires Θ(n) comparisons. One algorithm to solve the pairwise k-selection problem is Quick-Select
(QS) [12]. With n items, QS randomly chooses a pivot, splits other items into two piles based on
whether them are larger or smaller than the pivot, and then recursively calls QS on one of these two
piles according to the piles’ sizes. The expected number of comparisons required by QS is O(n) (in
the worst case it will be O(n2)).

However, if we want to get the O( n
m + k) sample complexity upper bound for multi-wise top-k

selection that matches the lower bound stated in Theorem 1, we cannot split the items into two piles
because splitting (n − 1) items into two piles requires Ω(n) comparisons. Instead, we split them
into m piles that are formed by (m− 1) randomly chosen pivots. Also, if the algorithm splits all the
non-pivot items, then we still have Ω(n) sample complexity, which is sub-optimal. Our key idea is to
stop splitting if we have identified the elements of the first several piles and the number of items in
these piles along with the corresponding pivots is no less than k. By analyzing how the items will
be split, we will show that we only need to conduct O( n

m + k) comparisons in expectation before
terminating splitting. After the splitting, we only need to focus on the pile that contains the k-th item
as the piles that rank higher contain only items better than the k-th item and the others contain only
items worse then the k-th item. We can show that this pile is of size O( n

m ) in expectation, and thus,
finding the top-k items from it only takes O( n

m ) comparisons by QS. Therefore, we find the top-k
items by using O( n

m + k) comparisons in expectation.

We name the above method as Multi-wise Quick-Select (MQSelect) and describe it in Algorithm 1.
The theoretical performance of MQSelect is formally stated in Theorem 2.

Theorem 2. MQSelect returns the top-k items of S after O( n
m + k) comparisons in expectation.
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Algorithm 1 Multi-wise Quick-Select(S,m, k) (MQSelect).

1: if |S| ≤ m then
2: Compare S for k times; After each comparison remove the winner from S and add it to Ans;
3: return Ans;
4: end if
5: Randomly choose m− 1 items and form a pivot set V ;
6: R1 ← S − V ; R2, R3, ..., Rm ← ∅; D0 ← ∅; Ai ← ∅ for i ∈ [m− 1];
7: for t = 1, 2, 3, ...,m− 1 do
8: Compare V once and denote the winner as vt;
9: V ← V − {vt}; E ← ∅;

10: while Rt ̸= ∅ do
11: Choose items from Rt and add them to E until |E| reaches min{m− 1, |Rt|};
12: Compare E ∪ {vt} and denote the winner as w;
13: if w = vt then
14: Rt+1 ← Rt+1 + E; Rt ← Rt − E; E ← ∅;
15: else
16: At ← At + {w}; Rt ← Rt − {w}; E ← E − {w};
17: end if
18: end while
19: Dt ← Dt−1 ∪At ∪ {vt};
20: if |Dt| = k then
21: return Dt;
22: else if |Dt| = k + 1 then
23: return Dt − {vt};
24: else if |Dt| > k + 1 then
25: return Dt−1∪ Quick-Select(At, k − |Dt−1|);
26: end if
27: end for
28: return Dm−1∪ Quick-Select(Rm, k − |Dm−1|);

According to the lower bound stated in Theorem 1, MQSelect is optimal up to a constant factor.
When m = 2, the Θ( n

m + k) bound reduces to Θ(n), the same as that for pairwise k-selection.

3.2 Non-deterministic feedback

Lower bound. The lower bound for m-wise top-k selection from non-deterministic winner feedback
is stated in Proposition 3. Later Theorem 5 will show that this bound is optimal up to a log k logm

δ
factor, and when k ≤ n

m , this bound is optimal up to a log logm factor.
Proposition 3. There is an n-sized instance such that to find the top-k items with confidence 1− δ
by using m-wise non-deterministic winner feedback, any algorithm needs at least Ω(k + n

m log k
δ )

comparisons in expectation.

Upper bound. We first introduce a simple subroutine Basic Compare (BC) in Algorithm 2. Given δ

Algorithm 2 Basic Compare(S, δ) (BC).

1: Compare S for N0 = ⌈18 log 1
δ ⌉ times;

2: return the result that is returned for the most number of times;

and input set S, BC compares S for N0 = ⌈18 log 1
δ ⌉ times and returns the most often result, which

is correct with probability at least 1− δ. This can be shown by using Hoeffding inequality

P{X ≤ N0/2} ≤ exp{−2N0(2/3− 1/2)2} ≤ δ, (1)

where X is the number of times that the correct result is returned.

We now present a relatively simple algorithm called Basic k-Selection (BKS), which will be used
later for developing another algorithm. The idea of BKS is that we replace the m-wise comparisons in
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MQSelect by the calls of BC with a certain confidence 1−δ1. Intuitively, we can set δ1 = δ
n2 to make

BKS return the correct result with confidence 1− δ as MQSelect conducts at most n2 comparisons.
In this case, we will need O((k + n

m ) log n
δ ) comparison. However, by showing that with probability

at least 1− δ0, MQSelect conducts at most N = O((k + n
m ) log nk logm

mδ0
) comparisons, we can set

δ1 = δ0
N and δ0 = δ

3 and get a better upper bound O(( n
m + k) log nk logm

mδ ). In fact, if we use BKS
with δ1 = δ

n2 , then the algorithm we construct in the later subsection will have a worse upper bound.
We describe BKS in Algorithm 3. Its theoretical performance is formally stated in Lemma 4.

Algorithm 3 Basic k-Select(S,m, k, δ) (BKS).

1: δ0 ← δ
3 ; T1 ← 1 + n

m−2 log
2(m−1)(m−2)

δ0
; δ1 ← δ0

6k+5T1
if m > 2; δ1 ← δ0

|S|2 if m = 2;
2: Run MQSelect on M , but using calls of BC with confidence 1 − δ1 to replace multi-wise

comparisons (except those in the call of QS);
3: For the call of QS, we replace the pairwise comparisons with calls of BC with confidence

1− δ0
|At|2 ;

Lemma 4. BKS terminates after O(( n
m + k) log nk logm

mδ ) comparisons in expectation, and with
probability at least 1− δ, returns the top-k items of S.

With BKS, we develop an enhanced algorithm for multi-wise top-k selection that can remove the
log n factor in the sample complexity of BKS. At each round t, we split the remaining items into
subsets with sizes at most mk. For each set, we use BKS with confidence 1− δt

k to find the top-k
items and call them winners. We can show that with probability at least 1 − δt, the winners of all
subsets together contain the top-k items of [n]. We keep the winners and remove other items. Repeat
the above step on remaining items for multiple rounds until only k winners remain, and these k
winners are the top-k items of [n] with probability at least 1−

∑∞
t=1 δt. By setting proper values of

δt, we can find the top-k items with confidence 1− δ by using O(( n
m + k) log k logm

δ ) comparisons.
We name this algorithm Multi-wise Tournament k-Select (MTKS) and describe it in Algorithm 4. Its
theoretical performance is formally stated in Theorem 5.

Algorithm 4 Multi-wise Tournament k-Select (S,m, k, δ) (MTKS)

1: if |S| ≤ mk then
2: return BKS(S,m, k, δ);
3: end if
4: Set t← 0 and R1 ← S;
5: repeat
6: t← t+ 1; δt ← 6δ

π2t2 ;
7: Distribute Rt to ⌈ |Rt|

mk ⌉ disjoint sets A1, A2, ..., Ad, each with size at most mk;
8: For i ∈ [d], let Bi ←BKS(Ai,m, k, δt

k );
9: Rt+1 ←

⋃
i∈[d] Bi;

10: until |Rt+1| ≤ k
11: return Rt+1;

Theorem 5. MTKS terminates after O(( n
m + k) log k logm

δ ) comparisons in expectation, and with
probability at least 1− δ, returns the top-k items of S.

We can see that, by using multi-wise comparisons, MTKS can achieve up to an m-reduction in the
sample complexity. According to Proposition 3, when k ≤ n

m , our upper bound is optimal up to a
log logm factor, which is almost constant for most of the practical cases.
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4 Full ranking from winner feedback

4.1 Deterministic feedback

This setting has been studied in [17], where the authors have shown Θ(n logm n) upper and lower
bounds for the sample complexity. We restate their results in Proposition 6. By using m-wise
comparisons, we can reduce the sample complexity for finding the full ranking by a logm factor.

Proposition 6 ([17]). To exactly rank n items by using m-wise deterministic comparisons under the
winner feedback model, Θ(n logm n) comparisons are necessary and sufficient.

4.2 Non-deterministic feedback

Unlike full ranking from deterministic comparisons, when the comparisons are non-deterministic,
this logarithmic reduction may not exist any more. This result is stated in Theorem 7.

Theorem 7. There is an n-sized instance such that to get the full ranking with confidence 1− δ from
m-wise winner feedback, any algorithm needs at least Ω(n log n

δ ) comparisons.

For m = 2, i.e., when using pairwise comparisons, the algorithms in [18] can already find the full
ranking of n items with confidence 1− δ by O(n log n

δ ) comparisons, matching the lower bound in
Theorem 7. Thus, we do not propose an algorithm for m > 2 and one can directly use the pairwise
algorithms for m > 2 and obtain optimal sample complexity (ignoring constant factors).

5 Top-k selection from full-ranking feedback

5.1 Deterministic feedback

For the lower bound, since each comparison involves at most m items and all items need to be
involved in at least one comparison to get the top-k items, we immediately have the Ω( n

m ) lower
bound. For the upper bound, we develop a Quick-Select-like algorithm MQSelect-FRF (Multi-
wise Quick-Select from Full-Ranking Feedback) under the full-ranking feedback model similar to
MQSelect. In the splitting, MQSelect-FRF takes less comparisons since the full-ranking feedback
provides more information than the winner feedback, which removes the O(k) term in the upper
bound that exists in the sample complexity of MQSelect. Due to space limitation, we only state the
bounds in Theorem 8 and the proofs and algorithms are relegated to the supplementary material.

Theorem 8. To get the top-k items of n items from deterministic m-wise full-ranking feedback, Θ( n
m )

comparisons are necessary and sufficient.

5.2 Non-deterministic feedback

Lower bound. In this part, we provide a lower bound in Proposition 9, which is optimal up to a
logm · log logm factor. This lower bound is proved by reducing the pairwise ranking problem to the
list-wise ranking problem. In fact, we are not aware whether there is a stronger lower bound, and this
problem requires future investigation.

Proposition 9. There is an n-sized instance such that to find the top-k items by m-wise non-
deterministic full-ranking feedback, any algorithm needs Ω( n

m logm
k
δ ) comparisons.

Upper bound. We develop the full-ranking algorithm following the similar steps as in MTKS. First,
we develop an algorithm named BKS-FRF (BKS from Full-Ranking Feedback) similar to BKS, which
replaces the comparisons of the deterministic-comparison algorithm by a call of BC with a certain
confidence and has sample complexity O( n

m log n logm
mδ ). When k < n

m , we further use similar steps
as in MTKS and develop an algorithm named MTKS-FRF (MTKS from Full-Ranking Feedback)
that further reduces the sample complexity to O( n

m log min{n/m,k} logm
δ ), which is optimal up to a

logm · log logm factor. Due to space limitation, we only state the upper bound in Theorem 10 and
the algorithms are presented in the supplementary material.

Theorem 10. MTKS-FRF terminates after O( n
m log min{n/m,k} logm

δ ) comparisons in expectation,
and with probability at least 1− δ, returns the top-k items of S.
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6 Full ranking from full-Ranking feedback

6.1 Deterministic feedback

Lower bound. We first show the lower bound for this setting in Theorem 11. The proof is based on
an information-theoretic approach. Specifically, there are n! permutations, which implies that the
information entropy of the true ranking is log(n!). Each m-wise comparison has at most m! possible
results. Thus, each m-wise comparisons provides at most log(m!) information towards the true
ranking. By Fano’s Inequality [8], to get the true ranking with probability at least 3

4 , the information
about the true ranking one needs to obtain is at least Ω(log(n!)). Since log(n!) = Θ(n log n) and
log(m!) = Θ(m logm), the lower bound is at least Ω( n logn

m logm ).
Theorem 11. To get the full ranking of n items by using m-wise comparisons under the full-ranking
feedback model, any algorithm needs at least Ω( n logn

m logm ) comparisons in expectation.

Algorithm 5 Multi-wise Quick-Sort(S,m) (MQSort)

1: if |S| ≤ m then
2: Compare S, obtain its full ranking and return;
3: end if
4: Randomly choose h := ⌊m2 ⌋ items and form pivot set V ;
5: Compare V to get its full ranking v1 ≻ v2 ≻ · · · ≻ vh;
6: Let v0 represent a dummy item that ranks higher than all other items;
7: R← S − V ; Ai ← ∅ for i = 0, 1, 2, ..., h;
8: while R ̸= ∅ do
9: Choose (m− h) items from R and form set E;

10: Compare set E ∪ V and get the ranking;
11: for item i in E do
12: Add item i to set Aj if j items in V ranks higher than i (i.e., if vj−1 ≻ i ≻ vj);
13: end for
14: end while
15: for j = 0, 2, 3, ..., h do
16: Call MQSort(Aj ,m) to get the full ranking of Aj ;
17: Insert the sorted items of Aj into between vj−1 and vj ;
18: end for
19: return the current ranking of S;

Upper bound. Since it is well-known that full ranking from pairwise comparisons needs O(n log n)
comparisons, developing a full ranking algorithm under the non-deterministic full-ranking feedback
model with sample complexity O( n

m log n) is trivial by viewing an m-wise comparison as ⌊m2 ⌋
pairwise comparisons. Instead, we propose an algorithm called Multi-wise Quick-Sort (MQSort)
with expected sample complexity O( n logn

m logm ), better than the above trivial bound and matches the
lower bound stated in Theorem 11. MQSort can be viewed as an extension of the classical Quick-Sort
algorithm, but requires more complicated mathematical analysis to prove its sample complexity. We
describe MQSort in Algorithm 5 and formally state its theoretical performance in Theorem 12.
Theorem 12. MQSort terminates after O( n logn

m logm ) m-wise comparisons in expectation and returns
the full ranking of S.

6.2 Non-deterministic feedback

Lower bound. When the full ranking is obtained, then the top-n2 items can also be obtained for free.
Thus, we immediately have the Ω( n

m logm
n
δ ) full-ranking lower bound in Corollary 13 by invoking

Proposition 9. Corollary 13 is optimal up to a logm factor. Whether a tighter bound exists remains
an open problem and requires further investigation.
Corollary 13. There is an n-sized instance such that to find the full ranking from m-wise full-ranking
feedback with confidence 1− δ, any algorithm needs Ω( n

m logm
n
δ ) comparisons in expectation.

Next, we modify the algorithm in [9] to achieve an O( n
m log n

mδ ) upper bound, which is stated in
Theorem 14. Due to space limitation, we leave the algorithm to the supplementary material.
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Figure 1: Performance comparisons of all algorithms: In all figures, n = 1000 (except (f)), δ = 0.01
(if applicable), and all points are averaged over 100 independent trials with random true rankings.

Theorem 14. There is an algorithm that finds the full ranking of n items by m-wise full-ranking
feedback with confidence 1− δ and conducts O( n

m log n
mδ ) comparisons in expectation.

7 Numerical results

In this section, we conduct numerical experiments to verify out theoretical results. The codes can be
found in our GitHub repo.6

In Figure 1 (a,b), we present the results of MQSelect. In Figure 1 (a), we set n = 1000 and
k = {1, 10, 100, 500}, and vary the value of m. In Figure 1 (b), we set n = 1000 and m =
{2, 10, 100, 500}, and vary the value of k. First, from the results, we can see that that given the
same value of k, the number of comparisons conducted by MQS decreases as m increases, and the
decreasing rate is approximately 1

m according to Figure 1 (a), consistent with our theory that the
sample complexity of MQSelect is O( n

m + k). This indicates that using multi-wise comparisons can
significantly reduce the required number of comparisons for top-k ranking, especially for a large
value of m. Second, Figure 1 (b) shows that for a given value of m, when k increases, the number of
comparisons conducted by MQSelect increases nearly linearly. The larger the m-values, the closer to
linear the increasing rates are, which is also consistent with the theory.

In Figure 1 (c,d), we compare the performance of MTKS and BKS. In Figure 1 (c), we set n = 1000,
δ = 0.01, and k = {1, 10}, and vary the value of m. In Figure 1 (d), we set n = 1000, δ = 0.01,
and m = {2, 10}, and vary the value of k. First, we can see from Figure 1 (c) that when m increases,
the number of comparisons conducted by MTKS and BKS both decrease, and the decreasing rate
is larger for smaller values of k, which is consistent with the theory that the sample complexities
of both algorithms depend on ( n

m + k). This also indicates that by using multi-wise comparisons,
we can save a significant number of comparisons for top-k selection. Second, from Figure 1 (c), we

6https://github.com/WenboRen/Multi-wise-Ranking.git

9



can see that, when k = 1, MTKS uses less comparisons than BKS for almost all values of m, which
is consistent with the theory that the sample complexity of MTKS depends on log k logm

δ , smaller
than the log nk logm

mδ rate of BKS. However, from Figure 1 (c), we can also see that, when k is larger,
e.g., k = 10, the performance of BKS is slightly better than that of MTKS, which indicates that
MTKS has a larger constant factor. Third, according to Figure 1 (d), when k increases, the number of
comparisons conducted by both algorithms tend to increase except for a small set of points. When
m = 1, the increasing rate of the number of conducted comparisons with k is smaller than that when
m = 10, which is consistent with the theory that the sample complexities of both algorithms depend
on ( n

m + k). Thus, when m is larger, the complexity of the algorithms are more sensitive with k.

In Figure 1 (e,f), we present the numerical results of MQSort. To show how the full-ranking feedback
can help reduce the sample complexity for finding the full ranking, we compare MQSort with Multi-
wise Merge Sort (MMS) algorithm proposed in [17], which uses the winner feedback. In theory,
to rank n items, MQSort uses O( n logn

m logm ) comparisons and MMS uses O(n logn
logm ) comparisons. In

Figure 1 (e), we set n = 1000 and vary the value of m. In Figure 1 (f), we set m = {2, 5, 10, 50, 100}
and vary the value of n. First, from Figure 1 (e,f), we can see that when m increases, the number
of comparisons conducted by MQSort decreases, and the decreasing rate is nearly 1

m logm , which

is consistent with the theory that the sample complexity of MQSort is O( n logn
m logm ). This indicates

that by using multi-wise full-ranking feedback with large values of m, we can significantly reduce
the sample complexity for finding the full ranking. Second, we can also see that MQSort uses less
comparisons than MMS for m ≥ 5, and the decreasing rate of the complexity is also faster than
MMS, consistent with the theory that MQSort has sample complexity O( n logn

m logm ) and MMS has

sample complexity O(n logn
logm ). This suggests that compared to winner feedback, using full-ranking

feedback is more efficient in terms of sample complexity for finding the full ranking.

8 Conclusion

This paper studied the problems of selecting the top-k items or finding the full ranking of a set of n
items by using m-wise comparisons under the winner feedback model or the full-ranking feedback
model. The comparisons can be either deterministic or non-deterministic. For all eight combinations
of settings (top-k selection or full ranking, winner feedback or full-ranking feedback, deterministic or
non-deterministic feedback), we proposed algorithms, derived upper bounds, and/or proved lower
bounds. For four settings, we obtained tight upper and lower bounds (up to constant factors). For three
settings, we obtained upper and lower bounds where there is only logarithmic gaps between them.
The results in this paper showed that by using multi-wise comparisons, one could dramatically reduce
the number of comparisons needed for the ranking problems compared to ranking from pairwise
comparisons. The numerical results presented also confirmed our theoretical predictions.
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Supplementary Material
A Proofs

A.1 Proof of Theorem 1

Theorem 1. To find the top-k items from n items by m-wise deterministic winner feedback, any
algorithm needs to conduct at least Ω( n

m + k) comparisons.

Proof. When m = 2, i.e., for k-selection from pairwise comparisons, it is well-known that one needs
at least Ω(n) pairwise comparisons to find the top-k items. Any m-wise comparison can be simulated
by (m − 1) pairwise comparisons. Thus, by using m-wise comparisons, one needs at least Ω( n

m )
comparisons for finding the top-k items. Otherwise, we would get a contradiction against the lower
bound for top-k items selection from pairwise comparisons.

We then show the Ω(k) lower bound. We simplify the problem and assume that the learner has
already found r1, r2, ..., rk, rk+1 and the remaining goal is to identify rk+1. Here, for any i, ri is the
unknown i-th best item. For each m-wise comparison, we can exclude one item, i.e., the winner,
from our consideration. Thus, we need k comparisons to exclude all of r1, r2, ..., rk, which implies
the Ω(k) sample complexity lower bound. The proof is complete by summing up the above two lower
bounds.

A.2 Proof of Theorem 2

Theorem 2. MQSelect returns the top-k items of S after O( n
m + k) comparisons in expectation.

Proof. In the algorithm, we randomly choose (m − 1) items as the pivots. These pivots separate
the other items into m piles according to the ranks of these items. These piles are denoted as
A1, A2, ..., Am. Let τ be the first iteration t such that |Dt| ≥ k, i.e., the algorithm either terminates
or enters the call of QS at iteration τ . When the algorithm returns at the last line, we let τ = m. We
recall n = |S| is the total number of items.

The key of the proof is to upper bound the size of Aτ , which is stated in Lemma 15. The proof of
Lemma 15 is provided in Section A.13 of the supplementary material.

Lemma 15. E[|Aτ |] ≤ 8 + 2n
m .

For each iteration t, MQSelect finds one pivot vt, and thus, the number of comparisons used for
finding pivots is at most τ . Let i be an item in At. When t ≤ min{τ,m−1}, item i wins a comparison
that involves pivot vt and also loses one comparison with each of the pivots v1, v2, ..., vt−1. When
t = m, item i loses m− 1 comparisons, each with a pivot, and wins no comparison with the pivots.
For any time that a pivot wins a comparison, m− 1 items will each lose a comparison if we ignore
those comparisons over sets with sizes smaller than m. When taking these sets with smaller sets into
consideration, the expected number of items compared in these sets is at least m+1

2 , which implies at
least m−1

2 losers in expectation for each comparison. Thus, the number of comparisons required to
identify A1, A2, ..., Aτ is at most

τ∑
t=1

[
|At| ·

(
1 +

2(t− 1)

m− 1

)]
≤ 5

τ∑
t=1

|At|.

Therefore, except the call of QS (if it exists), MQSelect conducts at most τ+5
∑τ

t=1 |At| comparisons.
This implies

T (S,m, k) ≤ τ + 5

τ∑
t=1

|At|+ T (Aτ , k),

where T (Aτ , k) is the number of comparisons QS needs for top-k selection from Aτ . We have
T (Aτ , k) = O(|Aτ |) and τ ≤ k. Also, since MQSelect returns at the first iteration t where |Dt| ≥ k,
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we have
τ∑

t=1

|At| ≤ |Dτ | ≤ k + |Aτ |.

Therefore, we have

T (S,m, k) ≤ k + 5(k + |Aτ |) +O(|Aτ |) = O(k + |Aτ |),

which along with Lemma 15 (E[|Aτ |] ≤ 8 + 2n
m ) completes the proof.

A.3 Proof of Proposition 3

Proposition 3. There is an n-sized instance such that to find the top-k items with confidence 1− δ
by using m-wise non-deterministic winner feedback, any algorithm needs at least Ω(k + n

m log k
δ )

comparisons in expectation.

Proof. Towards contradiction, we assume that there is an algorithm A that can find the top-k items
of [n] by using o( n

m log k
δ )m-wise comparisons in expectation. In the proof, we assume that every

comparison returns the correct result with probability 2
3 , and will not explicitly state this for simplicity.

We recall that the authors of [9, 17] proved that there is an algorithm that can find the best item among
m items with confidence 2

3 by using O(m) pairwise comparisons. Thus, for any set with size m,
we can use O(m) pairwise comparisons with error probability 1

3 to simulate an m-wise comparison
with error probability at most 1

3 . According to our assumption, since algorithm A can find the top-k
items of S with confidence 1 − δ by o( n

m log k
δ ) m-wise comparisons, by simulating the m-wise

comparisons by pairwise comparisons, we can construct an algorithm which finds the top-k items of
S with confidence 1− δ by o(n log k

δ ) pairwise comparisons. However, the work in [9] proved that
top-k selection with confidence 1− δ requires at least Ω(n log k

δ ) pairwise comparisons, leading to a
contradiction. Thus, such algorithm A does not exist, and the Ω( n

m log k
δ ) lower bound follows.

The Ω(k) lower bound follows from the lower bound for top-k selection from deterministic compar-
isons stated in Theorem 1. Combining these two lower bounds, we get the desired lower bound and
complete the proof of Proposition 3.

A.4 Proof of Lemma 4

Lemma 4. BKS terminates after O(( n
m + k) log nk logm

mδ ) comparisons in expectation, and with
probability at least 1− δ, returns the top-k items of S.

Proof. Similar to the proof of Theorem 1, we let τ be the first iteration t such that |Dt| ≥ k, i.e., the
algorithm either terminates or enters the call of QS at iteration τ . When the algorithm returns at the
last line, we let τ = m. We recall n = |S| is the total number of items. To prove the lemma, we need
to show that in the execution of BKS, Aτ is of size at most T1 = O( n

m log m
δ ) with a probability at

least 1− δ0, where δ0 := δ
3 .

We let X1, X2, ..., Xm−1, L, and R denote the same things as in the proof of Lemma 15 (See
Section A.13). We note that |Aτ | ≤ L+R. In the proof of Lemma 15, it has been shown in Eq (2)
that

P{L+R = s} ≤ (m− 1)(m− 2)(s+ 1)

n(n− 1)
·
(
1− s− 1

n− 2

)m−3

.

We define f(s) := (m−1)(m−2)(s+1)
n(n−1) · (1− s−1

n−2 )
m−3. When s ≥ n−m+2

m−2 , we have

f ′(s) =
(m− 1)(m− 2)

n(n− 1)

[(
1− s− 1

n− 2

)m−3

− (m− 3)(s+ 1)

n− 2

(
1− s− 1

n− 2

)m−4]
≤ 0,

and thus, for s ≥ n−m+2
m−2 , f(s) is non-increasing.
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Now let s ≥ n−m+2
m−2 be given, and since the maximal of L+R is n−m+ 2, we have

P{L+R > s} ≤(n−m+ 2− s) · f(s)

=(n−m+ 2− s) · (m− 1)(m− 2)(s+ 1)

n(n− 1)
·
(
1− s− 1

n− 2

)m−3

≤(n− 2)
(
1− s

n− 2

)
· (m− 1)(m− 2)(s+ 1)

n(n− 1)
·
(
1− s− 1

n− 2

)m−3

=
(n− 2)2(m− 1)(m− 2)

n(n− 1)
· s+ 1

n− 2
·
(
1− s− 1

n− 2

)m−3

·
(
1− s

n− 2

)
≤ (n− 2)2(m− 1)(m− 2)

n(n− 1)
· 2(s− 1)

n− 2
·
(
1− s− 1

n− 2

)m−2

≤2(m− 1)(m− 2)x(1− x)m−2,

where x := s−1
n−2 . When x ≥ 1

m−2 log
2(m−1)(m−2)

δ0
, we have

log(2(m− 1)(m− 2)x(1− x)m−2) = log(2(m− 1)(m− 2)) + log x+ (m− 2) log(1− x)

≤ log(2(m− 1)(m− 2)) + 0− (m− 2)x

≤ log(2(m− 1)(m− 2))− log
2(m− 1)(m− 2)

δ0
= log δ0,

and thus, 2(m− 1)(m− 2)x(1− x)m−2 ≤ δ0. By x := s−1
n−2 , we conclude that

s ≥ 1 +
n

m− 2
log

2(m− 1)(m− 2)

δ0
=⇒ P{L+R > s} ≤ δ0.

Since |Aτ | ≤ L+R, we have that

|Aτ | ≤ 1 +
n

m− 2
log

2(m− 1)(m− 2)

δ0
with probability at least 1− δ0.

We also recall that T1 = 1 + n
m−2 log

2(m−1)(m−2)
δ0

.

Correctness. We let E be the event that |Aτ | ≤ T1. We have P{E} ≤ δ0. In the proof of
the correctness, we assume that E happens. Except the call of QS, MQSelect conducts at most
(6k + 5|Aτ |) comparisons. Since each comparison is replaced by a call of BC with confidence
1− δ0

6k+5T1
≥ 1− δ0

6k+5|Aτ | , by the union bound, with probability at least 1− δ0, all these calls of
BC return correct results. Finally, since the call of QS uses at most |Aτ |2 comparisons and each
comparison is replaced by a call of BC with confidence 1− δ0

|Aτ |2 , by the union bound, QS returns
the correct result with probability at least 1− δ0. Therefore, BKS returns the top-k items of S with
probability at least 1− 3δ0 = 1− δ. This proves the correctness.

Sample complexity. By Theorem 2, MQSelect conducts O( n
m+k) comparisons in expectation except

the call of QS. In BKS, each comparison is replaced by a call of BC with confidence 1 − δ0
6k+5T1

,
which conducts O(log 6k+5T1

δ0
) = O(log nk logm

mδ0
) comparisons. Thus for BKS, Line 2 conducts

O(( n
m + k) log nk logm

mδ0
) comparisons in expectation.

For the call of QS, its expected sample complexity is E[O(|Aτ |)]. Each comparison of QS is replaced
by a call of BC with confidence 1− δ0

|Aτ |2 , and thus, Line 3 conducts O(|Aτ | log |Aτ |
δ0

) comparisons
in expectation. Here, we show Lemma 16 for upper bounding E[|Aτ | log |Aτ |].
Lemma 16. E[|Aτ | log |Aτ |] = O( n

m log n
m ).

Lemma 16 implies that O(E[|Aτ | log |Aτ |
δ0

]) = O( n
m log n

mδ ), and thus, Line 3 conducts at most
O( n

m log n
mδ ) comparisons in expectation. By δ0 = δ

3 , the expected sample complexity of BKS
is O(( n

m + k) log nk logm
mδ ). This proves the sample complexity, and the proof of Lemma 4 is

complete.
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A.5 Proof of Theorem 5

Theorem 5. MTKS terminates after O(( n
m + k) log k logm

δ ) comparisons in expectation, and with
probability at least 1− δ, returns the top-k items of S.

Proof. Correctness. Let t be given, δt = 6δ
π2t2 , and Ut be the set of top-k items of Rt. Since

Rt =
⋃

i∈[d] Ai and Ai’s are disjoint, for each item u in Ut, there is a set Asu that contains u. By
Lemma 4, for any u in Ut, the call of BKS on set Asu returns its top-k items with probability at least
1− 6δ

π2t2k = 1− δt
k , and thus, with probability at least 1− δt, the calls of BKS on sets (Asu : u ∈ Ut)

all return their top-k items. Since any u in Ut is one of the top-k items of Rt, and thus, u is also one
of the top-k items of Asu . Therefore, with probability at least 1− δt, the top-k items of Rt are all
added to the set Rt+1. By

∑∞
t=1 δt =

6δ
π2

∑∞
t=1

1
t2 = δ, the correctness of MTKS follows.

Sample complexity. First, we consider the case where n > mk. Let τ be the number of rounds the
algorithm performs before termination. Since at each time, we divide set Rt into ⌈ |Rt|

mk ⌉ sets, and for
each set, only k items are put to Rt+1. Thus, |Rt+1| = k⌈ |Rt|

mk ⌉, which implies |Rt| ≤ c1n
mt−1 , where

c1 is some positive constant. For each round t, there are at most ⌈ |Rt|
mk ⌉ calls of BKS. Each call is on

at most mk items. By Lemma 4, each call conducts O((mk
m + k) log mk2 logm

mδt
) = O(k log k logm

δt
)

comparisons in expectation. Thus, the total expected sample complexity of MTKS is upper bounded
by

O
( τ∑

t=1

( n

mt−1
· 1

mk
· k log k logm

δt

))
=O

( τ∑
t=1

( n

mt
· log kt logm

δ

))
=O

( n

m
log

k logm

δ

)
.

Since n > mk, i..e, n
m > k, the upper bound can also be written as O(( n

m + k) log k logm
δ ).

For the case where n ≤ mk, MTKS directly calls BKS, which yields a sample complexity O(( n
m +

k) log nk logm
mδ ). Since n

m ≤ k, the sample complexity reduces to O(( n
m + k) log k logm

δ ). This
completes the proof of the sample complexity, and the proof of Theorem 5 is complete.

A.6 Proof of Theorem 7

Theorem 7. There is an n-sized instance such that to get the full ranking with confidence 1− δ from
m-wise winner feedback, any algorithm needs at least Ω(n log n

δ ) comparisons.

Proof. Let A be an arbitrary algorithm for finding the full ranking by m-wise noisy comparisons
under the winner feedback model. We assume that n is even, and the case where n is odd can be
proved by ignoring an item. Let s := n

2 . For a set M and an item i in M , we use pi,M to denote the
probability that item i wins the comparison over set M . We recall that the unknown true ranking
is r1 ≻ r2 ≻ · · · ≻ rn. Define Π := {0, 1}s, and for each π = (π1, π2, ..., πs) in Π, we define the
following hypothesis.

HypothesisHπ . The true ranking of [n] is q1 ≻ q2 ≻ · · · ≻ qn where for any i in [s], (q2i−1, q2i) =
(2i− 1, 2i) if πi = 0 and (q2i−1, q2i) = (2i, 2i− 1) otherwise.

We have the following further assumptions. For any value of π and set M , if the best two items of M
are not 2i and (2i− 1) for any i in [s], then for all j in M , pj,M is the same under all values of π;
if the best two items of M are 2i and (2i− 1) for some i in [s], then (p2i−1,M , p2i,M ) = ( 23 ,

1
3 ) if

πi = 0 and (p2i−1,M , p2i,M ) = ( 13 ,
2
3 ) if πi = 1.

Now, we are interested in the following problem P1. We note that there is at most one hypothesisHπ

holds and we denote it byHπ∗ .

Problem P1. Assume that there is one π∗ in Π such thatHπ∗ is true, and P{π∗ = π} = 1
2s for any

π. We want to find the value of π∗ with confidence 1− δ by using m-wise comparisons.

First, by using A to find the true ranking of [n], one can find the value of πi by checking the whether
the (2i− 1)-th item in the true ranking is (2i− 1) or 2i for any i. Thus, A solves the problem P1.
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Second, we show the sample complexity lower bound of P1. For any set M of which the best two
items are not 2i or (2i − 1), the values of p2i,M and p2i−1,M are the same under any value of πi,
which implies that the comparisons over set M does not contribution any information towards the
value of πi. Thus, only the comparisons over the sets M of which the best two items are 2i and
(2i− 1) can be used to recover the value of π.

Now letMi be the collection of sets Mi of which the best two items are 2i and (2i− 1) for some i
in [s]. If π∗

i = 0, then (p2i−1,Mi , p2i,Mi) = (23 ,
1
3 ); and if π∗

i = 1, then (p2i−1,Mi , p2i,Mi) = (13 ,
2
3 ).

The comparisons over the sets not in Mi do not provide any information about the value of π∗
i .

Therefore, recovering the value of π∗
i is the same as determining whether a Bernoulli distribution

is of parameter 2
3 or 1

3 . According to [17], to determine this parameter with confidence δi, at least
Ω(log 1

δi
) samples are required in expectation, which implies that to recover the value of π∗

i with
confidence 1− δi, at least Ω(log 1

δi
) comparisons over sets inMi are needed in expectation.

To get the value of π∗ with confidence 1− δ, we need to find the value of π∗
i with confidence 1− δi

for any i in [s], where
∏

i∈[s](1− δi) ≥ 1− δ. Thus, to solve P1 with confidence 1− δ, the expected
number of comparisons required is at least

Ω
(
min

{ ∑
i∈[s]

log
1

δi
:
∏
i∈[s]

(1− δi) ≥ 1− δ
})

.

We note that the set {(δ1, δ1, ..., δs) :
∏

i∈[s](1−δi) ≥ 1−δ} is convex, and the function
∑

i∈[s] log
1
δi

is convex with respect to (δ1, δ1, ..., δs). Thus, by Jasen’s Inequality, we have∑
i∈[s]

log
1

δi
≥ s log

s

δ
= Ω

(
n log

n

δ

)
,

which implies that the sample complexity lower bound of the problem P1 is Ω(n log n
δ ). Since

A solves P1, the sample complexity of A is also lower bounded by Ω(n log n
δ ). Algorithm A is

arbitrary, and this completes the proof of Theorem 7.

A.7 Proof of Theorem 8

Theorem 8. To get the top-k items of n items from deterministic m-wise full-ranking feedback, Θ( n
m )

comparisons are necessary and sufficient.

Proof. Lower bound. For the lower bound, we can see that to get the top-k items, each item needs
to be involved in at least one comparison, and thus, we need at least n

m comparisons. The desired
lower bound follows.

Upper bound. The O( n
m ) sample complexity upper bound can be achieved by the algorithm

described in Algorithm 6. We first present this algorithm and then prove the upper bound.

The proof of the upper bound of MQSelect-FRF follows the similar steps as that of Theorem 2. When
|S| ≤ m, the number of comparisons required is 1 and the upper bound follows. In the rest of the
proof, we assume |S| > m.

From Line 4 to Line 15, MQSelect-FRF conducts at most (1 + ⌈ |S|−h
m−h ⌉) = O( n

m ) comparisons.
Similar to MQSelect, MQSelect-FRF randomly chooses h pivots and split the rest of the items to
(h + 1) piles according to there order relationship with the pivots. Define τ := inf{t : |Dt| ≥ k}.
If the algorithm returns at the last line, we let τ = h + 1. With the same steps as in the proof of
Lemma 15, we have E|Aτ | ≤ 8 + 2n

h+1 . QS conducts O(|Aτ |) = O( n
m ) comparisons in expectation.

Thus, the total number of comparisons conducted by MQSelect-FRF is O( n
m ) in expectation. This

completes the proof of Theorem 8.

A.8 Proof of Proposition 9

Proposition 9. There is an n-sized instance such that to find the top-k items by m-wise non-
deterministic full-ranking feedback, any algorithm needs Ω( n

m logm
k
δ ) comparisons.
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Algorithm 6 Multi-wise Quick-Select from Full-Ranking Feedback(S,m, k) (MQSelect-FRF)

1: if |S| ≤ m then
2: Compare S and return the top-k items according to the returned full ranking;
3: end if
4: Randomly choose h := ⌊m2 ⌋ items and form pivot set V ;
5: Compare V to get its full ranking v1 ≻ v2 ≻ · · · ≻ vh;
6: Define vh+1 as an item that ranks lower than any other item; Define v0 as an items that ranks

higher than any other item;
7: R← S − V ; Ai ← ∅ for i = 1, 2, ..., h+ 1;
8: while R ̸= ∅ do
9: Choose (m− h) items from R and form set E;

10: Compare set E ∪ V and get the ranking;
11: for item i in E do
12: Add item i to set Aj if vj−1 ≻ i ≻ vj ;
13: end for
14: R← R− E;
15: end while
16: D0 ← ∅;
17: for t = 1, 2, ..., h do
18: Dt ← Dt−1 ∪At ∪ {vt};
19: if |Dt| = k then
20: return Dt;
21: else if |Dt| = k + 1 then
22: return Dt − {vt};
23: else if |Dt| > k + 1 then
24: return Dt−1∪ QS(At, k − |Dt−1|);
25: end if
26: end for
27: return Dh∪ QS(Ah+1, k − |Dh|);

Proof. First, we note that by Theorem 12 of [17], to get the full ranking of m items with confidence 2
3

from non-deterministic pairwise comparisons, O(m logm) comparisons are sufficient. In other words,
we can simulate an m-wise full-ranking-feedback comparison by O(m logm) pairwise comparisons.
We then note that by Theorem 12 of [17], to get the top-k items of [n] with confidence 1− δ from
pairwise non-deterministic comparisons, at least Ω(n log k

δ ) comparisons are needed. Thus, if there
is an algorithm A that can find the top-k items with confidence 1− δ by o( n

m logm
k
δ ) comparisons,

then by using pairwise comparisons to simulate m-wise comparisons, we can find the top-k items
with confidence 1− δ by o(n log k

δ ) pairwise comparisons. This contradicts the lower bound stated in
Theorem 12 of [17]. Therefore, such algorithm A does not exist and the desired lower bound follows.
This completes the proof of Proposition 9.

A.9 Proof of Theorem 10

Theorem 10. MTKS-FRF terminates after O( n
m log min{n/m,k} logm

δ ) comparisons in expectation,
and with probability at least 1− δ, returns the top-k items of S.

Proof. We first introduce the subroutine BKS-FRF (Basic k-selection from Full-Ranking Feedback),
which is described in Algorithm 7. Its theoretical performance is formally stated in Lemma 17.

Lemma 17. BKS-FRF terminates after O( n
m log n logm

mδ ) comparisons in expectation, and with
probability at least 1− δ, returns the top-k items of S.

Then, similar to MTKS, we develop a tournament-like algorithm MTKS-FRF (Multi-wise Tournament
k-Selection from Full-Ranking Feedback), which is described in Algorithm 8.

Correctness. Let t be given, δt = 6δ
π2t2 , and Ut be the set of top-k items of Rt. Since Rt =

⋃
i∈[d] Ai

and Ai’s are disjoint, for each item u in Ut, there is a set Asu that contains u. By Lemma 17,
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Algorithm 7 BKS from Full-Ranking Feedback(S,m, k, δ) (BKS-FRF)

1: h ← ⌊m2 ⌋; δ0 ←
δ
3 ; T2 ← 1 + n

h−1 log
2h(h−1)

δ ; δ1 ← δ0
1+ n−h

m−h+T2
if m > 2; δ1 ← δ0

|S|2 if

m = 2;
2: Run MQSelect-FRF on M , but using calls of BC with confidence 1− δ1 to replace multi-wise

comparisons (except those in the call of QS);
3: For the call of QS, we replace the pairwise comparisons with calls of BC with confidence

1− δ0
|At|2 ;

Algorithm 8 MTKS from Full-Ranking Feedback(S,m, k, δ) (MTKS-FRF)

1: if |Rt| ≤ mk then
2: return BKS-FRF(S,m, k, δ);
3: end if
4: Set t← 0 and R1 ← S;
5: repeat
6: t← t+ 1; δt ← 6δ

π2t2 ;
7: Distribute Rt to ⌈ |Rt|

mk ⌉ disjoint sets A1, A2, ..., Ad, each with size at most mk;
8: For i ∈ [d], let Ti ←BKS-FRF(Ai,m, k, δt

k );
9: Rt+1 ←

⋃
i∈[d] Ai;

10: until |Rt+1| = k
11: return Rt+1;

for any u in Ut, the call of BKS-FRF on set Asu returns its top-k items with probability at least
1 − 6δ

π2t2k = 1 − δt
k , and thus, with probability at least 1 − δt, the calls of BKS-FRF on sets

(Asu : u ∈ Ut) all return their top-k items. Since any u in Ut is one of the top-k items of Rt, and thus,
u is also one of the top-k items of Asu . Therefore, with probability at least 1− δt, the top-k items
of Rt are all added to the set Rt+1. By

∑∞
t=1 δt =

6δ
π2

∑∞
t=1

1
t2 = δ, the correctness of MTKS-FRF

follows.

Sample complexity. First, we consider the case where n > mk. Let τ be the number of rounds the
algorithm performs before termination. Since at each time, we divide set Rt into ⌈ |Rt|

mk ⌉ sets, and for
each set, only k items are put to Rt+1. Thus, |Rt+1| = k⌈ |Rt|

mk ⌉, which implies |Rt| ≤ c1n
mt−1 , where

c1 is some positive constant. For each round t, there are at most ⌈ |Rt|
mk ⌉ calls of BKS-FRF. Each call is

on at most mk items, and by Lemma 17, each call conducts O(mk
m log mk logm

mδt
) = O(k log k logm

δt
)

comparisons in expectation. Thus, the total sample complexity of MTKS is upper bounded by

O
( τ∑

t=1

( n

mt−1
· 1

mk
· k log k logm

δt

))
=O

( τ∑
t=1

( n

mt
· log kt logm

δ

))
=O

( n

m
log

k logm

δ

)
.

For the case where n ≤ mk, MTKS directly calls BKS-FRF, which yields a sample complexity
O( n

m log n logm
mδ ). This completes the proof of the sample complexity, and the proof of Theorem 10

is complete.

A.10 Proof of Theorem 11

Theorem 11. To get the full ranking of n items by using m-wise comparisons under the full-ranking
feedback model, any algorithm needs at least Ω( n logn

m logm ) comparisons in expectation.

Proof. Let A be an arbitrary deterministic algorithm. Let R be the permutation representing the
true ranking. Since there are n items, and each permutation has the same probability to be the true
ranking, we have H(R) = log(n!), where H(·) is the information entropy.
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Let T be the number of comparisons conducted byA. Let Mt := {it,1, it,2, ..., it,m} be the t-th com-
pared set andM := (M1,M2, ...,MT ) be the collection of compared sets. For the t-th comparison on
Mt, if the returned true ranking is (it,s1 , it,s2 , ..., it,sm), then we let Xt = (s1, s2, ..., sm), and we use
X = (X1, X2, ..., XT ) to denote the collection of comparison results. Define St := (Mt, Xt,1t≤T )
as the state of the t-th comparison and Ut := (S1, S2, ..., St) as the history till the t-th comparison.

Since the algorithm is deterministic, M1 is deterministic, Mt is determined by Ut−1, and 1t≤T is
determined by (Ut−1,Mt, Xt). Thus, we have

H(Ut | Ut−1) =H(St | Ut−1)

≤H(Mt | Ut−1) +H(Xt |Mt, Ut−1) +H(1t≤T |Mt, Xt, Ut−1)

≤0 +H(Xt |Mt) + 0

= log(|Mt|!)
= log(m!).

where H(· | ·) is the conditional information entropy. Then, we have

H(Ut) =H(Ut | Ut−1) +H(Ut−1 | Ut−2) + · · ·+H(U1)

≤ log(m!) + log(m!) + · · ·+ log(m!)

=t log(m!).

Since the comparisons are deterministic, when the true ranking R is given, the values of all Ut’s are
deterministic, i.e., H(Ut | R) = 0. Therefore, we have

H(R | Ut) =H(R)− I(R;Ut)

=H(R)− (H(Ut)−H(Ut | R))

≥ log(n!)− t log(m!) + 0,

where I(·; ·) is the mutual information between two random vectors.

We then invoke Fano’s Inequality, which is stated in Fact 18.

Fact 18 (Fano’s Inequality [8]). To recover the value of X from Y with error probability no more
than δ, it must hold that

H(X|Y ) ≤ H(δ) + δ log(N − 1),

where N is the number of values X can take and H(δ) = δ log 1
δ + (1− δ) log 1

1−δ .

Thus, to recover the true ranking (i.e., the value of R) with probability at least 1
4 within t comparisons,

by Fano’s Inequality, log(m!) = Θ(m logm), and log(n!) = Θ(n log n), it is required that

H(R | Ut) ≤ H(1/4) + δ log(n!− 1)

=⇒ log(n!)− t log(m!) + 0 ≤ Θ(1) +
1

4
log(n!− 1)

=⇒ t ≥
log(n!)− 1

4 log(n!− 1)−Θ(1)

log(m!)

=⇒ t = Ω
( n log n

m logm

)
.

Any random algorithm cannot outperform the best deterministic algorithm, and thus, the desired
lower bound also holds for random algorithms. This completes the proof of Theorem 11.

A.11 Proof of Theorem 12

Theorem 12. MQSort terminates after O( n logn
m logm ) m-wise comparisons in expectation and returns

the full ranking of S.

Proof. Let set S and n = |S| be given. We say that the call of MQSort on S is executed in round
1. In Line 16, it makes multiple recursive calls of MQSort and we say these calls are executed in
round 2. Similarly, a call of MQSort executed in round t may also make recursive calls and we say
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these recursive calls are executed in round (t+ 1). We observe that during the execution of a call on
n′ items, splitting the items to sets Ai’s takes at most 1 + ⌈ |S−V |

m−h ⌉ = O(n
′

m ) comparisons. Since in
each round t, the total number of items processed by all the recursive calls is at most n, the splitting
processes in all these recursive calls use at most O( n

m ) comparisons in total. Thus, the rest of the
proof is to prove that the recursive calls on terminate after O(logm n) rounds in expectation.

Step 1. Before finding the number of rounds of MQSort, we focus on a similar problem. We say
that there are N balls in total where N is large enough. Then at round 1 we randomly put these N
balls into M boxes where M is large enough and M ≤ N . In round 2, for each box, we randomly
put the balls inside it into M other boxes, i.e., the balls are now randomly distributed to M2 boxes.
For any round t where t > 2, we do the same thing, i.e., randomly put the balls of each box into M
other boxes. We repeat this process until each box contains at most one ball. Let T be the number of
rounds before this process terminates. Our goal is to find an upper bound of E[T ].
Now let t ≥ logM N be given, i be a random ball, and j be a random box that is introduced to this
process in round t. We have that ball i is in box j with probability 1

Mt . The places of these balls are
independent, and thus, we have

P{T ≤ t} = M t

M t
· M

t − 1

M t
· M

t − 2

M t
· · ·M

t −N + 1

M t
≥

(M t −N + 1

M t

)N

.

Now we let δ ∈ (0, 1) be given. We define

τδ := 1 + logM
N − 1

1− (1− δ)1/N
,

we have

P{T ≤ τδ} ≥
(Mτδ −N + 1

Mτδ

)N

=
(
1− N − 1

Mτδ

)N

=
(
1− N − 1

M
logM

N−1

1−(1−δ)1/N

)N

= 1− δ.

Also, since 1− (1− δ)1/N ≥ 1− e−δ/N = Ω( δ
N ), we have

τδ = logM

( N − 1

1− (1− δ)1/N

)
= O

(
logM

N

δ

)
Therefore, by τ1 = 1 + logM (N − 1), we conclude that

E[T ] =
∞∑
t=0

P{T > t}

≤
∑
t>τ1

P{T > t}+ τ1

≤
∞∑
s=0

[(τ2−s−1 − τ2−s) · P{t > τ2−s}] +O(logM N)

≤
∞∑
s=0

[τ2−s−1 · P{t ≥ τ2−s}] +O(logM N)

=O
( ∞∑

s=1

logM
N

2−s−1
· 2−s

)
+O(logM N)

=O(logM N).

Step 2. We switch back to MQSort. We define h = ⌊m2 ⌋ and there are h pivots among n items
that separate the set S to (h+ 1) sets A0, A1, ..., Ah. For any integer i, we define [i]n := i mod n,
i.e., the reminder of i divided by n. We introduce a dummy item v0 := 0 that ranks higher than
any other item. Let X and Y be two random and distinct items in {v0} ∪ S and we assume that the
algorithm has finished Line 15, i.e., all the non-pivot items have been added to one of A0, A1, ..., Ah.
We further define Bj := Aj ∪ {vj} for any j. In the following analysis, we view pivots v1, v2, ..., vh
as random distinct items selected from S. First we have

P{X ∈ A0} = P{∀i > 0, vi > X ≥ 0} = P{∀i ̸= 0, [vi − v0]n > [X − v0]n}.
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For any set Aj where j > 0, we have

P{X ∈ Aj} = P{∀i ̸= j, [vi − vj ]n > [X − vj ]n}.

Therefore, when we change the set from Ai to Aj , actually we are simply rotationally shifting the
items with [vi − vj ]n steps, which implies that P{X ∈ A0} = P{X ∈ Aj} for any j. Thus, for any
j, we have

P{X ∈ Aj} =
1

h
and P{X ∈ Aj |X ̸= vj} =

1

h
.

Now we assume that X is not a pivot and X is in the set Aj . In this case, we can define S′ = S−{X}
and subtract the indexes of all items i > X by one, and then the probabilities whether Y is in A0,
A1,..., or Ah remain the same, i.e., for any j and l, we have

P{Y ∈ Aj | X ∈ Al, X ̸= vl} =
1

h
and P{Y ∈ Aj | X ∈ Al, X ̸= vl, Y ̸= Vj} =

1

h
.

Repeating the above analysis. we have that with s non-pivot items given, the probabilities whether
the (s+ 1)-th item is in some set Aj remain 1

h for s+ 1 ≤ n− h.

Step 3. Therefore, with the above findings, we can view the distribution of non-pivot items as the
“put balls into boxes” problem, where the non-pivot items are the balls and the sets A0, A1, ..., Ah

are the boxes. Since after each round, there are h balls removed from the following splitting and the
other conditions remain the same, let round T ′ be the first round when each box has at most one ball,
we have

E[T ′] = O(logh+1 n) = O(log⌈m
2 ⌉+1 n) = O(logm n).

When each box has at most one ball, i.e., all sets A0, A1, ..., Ah in all recursive calls of MQSort in
round T ′ have at most one item, the outer-most call will return, and the algorithm will terminate.
Thus, there are O(logm n) rounds in expectation. Recalling the fact that each round conducts at most
at most O( n

m ) comparisons, the algorithm returns after O( n logn
m logm ) comparisons in expectation. This

completes the proof of Theorem 12.

A.12 Proof of Theorem 14

Theorem 14. There is an algorithm that finds the full ranking of n items by m-wise full-ranking
feedback with confidence 1− δ and conducts O( n

m log n
mδ ) comparisons in expectation.

Proof. To get the desired upper bound, we need to invoke the full ranking algorithm in [9], which is
denoted by A. When all comparisons return correct results with probability 2

3 and m = 2, A finds
the true ranking of n items with confidence 1− δ by using O(n log n

δ ) pairwise comparisons. The
algorithm is a variant of the insertion sorting, i.e., given a list of n1 sorted items, it inserts a new
item into this list. The algorithm repeats the insertion until all items have been inserted and the full
ranking is found. In A, inserting one item i into a list of ni sorted items with confidence 1− δi uses
O(log ni

δi
) = O(log n

δi
) comparisons.

Now, we make the following modifications on A. First, we randomly choose m items and compare
these m items for Θ(log n

mδ ) times to get the ranking of these m items with confidence 1 − mδ
4n .

We use R to denote this list. At each round, we choose m
2 new items (assuming that m is even,

and when m is odd we can prove the upper bound similarly) and we want to insert them into the
sorted list R. Since an m-wise comparison under the full-ranking feedback model can be viewed as
doing m

2 pairwise comparisons at the same time, we do the insertion process for these m
2 new items

simultaneously. During the insertion, we set the confidence at 1− mδ
4n and the depth of the insertion

tree at Θ(log n
mδ ). After at most O(log n

mδ ) comparisons, if at least 2
3 proportion of the comparisons

return correct results (which happens with probability at least 1− mδ
4n ), then all the m

2 new items will
be inserted to correct places. We then compare these m

2 new items for Θ(log n
mδ ) times to get the

ranking of them with confidence at least 1− mδ
4n .

For each round of insertion, we use O(log n
mδ ) comparisons, and each round inserts m

2 items. Thus,
the insertion takes O( n

m log n
mδ ) comparisons in total. We do Θ(log n

mδ ) comparisons for ranking
the first m items, and the same amount in each round of insertion for ranking the inserted new
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items, which takes O( n
m log n

mδ ) comparisons in total for inserting all items. Thus, the total sample
complexity of this modified algorithm is at most O( n

m log n
mδ ). This proves the sample complexity.

The ranking of the first m item is correct with probability at least 1− mδ
4n . For each round of insertion,

the ranking of the newly inserted items is correct with probability at least 1− mδ
4n , and the insertion is

correct with probability at least 1− mδ
4n . There are at most n−m

m/2 = 2n
m − 2 rounds of insertion. By

the union bound, the total error probability of the modified algorithm is mδ
4n (1 + 4n

m − 4) ≤ δ. This
proves the correctness and the proof of Theorem 14 is complete.

A.13 Proof of Lemma 15

Lemma 15. E[|Aτ |] ≤ 8 + 2n
m .

Proof. The (m − 1) pivots are randomly chosen, and we use X1, X2, ..., Xm−1 to denote their
positions in the true ranking, i.e., Xi = j means that Xi ranks the j-th largest in the true ranking.
For simplicity, we define X0 :=∞ that ranks higher than any item and Xm := −∞ that ranks lower
than any item. If Xi−1 ≻ rk ⪰ Xi, then we have τ = i and rk is in the set Ai or rk = Xi.

We put these n items on a circle, i.e., we assume that item r1 is on the right of rn, rn is on the left of
r1, and they are adjacent. For any integer a, we define [a]n := a mod n, where a mod n is the
reminder of a divided by n. We further define

L := [k −Xτ−1]n, and R := [Xτ − k]n.

After putting the n items on the a circle, we can view L as the distance from rk to the closest pivot
on the left, and R as the distance from rk to the closes pivot on the right. We have |Aτ | ≤ L+ R,
and our goal is to bound E[L+R].

Let 1 ≤ s ≤ n−m+ 2 be given. We have

P{L+R = s} =
∑

i,j∈[m−1]:i ̸=j

s∑
r=0

[
P{[k −Xi]n = r}P{[Xj − k]n = s− r, }

· P{∀l ̸= i, j : s− r < [Xl − k]n < n− r}
]

=(m− 1)(m− 2) · s+ 1

n(n− 1)
·
(
n−s−1
m−3

)(
n−2
m−3

)
≤(m− 1)(m− 2) · s+ 1

n(n− 1)
·
(n− s− 1

n− 2

)m−3

=
(m− 1)(m− 2)(s+ 1)

n(n− 1)
·
(
1− s− 1

n− 2

)m−3

. (2)

Thus, we have

E[L+ S] ≤
n−m+2∑

s=1

[
s · (m− 1)(m− 2)(s+ 1)

n(n− 1)
·
(
1− s− 1

n− 2

)m−3]
≤(m− 1)(m− 2)

n−m+2∑
s=1

[( s− 1

n− 2

)2

·
(
1− s− 1

n− 2

)m−3]

Now, we let x := s−1
n−2 . Since in [0, 1], the function f(x) := x2(1− x)m−3 is non-negative and first

increasing then decreasing, we have the following inequality.

22



E[L+ S] ≤(m− 1)(m− 2)
[
2 sup
x∈[0,1]

x2(1− x)m−3 + (n− 2)

∫ 1

0

x2(1− x)m−3 dx
]

=(m− 1)(m− 2)
[
2x2(1− x)m−3|x= 2

m

+ (n− 2) · (x− 1)(1− x)m−3[(m2 − 3m)x2 + 2(m− 2)x+ 2]

m(m− 1)(m− 2)

∣∣∣1
0

]
=(m− 1)(m− 2)

[ 8

m2

(
1− 2

m

)3

+ (n− 2) · 2

m(m− 1)(m− 2)

]
≤(m− 1)(m− 2)

[ 8

(m− 1)(m− 2)
· 12 + n · 0− (−2)

m(m− 1)(m− 2)

]
=8 +

2n

m
.

Therefore, we have E[|Aτ |] ≤ E[L+R] ≤ 8 + 2n
m . This completes the proof of Lemma 15.

A.14 Proof of Lemma 16

Lemma 16. E[|Aτ | log |Aτ |] = O( n
m log n

m ).

Proof. We let X1, X2, ..., Xm−1, L, and R denote the same things as in the proof of Lemma 15 (See
Section A.13). We note that |Aτ | ≤ L+R. Let X = |Aτ |.
According to Eq (2), we have

P{L+R = s} ≤ (m− 1)(m− 2)(s+ 1)

n(n− 1)
·
(
1− s− 1

n− 2

)m−3

,

We further use x to denote s−1
n−2 . The above result, by X ≤ L+R, implies

E[X logX] ≤ (m− 1)(m− 2)

n(n− 1)

n−m+2∑
s=1

[
s(s+ 1)

(
1− s− 1

n− 2

)m−3

log s
]

≤ (m− 1)(m− 2)

n(n− 1)

n−m+2∑
s=1

[
2(s− 1)2

(
1− s− 1

n− 2

)m−3

(1 + log(s− 1))
]

≤ (m− 1)(m− 2)

n(n− 1)

n−2∑
s=1

[
2(n− 2)2x2(1− x)m−3(1 + log((n− 2)x))

]
.

Here, we define f(x) := x2(1− x)m−3 log((n− 2)x). We have

f ′(x) = x(1− x)m−4[(2− (m− 1)x) log((n− 2)x) + 1− x].

When 1
n−2 < x ≤ 1, f ′(x) is first positive and then negative, though the actual transiting point is

unknown. We also have f(0) = f( 1
n−2 ) = 0. Thus, we have

n−m+2∑
s=1

f(x) ≤ (n− 2)

∫ 1

0

f(x) dx− 2 min
0≤x≤ 1

n−2

f(x) + 2 max
1

n−2≤x≤1
f(x).

First, we have ∫ 1

0

f(x) dx =
2 log(n− 2)

m3 − 3m2 + 2m
+

3− 2
∑m

i=1
1
i

m3 − 3m2 + 2m

≤2 log n− 2 logm+O(1)

m3 − 3m2 + 2m

=O
( log n

m

m3

)
.
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Second, when 0 ≤ x ≤ 1
n−2 , we have

f(x) ≥ x2 log((n− 2)x),

which takes the minimum when

(x2 log((n− 2)x))′ = 2x log((n− 2)x) + x = 0,

i.e., when x = e−1/2

n−2 . Thus, we have

min
0≤x≤ 1

n−2

f(x) ≥ −1

2

(e−1/2

n− 2

)2

= −Θ(n−2).

Third, when x ≥ 1
n−2 , we have f(x) ≤ x2(1 − x)m−3 log n. x2(1 − x)m−3 is maximal when

(x2(1− x)m−3)′ = 0, i.e., x = 2
m−1 . Thus,

max
1

n−2≤x≤1
f(x) ≤

( 2

m− 1

)2(
1− 2

m− 1

)m−3

log n = O
( log n

m2

)
.

Therefore, we have
n−m+2∑

s=1

f(x) =(n− 2) ·O
( log n

m3

)
+O

( 1

n2

)
+ 2 ·O

( log n
m2

)
=O

(n log n
m

m3

)
.

Similarly, since for 0 ≤ x ≤ 1, x2(1− x)m−3 first increases and then decreases, we have

n−m+2∑
s=1

x2(1− x)m−3 ≤(n− 2)

∫ 1

0

x2(1− x)m−3 dx+ 2 max
0≤x≤1

x2(1− x)m−3

=
2(n− 2)

m3 − 3m2 + 2m
+ 2

( 2

m− 1

)2(
1− 2

m− 1

)m−3

=O
( n

m3

)
.

With the above results, we have

E[X logX] =
(m− 1)(m− 2)

n(n− 1)
· 2(n− 2)2

(
O
(n log n

m

m3

)
+O

( n

m3

))
=O

( n

m
log

n

m

)
.

This completes the proof of Lemma 16.

A.15 Proof of Lemma 17

Lemma 17. BKS-FRF terminates after O( n
m log n logm

mδ ) comparisons in expectation, and with
probability at least 1− δ, returns the top-k items of S.

Proof. If QS is called, then we use Aτ to denote the set At inputed to QS. To prove the lemma, we
need to show that in the execution of MQSelect-FRF, Aτ is of size at most T1 = O( n

m log m
δ ) with a

probability at least 1− δ0, where δ0 := δ
3 .

We let X1, X2, ..., Xm−1, L, and R denote the same things as in the proof of Lemma 15. By similar
steps as in the proof of Lemma 4, we have that with probability at least 1− δ0, |Aτ | ≤ T2. Here we
note that the only that is changed is the number of pivots (i.e., from (m− 1) to h), and we only need
to change m to (h+ 1) in the formula of T2.

Correctness. We let E be the event that |Aτ | ≤ T2. We have P{E} ≤ δ0. In the proof of
the correctness, we assume that E happens. Except the call of QS, MQSelect conducts at most
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(1 + n−h
m−h ) comparisons, where one comparison is for ranking the pivots and n−h

m−h comparisons are
for splitting the non-pivot items. Since each comparison is replaced by a call of BC with confidence
1 − δ0

1+ n−h
m−h+T2

, by the union bound, with probability at least 1 − δ0, all these calls of BC return

correct results. Finally, since the call of QS uses at most |Aτ |2 comparisons and each comparison is
replaced by a call of BC with confidence 1− δ0

|Aτ |2 , by the union bound, QS returns the correct result
with probability at least 1− δ0. Therefore, BKS-FRF returns the top-k items of S with probability at
least 1− 3δ0 = 1− δ. This proves the correctness.

Sample complexity. By Theorem 2, MQSelect conducts O( n
m ) comparisons in expectation except the

call of QS. In BKS-FRF, each comparison is replaced by a call of BC with confidence 1− δ0
1+ n−h

m−h+T2
,

which conducts O(log
1+ n−h

m−h+T2

δ0
) = O(log n logm

mδ0
) comparisons. Thus for BKS-FRF, Line 2

conducts O( n
m log n logm

mδ0
) comparisons in expectation. For the call of QS, its expected sample

complexity is E[O(|Aτ |)]. Each comparison of QS is replaced by a call of BC with confidence
1− δ0

|Aτ |2 , and thus, by similar steps as the proof of Lemma 16 (we only need to change m to h+ 1

in the new steps), Line 3 conducts O(|Aτ | log |Aτ |
δ0

) = O( n
m log n

mδ0
) comparisons in expectation.

Therefore, by δ0 = δ
3 , the expected sample complexity of BKS -FRF is O( n

m log n logm
mδ ). This

proves the sample complexity, and the proof of Lemma 17 is complete.
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