
A Bilevel Planning Algorithm Details

Algorithms 3 and 4 provide pseudocode and additional details necessary for high-level and low-level
search respectively in bilevel planning (Algorithm 5).

GENABSTRACTPLAN(s0, g, Ω, nabstract)
1 Ω← GROUND(Ω)

// Search over ground operators from s0 to goal (returns top n
plans).

2 π̂ ← SEARCH(s0, g,Ω, nabstract)
3 return π̂

Algorithm 3: This is GENABSTRACTPLAN which finds a high-level plan by creating operators for all
possible groundings then uses search to find nabstract plans. It returns a list of plans π̂.

REFINE((π̂, x0, Ψ, Σ, nsamples))
1 state← ABSTRACT(x0)

// While current state is not goal, sample and run current operator
on current state and check ground atoms. If is passes continue
if not backtrack.

2 curridx ← 0
while curridx < len(π̂) do

3 samples[curridx]← samples[curridx] + 1
4 statecurrent,Ω← π̂[curridx]
5 Ω.C.Θ ∼ Ω.Σ
6 π[curridx]← Ω.C
7 curridx ← curridx + 1

if Ω.C.initiable(statecurrent) then
8 statenext ← Simulate(statecurrent,Ω.C)
9 stateexpected, ← π̂[curridx]

if statenext ⊆ stateexpected then
10 can continue on← True

if curridx == len(skeleton) then
11 return sucess, π

else
12 canContinueOn← False

else
13 canContinueOn← False

if not canContinueOn then
14 curridx ← curridx − 1

if samples[curridx] == max samples then
15 return failure, π
16 return success, π

Algorithm 4: This is REFINE which turns a task plan π̂ into a sequence of ground skills. It gets the state
and operators from π̂ and adds the controller with newly sampled continuous parameters to π. After this it
checks to see if the added controller is initiable from the current state in the plan and we simulate the skill
execution to verify it reached the expected state we predicted next in π̂. If the controller is not initiable or
fails the expected atoms check we backtrack and resample a new continuous parameter for this controller
until either we reach the max number of samples or we successfully refine our final controller.

B Detailed Description of Successor Generators

B.1 IMPROVECOVERAGE

The pseudocode for the improve-coverage successor generator is shown in Algorithm 6. Given
the current candidate operator set Ω, training demonstrations D and corresponding tasks Ttrain, we

12

BILEVELPLANNING(O, x0, g, Ψ, Ω, Σ)
// Parameters: nabstract, nsamples.

1 s0 ← ABSTRACT(x0)
// Outer Planning Loop

2 for π̂ in GENABSPLAN(s0, g, Ω, nabstract) do
// Inner Refinement Loop

3 if REFINE(π̂, x0, Ψ, Ω, nsamples) succeeds w/ π4 return π

Algorithm 5: Pseudocode for bilevel planning algorithm, adapted from Silver et al. [1]. The inputs are
objects O, initial state x0, goal g, predicates Ψ, operators Ω, and samplers Σ; the output is a plan π. The
outer loop GENABSPLAN generates high-level plans that guide our inner loop, which samples continuous
parameters from our samplers Σ to concretize each abstract plan π̂ into a plan π. If the inner loop succeeds,
then the found plan π is returned as the solution; if it fails, then the outer GENABSTRACTPLAN continues.

IMPROVECOVERAGE(Ω, D)
1 covinit,Dα, τunc, αunc ← COMPUTECOVERAGE(Ω,D)
2 if covinit = |D| then

return Ω
3 covcurr ← covinit
4 Ω′ ← Ω
5 while covcurr ≥ covinit do
6 ωnew ← INDUCEOPTOCOVER(τunc, αunc)
7 Ω′ ← REMOVEPRECANDDELEFFS(Ω′) ∪ ωnew
8 (Dω1

. . .Dωm
), (δτ1 , . . . , δτj)← PARTITIONDATA(Ω′,D)

9 Ω′ ← INDUCEPRECANDDELEFFS(Ω′,
(Dω1

. . .Dωm
),

(δτ1 , . . . , δτj))
10 Ω′ ← Ω′ ∪ ENSURENECATOMSSAT(ωnew,Dα)
11 (Dω1

. . .Dωl
), (δτ1 , . . . , δτj)← PARTITIONDATA(Ω′,D)

12 Ω′ ← INDUCEPRECANDDELEFFS(Ω′,
(Dω1

. . .Dωl
),

(δτ1 , . . . , δτj))
13 covcurr,Dα, τunc, αunc ← COMPUTECOVERAGE(Ω′,D)
14 Ω′ ← PRUNENULLDATAOPERATORS(Ω′)
15 return Ω′

Algorithm 6: Pseudocode for our improve-coverage successor generator. The inputs are a set of
operators Ω, the set of all training demonstrations D, and the corresponding set of training tasks Ttrain. The
output is a set of operators Ω′ such that coverage(Ω′) ≤ coverage(Ω).

first attempt to compute the current coverage of Ω on D. We do this by calling the COMPUTE-
COVERAGE method. This method simply calls Algorithm 1 on every demonstration (x, u) in D
(the set of objects O and goal g required by Algorithm 1 are obtained from the training tasks). The
COMPUTECOVERAGE method then returns the number of covered transitions1 (covinit), a dataset
of necessary atoms sequences for each demonstration Algorithm 1 is able to cover (Dα), the first
uncovered transition encountered (τunc = (sk, uk+1, sk+1)), and the corresponding necessary atoms
for the transition (αunc). If the number of covered transitions is the same as the size of the training
dataset, then all transitions must be covered and the coverage term in our objective (Equation
1) must be 0. We thus just return the current operator set Ω with no modifications. Otherwise, we
compute a new set of operators Ω′ with a lower coverage value.

To generate Ω′, we first create a new operator with preconditions, add effects and arguments set to
cover the transition τunc and corresponding necessary atoms αunc. The operator’s ground controller
C(θ) = uk+1 is determined directly from the transition’s action uk+1. The operator’s ground add

1The total number of transitions in abstract plan suffixes that Algorithm 1 is able to find when run on each
demonstration in D.

13

effects are set to be E+ = (sk+1 \ sk) ∩ αunc. The controller and add effects are lifted by creating
a variable vi for every distinct object that appears in C ∪E+. The operator’s arguments v are set to
these variables.

Next, we must induce the preconditions and delete effects of this new operator ωnew. To this end,
we add ωnew to our current candidate set, and partition all data in our training set D into operator
specific datasets Dω for each operator ω in our current candidate set. Since operator preconditions
and delete effects depend on the partitioning, we first remove these from all operators that are not
ωnew (REMOVEPRECANDDELEFFS). We perform this partitioning by running the FINDBESTCON-
SISTENTOP method from Algorithm 8 on this new operator set for every transition in the dataset,
though we do not check the condition spredi+1 ⊆ si+1, since the operators do not yet have delete effects
specified. While performing this step, we save a mapping δτi from the operator’s arguments to the
specific objects used to ground it for every transition in the dataset (this will be used for lifting the
preconditions and delete effects of each operator below). We assign each transition to the dataset as-
sociated with the operator returned by FINDBESTCONSISTENTOP. We return the operator specific
datasets (Dω1 . . .Dωl

), as well as the saved object mappings for each transition (δτ1 , . . . , δτj).

We now induce preconditions and delete effects using (Dω1
. . .Dωl

) and (δτ1 , . . . , δτj). Before we
do this, we delete any operator whose corresponding dataset is empty. Similar to Chitnis et al.
[2], we set the preconditions to: P ←

⋂
τ=(si,·,·)∈Dω

δτ (si). We also set the atomic delete effects

to E−
◦ ←

⋃
τ=(si,·,si+1)∈Dω

δτ (si+1) \ δτ (si). For every transition (si, ui+1, si+1), let spredi+1 =

(si \ E−
◦) ∪ E+. Then, we set smispred =

⋃
τ=(·,·,si+1)∈Dω

spredi+1 \ si+1. We induce a quantified
delete effect for every predicate corresponding to atoms in smispred. We then set each operator’s
delete effects to be the union of E−

◦ and the quantified delete effects.

Now that all operators have preconditions and delete effects specified, we must ensure that the
newly-added operator (ωnew) is able to satisfy the necessary atoms for each of its transitions in
Dωnew . Recall that we set the operator’s add effects to be the necessary atoms that changed in the
first uncovered transition τunc. Given the way partitioning is done (specifically the conditions in the
FINDBESTCONSISTENTOP method in Algorithm 8), we know that these add effects must satisfy
αi+1 ⊆ si+1 ∪ E+ for all transitions (si, ui+1, si+1) ∈ Dωnew with corresponding necessary atoms
αi+1 for state si+1. However, the delete effects may cause the necessary atoms to become violated
for certain transitions: i.e, αi+1 ⊈ (si+1\E−)∪E+. For every such transition, we let αmiss

i+1 = αi+1\
((si+1 \ E−) ∪ E+). We then create a new operator ωmiss

i by copying all components of ωnew, and
adding lifted atoms from αmiss

i+1 to both the preconditions and add effects. We modify the operator’s
arguments to contain new variables accordingly. This now ensures that the necessary atoms are not
violated for any transition in Dωnew . We add these new operators to the current candidate operator
set.

After having added new operators to our candidate set in the above step, we must re-partition data
and consequently re-induce preconditions and delete effects to match this new partitioning (lines
11-12 of Algorithm 6). We now have a new operator set that is guaranteed to cover the transition
τunc that was initially uncovered. We check whether this new set achieves a lower value for the
coverage term of our objective, and iterate the above steps until it does.

Finally, after the while loop terminates, we remove all operators from Ω′ that have associated
datasets that are empty. This corresponds exactly to removing operators that are not used in any
abstract plan suffix computed by COMPUTECOVERAGE and are thus unnecessary for planning.

Proof of termination To see that the main loop of Algorithm 6 is guaranteed to terminate, consider
that the operator set Ω′ strictly grows larger at every loop iteration (no operators are deleted). Since
the predicates are fixed, there is a finite number of possible operators. Thus, at some finite iteration,
Ω′ will contain every possible operator. At this point, it must contain an operator that covers every
transition and the loop must terminate.

14

Anytime Removal of Operators with Null Data In the IMPROVECOVERAGE procedure as illus-
trated in Algorithm 6, we only prune out operators that do not have any data associated with them
after the main while loop has terminated. However, we note here that we can remove such operators
from the current operator set (Ω′) at any time during the algorithm’s loop.

This property arises because the amount of data associated with a particular operator will only
decrease over time. To see this, note that (1) the number of operators in Ω′ only increases over time,
and (2) data is assigned to the ‘best covering’ operator as judged by our heuristic in Equation 3.
Given a particular operator ω at some iteration i of the loop, suppose there are d transitions from
D associated with it (i.e, |Dω| = d). During future (i.e > i) loop iterations, new operators will be
added to Ω′. For any of the d transitions in Dω , these new operators can either be a worse match (in
which case, the transition will remain in Dω), or a better match (in which case, the transition will
become associated with the new operator). Thus, for any operator ω, once there is no longer any
data associated with it, there will never be any data associated with it, and it will simply be pruned
after the while loop terminates.

As a result, we can prune operators from our current set whenever there is no data associated with
them. We do this in our implementation, since it improves our algorithm’s wall-clock runtime.

B.2 REDUCECOMPLEXITY

REDUCECOMPLEXITY(Ω, D, Ttrain)
1 Ω′ ← DELETEOPERATOR(Ω)
2 (Dω1

. . .Dωm
), (δτ1 , . . . , δτj)← PARTITIONDATA(Ω′,D)

3 Ω′ ← INDUCEPRECANDDELEFFS(Ω′, (Dω1
. . .Dωm

),
(δτ1 , . . . , δτj))

4 return Ω′

Algorithm 7: Pseudocode for our reduce-complexity successor generator. The inputs are a set of
operators Ω, the set of all training demonstrations D, and the corresponding set of trainign tasks Ttrain. The
output is a set of operators Ω′ such that complexity(Ω′) ≤ complexity(Ω).

The pseudocode for our reduce-complexity generator is shown in Algorithm 7. As can
be seen, the generator is rather simple: we simply delete an operator from the current set
(DELETEOPERATOR) and return the remaining operators. Since we’ve changed the operator set,
we must recompute the partitioning and re-induce preconditions and delete effects accordingly.

This generator clearly reduces the complexity term from our objective (Equation 1), since |Ω′| <
|Ω|.

C Associating Transitions with Operators

FINDBESTCONSISTENTOP((Ω, si, si+1, α, O))
1 Ωcon ← ∅
2 for ω ∈ Ω do
3 for ω ∈ GETALLGROUNDINGS(ω,O) do
4 spred

i+1 ← ((si \ E−) ∪ E+)

5 if P ⊆ si AND α ⊆ spred
i+1 AND spred

i+1 ⊆ si+1 AND ∃θ : C(θ) = ui then
6 Ωcon ← Ωcon ∪ ω
7 if Ωcon ̸= ∅ then

return FINDBESTCOVER(Ωcon, (si, si+1)).
Algorithm 8: Pseudocode for the FindBestConsistentOp helper method used in Algorithm 1

A key component of our algorithm is the FINDBESTCOVER method from Algorithm 8, which in
turn is used in Algorithm 1 and the PARTITIONDATA method of Algorithm 6. The purpose of this
method is to associate a transition with a particular operator when multiple operators satisfy the
conditions necessary to ‘cover’ it. Intuitively, we wish to assign a transition to the operator whose

15

prediction best matches the observed effects in the transition. We can do this by simply measuring
the discrepancy between the operator’s add and delete effects, and the observed add and delete
effects in the transition. We make two minor changes to this simple measure that are appropriate
to our setting. First, we only use the atomic delete effects as part of our measure. We exclude the
quantified delete effects because these exist in order to enable our operators to decline to predict
particular changes in state. Second, we favor operators that correctly predict which atoms will not
change. Recall that the ENSURENECATOMSSAT method in Algorithm 6 induces such operators by
placing the same atoms in the add effects and preconditions.

Given some transition (si, ui+1, si+1), and some ground operator ω with atomic delete effects E−
◦ ,

our heuristic for data partitioning is represented by the score function shown in equation 3.

K = E+ ∩ P

C = E+ \ K
score = |C \ (si+1 \ si)|+
|(si+1 \ si) \ C|+
|(E−

◦ \ (si \ si+1))|+
|(si \ si+1) \ E−

◦ | − C

(3)

Once all eligible operators have been scored, we simply pick the lowest-scoring operator to associate
with this transition. If multiple operators achieve the same score, we break ties arbitrarily.

D Learning Samplers

In addition to operators, we must also learn samplers to propose continuous parameters for con-
trollers during plan refinement. We directly adapt existing approaches [2, 1] to accomplish this and
learn one sampler per operator of the following form: σ(x, o1, . . . , ok) = sσ(x[o1] ⊕ · · · ⊕ x[ok]),
where x[o] denotes the feature vector for o in x, the⊕ denotes concatenation, and sσ is the model to
be learned. Specifically, we treat the problem as one of supervised learning on each of the datasets
associated with each operator: Dω . Recall that for every transition (xi, ui+1, xi+1) inDω , we save a
mapping δ : v → Oτ from the operator’s arguments v to objects to ground the operator with. Recall
also that every action is a hybrid controller with discrete parameters and continuous parameters θ.
To create a datapoint that can be used for supervised learning for the associated sampler, we can
reuse this substitution to create an input vector x[δτ (v1)]⊕ · · · ⊕ x[δ(vk)], where (v1, . . . , vk) = v.
The corresponding output for supervised learning is the continuous parameter vector θ in the action
ui+1.

Following previous work by Silver et al. [1] and Chitnis et al. [2], we learn two neural networks
to parameterize each sampler. The first neural network takes in x[o1] ⊕ · · · ⊕ x[ok] and regresses
to the mean and covariance matrix of a Gaussian distribution over θ. We assume that the desired
distribution has nonzero measure, but the covariances can be arbitrarily small in practice. To improve
the representational capacity of this network, we learn a second neural network that takes in x[o1]⊕
· · · ⊕ x[ok] and θ, and returns true or false. This classifier is then used to rejection sample from the
first network. To create negative examples, we use all transitions such that the controller used in the
transition matches the current controller, but the transition is not in the operator’s dataset Dω .

E Additional Experiment Details

Here we provide detailed descriptions of each of experiment environments. See (§5) for high-level
descriptions and the accompanying code for implementations.

16

E.1 Screws Environment Details

• Types:

– The screw type has features x, y, held.
– The receptacle type has features x, y.
– The gripper type has features x, y.

• Predicates: Pickable(?x0:gripper, ?x1:receptacle),
AboveReceptacle(?x0:gripper, ?x1:receptacle),
HoldingScrew(?x0:gripper, ?x1:screw), ScrewInReceptacle(?x0:screw,
?x1:receptacle).

• Actions:

– MoveToScrew(?x0: gripper, ?x1: screw): moves the gripper to be
Near the screw ?x1.

– MoveToReceptacle(?x0: gripper, ?x1: receptacle): moves the
gripper to be AboveReceptacle(?x0:gripper, ?x1:receptacle)

– MagnetizeGripper(?x0: gripper): Magnetizes the gripper at the current
location, which causes all screws that the gripper is Near to be held by the gripper.

– DemagnetizeGripper(?x0: gripper): Demagnetizes the gripper at the
current location, which causes all screws that are being held by the gripper to fall.

• Goal: The agent must make ScrewInReceptacle(?x0:screw,
?x1:receptacle) true for a particular screw that varies per task.

E.2 Cluttered 1D Environment Details

• Types:

– The robot type has features x.
– The dot type has features x, grasped.

• Predicates: NextTo(?x0:robot, ?x1:dot), NextToNothing(?x0:robot),
Grasped(?x0:robot, ?x1:dot).

• Actions:

– MoveGrasp(?x0: robot, ?x1: dot, [move or grasp, x]): A
single controller that performs both moving and grasping. If move or grasp< 0.5,
then the controller moves the robot to a continuous position y. Else, the controller
grasps the dot ?x1 if it is within range.

• Goal: The agent must make Grasped(?x0:robot, ?x1:dot) true for a particular
set of dots that varies per task.

E.3 Satellites Environment Details

• Types:

– The satellite type has features x, y, theta, instrument,
calibration obj id, is calibrated, read obj id, shoots chem x,
shoots chem y.

– The object type has features id, x, y, has chem x, has chem y.

• Predicates: Sees(?x0:satellite, ?x1:object),
CalibrationTarget(?x0:satellite, ?x1:object),

17

IsCalibrated(?x0:satellite), HasCamera(?x0:satellite),
HasInfrared(?x0:satellite), HasGeiger(?x0:satellite),
ShootsChemX(?x0:satellite), ShootsChemY(?x0:satellite),
HasChemX(?x0:satellite), HasChemY(?x0:satellite),
CameraReadingTaken(?x0:satellite, ?x1:object),
InfraredReadingTaken(?x0:satellite, ?x1:object),
GeigerReadingTaken(?x0:satellite, ?x1:object).

• Actions:

– MoveTo(?x0:satellite, ?x1:object, [x, y]): Moves the satellite
?x0 to be at x, y.

– Calibrate(?x0:satellite, ?x1:object): Tries to calibrate
the satellite ?x0 against object ?x1. This will only succeed (i.e, make
IsCalibrated(?x0:satellite) true) if ?x1 is the calibration target of
?x0.

– ShootChemX(?x0:satellite, ?x1: object): Tries to shoot a pellet of
chemical X from satellite ?x0. This will only succeed if ?x0 both has chemical X and
is capable of shooting it.

– ShootChemY(?x0:satellite, ?x1:object): Tries to shoot a pellet of
chemical Y from satellite ?x0. This will only succeed if ?x0 both has chemical Y
and is capable of shooting it.

– UseInstrument(?x0:satellite, ?x1:object): Tries to use the instru-
ment possessed by ?x0 on object ?x1 (note that we assume ?x0 only possesses a
single instrument).

• Goal: The agent must take particular readings (i.e some combination of
CameraReadingTaken(?x0:satellite, ?x1:object),
InfraredReadingTaken(?x0:satellite, ?x1:object),
GeigerReadingTaken(?x0:satellite, ?x1:object)) from a specific set of
objects that varies per task.

E.4 Painting Environment Details

• Types:

– The object type has features x, y, z, dirtiness, wetness, color, grasp,
held.

– The box type has features x, y, color.
– The lid type has features open.
– The shelf type has features x, y, color.
– The robot type has features x, y, fingers.

• Predicates: InBox(?x0:obj), InShelf(?x0:obj),
IsBoxColor(?x0:obj, ?x1:box), IsShelfColor(?x0:obj,
?x1:shelf), GripperOpen(?x0:robot), OnTable(?x0:obj),
NotOnTable(?x0:obj), HoldingTop(?x0:obj), HoldingSide(?x0:obj),
Holding(?x0:obj), IsWet(?x0:obj), IsDry(?x0:obj),
IsDirty(?x0:obj), IsClean(?x0:obj).

• Actions:

– Pick(?x0:robot, ?x1:obj, [grasp]): picks up a particular object, if
grasp > 0.5 it performs a top grasp otherwise a side grasp.

– Wash(?x0:robot): washes the object in hand, which is needed to clean the object.

18

– Dry(?x0:robot): drys the object in hand, which is needed after you wash the
object.

– Paint(?x0:robot, [color]): paints the object in hand a particular color
specified by the continuous parameter.

– Place(?x0:robot, [x, y, z]): places the object in hand at a particular x, y,
z location specified by the continuous parameters.

– OpenLid(?x0:robot, ?x1:lid): opens a specific lid, which is need to place
objects inside the box.

• Goal: A robot in 3D must pick, wash, dry, paint, and then place various objects
in order to get InBox(?x0:obj) and IsBoxColor(?x0:obj, ?x1:box), or
InShelf(?x0:obj) and IsShelfColor(?x0:obj, ?x1:shelf) true for par-
ticular goal objects.

E.5 Cluttered Painting Environment Details

• Types:

– The object type has features x, y, z, dirtiness, wetness, color, grasp,
held.

– The box type has features x, y, color.
– The lid type has features open.
– The shelf type has features x, y, color.
– The robot type has features x, y, fingers.

• Predicates: InBox(?x0:obj), InShelf(?x0:obj),
IsBoxColor(?x0:obj, ?x1:box), IsShelfColor(?x0:obj,
?x1:shelf), GripperOpen(?x0:robot), OnTable(?x0:obj),
NotOnTable(?x0:obj), HoldingTop(?x0:obj), HoldingSide(?x0:obj),
Holding(?x0:obj), IsWet(?x0:obj), IsDry(?x0:obj),
IsDirty(?x0:obj), IsClean(?x0:obj), along with RepeatedNextTo Predicates:
NextTo(?x0:robot, ?x1:obj), NextToBox(?x0:robot, ?x1:box),
NextToShelf(?x0:robot, ?x1:shelf), NextToTable(?x0:robot,
?x1:table).

• Actions:

– Pick(?x0:robot, ?x1:obj, [grasp]): picks up a particular object, if
grasp ¿ 0.5 it performs a top grasp otherwise a side grasp.

– Wash(?x0:robot): washes the object in hand, which is needed to clean the object.
– Dry(?x0:robot): drys the object in hand, which is needed after you wash the

object.
– Paint(?x0:robot, [color]): paints the object in hand a particular color

specified by the continuous parameter.
– Place(?x0:robot, [x, y, z]): places the object in hand at a particular x, y,

z location specified by the continuous parameters.
– OpenLid(?x0:robot, ?x1:lid): opens a specific lid, which is need to place

objects inside the box.
– MoveToObj(?x0:robot, ?x1:obj, [x]): moves to a particular object with

certain displacement x.
– MoveToBox(?x0:robot, ?x1:box, [x]): moves to a particular box with

certain displacement x.
– MoveToShelf(?x0:robot, ?x1:shelf, [x]): moves to a particular shelf

with certain displacement x.

19

• Goal: A robot in 3D must pick, wash, dry, paint, and then place various objects
in order to get InBox(?x0:obj) and IsBoxColor(?x0:obj, ?x1:box), or
InShelf(?x0:obj) and IsShelfColor(?x0:obj, ?x1:shelf) true for par-
ticular goal objects. In contrast to the previous painting environment, we also need to
navigate to the right objects (i.e. all objects are not always reachable from any states). This
version of the environment requires operators with ignore effects.

E.6 BEHAVIOR Environment Details

• Types:

– Many object types that range from relevant types like hardbacks and
notebooks to many irrelevant types like toys and jars. All object types have
features from location and orientation to graspable and open. For a
complete list of object types and features see [5].

• Predicates: Inside(?x0:obj, ?x1:obj), OnTop(?x0:obj, ?x1:obj),
Reachable-Nothing(), HandEmpty(), Holding(?x0:obj), Reachable(),
Openable(?x0:obj), Not-Openable(?x0:obj), Open(?x0:obj),
Closed(?x0:obj).

• Actions:

– NavigateTo(?x0:obj): navigates to make a particular object reachable.
– Grasp(?x0:obj, [x, y, z]): picks up a particular object with the hand start-

ing at a particular relative x, y, z location specified by the continuous parameters.
– PlaceOnTop(?x0:obj): places the object in hand ontop of another object as long

as the agent is holding an object and is in range of the object to be placed onto.
– PlaceInside(?x0:obj): places the object in hand inside another object as long

as the agent is holding an object and is in range of the object to be placed into.
– Open(?x0:obj)): opens a specific object (windows, doors, boxes, etc.) if it is

‘openable’.
– Close(?x0:obj)): closes a specific object (windows, doors, boxes, etc.) if it is

currently in an ‘open’ state.

• Goal: In Opening Presents, the robot must Open(?x0:package) a number of boxes of
type package around the room. In Locking Windows, the robot must navigate around
the house to Close(?x0:window) a number of windows. In Collecting Cans, the
robot must pick up a number of empty soda cans of type pop strewn amongst the house
and throw them into a trash can of type bucket. This will satisfy the goal of getting
Inside(?x0:pop, ?x1:bucket) for every soda can around the house. In Sorting
Books, the robot must find books of type hardback and notebook in a living room and
place them each onto a cluttered shelf (i.e. satisfy the goal of OnTop(?x0:hardback,
?x1:shelf) and OnTop(?x0:notebook, ?x1:shelf) for a number of books).

F Additional Approach Details

Here we provide detailed descriptions of each approach evaluated in experiments. For the ap-
proaches that learn operators, we use A∗ search with the lmcut heuristic [44] as the high-level
planner for bilevel planning in non-BEHAVIOR environments, and use Fast Downward [11] in a
configuration with minor differences from lama-first as the high-level planner in BEHAVIOR
environments, since A∗ search was unable to find abstract plans given the large state and action
spaces of these tasks. All approaches also iteratively resample until the simulator f verifies that the
transition has been achieved, except for GNN Model-Free, which is completely model-free. See
(§5) for high-level descriptions and the accompanying code for implementations.

20

F.1 Ours

• Operator Learning: We learn operators via the hill-climbing search described in Section
4.3. For our objective (Equation 1), we set the λ term to be 1/|D|, where |D| represents the
number of transitions in the training demonstrations.

• Sampler Learning: As described in Section D, each sampler consists of two neural net-
works: a generator and a discriminator. The generator outputs the mean and diagonal
covariance of a Gaussian, using an exponential linear unit (ELU) to assure PSD covari-
ance. The generator is a fully-connected neural network with two hidden layers of size 32,
trained with Adam for 50,000 epochs with a learning rate of 1e−3 using Gaussian nega-
tive log likelihood loss. The discriminator is a binary classifier of samples output by the
generator. Negative examples for the discriminator are collected from other skill datasets.
The classifier is a fully-connected neural network with two hidden layers of size 32, trained
with Adam for 10,000 epochs with a learning rate of 1e−3 using binary cross entropy loss.
During planning, the generator is rejection sampled using the discriminator for up to 100
tries, after which the last sample is returned.

• Planning: The number of abstract plans for high-level planning was set to Nabstract = 8
for our non-BEHAVIOR domains, and Nabstract = 1 for our BEHAVIOR domains. The
samples per step for refinement was set to Nsamples = 10 for all environments.

F.2 Cluster and Intersect:

This is the operator learning approach used by Silver et al. [1].

• Operator Learning: This approach learns STRIPS operators by attempting to induce a
different operator for every set of unique lifted effects (See Silver et al. [1] for more infor-
mation).

• Sampler Learning and Planning: Same as Ours (See (§F.1) for more details).

F.3 LOFT:

This is the operator learning approach used by Silver et al. [3]. We include a version
(‘LOFT+Replay’) that is allowed to mine additional negative data from the environment to match
the implementation of the original authors. We also include a version (‘LOFT’) that is restricted to
learning purely from the demonstration data.

• Operator Learning: This approach learns operators similar to the Cluster and Intersect
baseline, except that it uses search to see if it can modify the operators after performing
Cluster and Intersect (See Silver et al. [3] for more information).

• Sampler Learning and Planning: Same as Ours (See (§F.1) for more details).

F.4 CI + QE:

A baseline variant of Cluster and Intersect that is capable of learning operators that have quantified
delete effects in addition to atomic delete effects.

• Operator Learning: This approach first runs Cluster and Intersect, then attempts to induce
ignore effects by performing a hill-climbing search over possible choices of ignore effects
using prediction error as the metric to be optimized.

• Sampler Learning and Planning: Same as Ours (See (§F.1) for more details).

21

F.5 GNN Shooting:

This approach trains a graph neural network (GNN) [45] policy. This GNN takes in the current
state x, abstract state s = ABSTRACT(x,ΨG), and goal g. It outputs an action via a one-hot vector
over C corresponding to which controller to execute, one-hot vectors over all objects at each discrete
argument position, and a vector of continuous arguments. We train the GNN using behavior cloning
on the datasetD. At evaluation time, we sample trajectories by treating the GNN’s output continuous
arguments as the mean of a Gaussian with fixed variance. We use the known transition model f to
check if the goal is achieved, and repeat until the planning timeout is reached.

• Planning: Repeat until the goal is reached: query the model on the current state, abstract
state, and goal to get a ground skill. Invoke the ground skill’s sampler up to 100 times to
find a subgoal that leads to the abstract successor state predicted by the skill’s operator. If
successful, simulate the state forward; otherwise, terminate with failure.

• Learning: This approach essentially learns a TAMP planner in the form of a GNN. Follow-
ing the baselines presented in prior work [2], the GNN is a standard encode-process-decode
architecture with 3 message passing steps. Node and edge modules are fully-connected
neural networks with two hidden layers of size 16. We follow the method of Chitnis et al.
[2] for encoding object-centric states, abstract states, and goals into graph inputs. To get
graph outputs, we use node features to identify the object arguments for the skill and a
global node with a one-hot vector to identify the skill identity. The models are trained with
Adam for 1000 epochs with a learning rate of 1e−3 and batch size 128 using MSE loss.

F.6 GNN Model-Free:

A baseline that uses the same trained GNN as above, but at evaluation time, directly executes the
policy instead of checking execution using f . This has the advantage of being more efficient to
evaluate than GNN Shooting, but is less effective.

G Additional Experimental Results and Analyses

Environment Ours LOFT LOFT+replay CI CI + QE GNN
Painting 69.35 (3.58) 92.26 (11.41) 135.73 (6.45) 70.95 (5.07) 67.08 (5.86) 2220.19 (181.29)
Satellites 19.38 (7.83) 52.73 (18.35) 438.44 (51.62) 23.29 (5.38) 15.96 (4.70) 1625.69 (218.88)
Clutter 1D 17.98 (1.06) 68.04 (17.68) 366.89 (146.09) 62.68 (14.89) 28.58 (3.68) 1164.92 (84.74)
Screws 1.31 (0.04) 143.60 (49.10) 5712.80 (736.84) 0.32 (0.02) 708.98 (1023.02) 1369.59 (68.44)
Cluttered Satellites 16.12 (0.55) 353.67 (52.78) 902.99 (148.22) 107.04 (11.94) 87.24 (10.49) 3043.62 (285.27)
Cluttered Painting 131.68 (5.05) 1699.52 (216.71) 7364.03 (532.67) 470.32 (40.38) 2788.74 (1330.38) 4615.70 (334.11)
Opening Presents 28.91 (11.26) 106.57 (27.72) - 100.62 (23.66) 92.63 (17.01) 185.53 (6.63)
Locking Windows 16.77 (1.55) 62.55 (10.12) - 61.71 (8.95) 45.51 (5.74) 319.09 (7.61)
Collecting Cans 3728.73 (9544.75) 1520.93 (354.20) - 576.89 (100.57) 781.38 (350.46) 2121.86 (120.51)
Sorting Books 4981.79 (14460.37) 6423.03 (602.44) - 1528.18 (111.18) - 5359.99 (170.46)

Table 2: Learning times in seconds on training data for all domains. Note that BEHAVIOR domains (bottom
4) use training set sizes of 10 tasks, while all other domains use training and testing set sizes of 50 tasks. The
standard deviation is shown in parentheses.

We have already established that our approach learns operators that lead to more effective bilevel
planning than baselines. In this section, we are interested in comparing our approach with baselines
on three additional metrics: (1) the efficiency of high-level planning using learned operators, (2) the
efficiency of the learning algorithm itself, and (3) the simplicity of operator sets we learn. We also
run ablations of our method to investigate the importance of optimizing the complexity term, as well
as downward-refinability to our method.

Figure 4 shows the nodes created during high-level planning for each of our various environments
and operator learning methods. We can see that operators learned by our approach generally lead to
comparable or fewer node creations during planning when compared to baselines. In many of the
environments where baseline methods are able to achieve a number of points with fewer node cre-

22

Figure 4: Nodes Created by Operator Learning Approaches. We show scatter plots of the nodes created
(x-axis) for each operator learning approach (y-axis). We also include a violin graph to visualize the density
of points throughout the graph. If bilevel planning failed, we set the nodes created to 106 for non-BEHAVIOR
domains and 103 for BEHAVIOR domains. Our approach achieves a low number of nodes created across when
compared to baselines in most domains.

Environment Ours LOFT LOFT+replay CI CI + QE
Painting 10.00 (0.00) 13.60 (0.80) 19.20 (0.39) 11.00 (0.00) 10.20 (0.40)
Satellites 7.40 (0.79) 10.90 (1.44) 33.80 (3.70) 10.40 (1.20) 9.30 (0.9)
Clutter 1D 2.00 (0.00) 7.10 (1.64) 16.10 (2.11) 7.10 (1.64) 3.00 (0.44)
Screws 4.0 (0.00) 14.80 (1.98) 91.14 (5.11) 14.80 (1.98) 4.80 (0.97)
Cluttered Satellites 7.00 (0.00) 19.80 (2.60) 59.60 (4.45) 16.30 (1.10) 13.9 (0.83)
Cluttered Painting 13.00 (0.00) 28.00 (0.00) 157.8 (6.49) 25.20 (2.31) 20.70 (1.61)
Opening Presents 2.30 (0.90) 10.80 (2.99) - 10.80 (2.99) 9.80 (1.83)
Locking Windows 2.00 (0.00) 6.10 (0.70) - 6.10 (0.70) 4.70 (0.64)
Collecting Cans 6.10 (5.37) 57.40 (9.43) - 52.90 (8.41) 13.40 (2.33)
Sorting Books 14.70 (7.57) 76.70 (5.62) - 75.80 (5.79) -

Table 3: Average number of operators learned for all domains. Note that BEHAVIOR domains (bottom 4) use
training set sizes of 10 tasks, while all other domains use training and testing set sizes of 50 tasks. The standard
deviation is shown in parentheses.

ations — Cluttered 1D, Opening Presents, and Locking Windows — our method has a significantly
higher success rate.

Table 2 shows the learning times for all methods in all domains2. Our approach achieves the lowest
learning time in 7/10 domains. Upon inspection of our method’s performance on the ‘Locking
Windows‘ and ‘Collecting Cans‘ domains, we discovered that the high average learning times are
because of a few outlier seeds encountering local minima learning, yielding large and complex
operator sets (this is the reason for the extremely high standard deviation).

Table 3 shows the number of operators learned for all operator learning methods in all domains.
Our approach learns the lowest number of operator sets across all environments and massively out
performs other approaches on this metric in Collecting Cans, and Sorting Books. These results

2Note that there is no entry for ‘CI + QE’ for sorting books because learning exceeded the memory limit of
our hardware (192 GB)

23

Environment Ours No complexity Down Eval
Painting 98.80 (1.33) 98.80 (1.33) 26.60 (6.52)
Satellites 93.40 (11.14) 81.20 (19.40) 84.20 (16.88)
Cluttered 1D 100.00 (0.00) 100.0 (0.00) 100.00 (0.00)
Screws 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Cluttered Satellites 95.20 (2.40) 94.80 (2.72) 94.00 (3.22)
Cluttered Painting 99.20 (1.33) 99.00 (1.84) 23.80 (7.56)
Opening Presents 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Locking Windows 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
Collecting Cans 77.00 (37.16) 75.00 (38.30) 75.00 (38.80)
Sorting Books 69.00 (36.73) 52.00 (34.00) 67.00 (37.2)

Table 4: Percentage success rate for our original method, as well as ablations where we set the λ parameter
from Equation 1 to 0 on test tasks (No complexity), and enforce downward refinability at evaluation time (Down
Eval) for all domains. Note that BEHAVIOR domains use training and testing set sizes of 10 tasks, while all
other domains use training and testing set sizes of 50 tasks. The percentage standard deviation is shown in
brackets.

further highlight our ability to learn operator sets that efficient for high-level planning, but also
simpler and therefore, more likely to generalize to new environments.

Table 4 shows the success rate of our method when the λ parameter from Equation 1 is set to 0 (the
‘No complexity’ column), thereby effectively removing any impact on the optimization from the
complexity term in the objective. In most environments (Painting, Cluttered 1D, Screws, Clut-
tered Satellites, Cluttered Painting, Opening Presents, Locking Windows, and Collecting Cans), this
change has minimal impact on the method’s success rate. However, in two environments (Satellites
and Sorting Books), the change causes a significant reduction in success rate. Upon inspection, we
found that our approach learned a number of very complex operators in these domains. When λ was
set to be greater than 0, our approach would delete a number of these operators, but in this ablation,
it was unable to and thus planning performance suffered. We can conclude from these experiments
that optimizing the complexity term is a key component of our approach on particular domains.

Table 4 also shows the success rate of our method when bilevel planning is only allowed to produce
1 abstract plan during refinement. This effectively enforces that the learned operators must yield
downward-refinable plans. This causes a significant reduction in success rate in many environments,
showing that the ability to evaluate multiple abstract plans is important to planning with operators
learned by our method. Indeed, all the environments that exhibit significant reductions in success
rate do not - to our knowledge - admit a downward-refinable high-level theory over the provided
skills and predicates.

H Learned Operator Examples

Finally, we provide operator examples to demonstrate our approaches ability to overcome overfiting
to specific situations. Figure 5 shows a comparison of the operators learned with Open in Opening
Packages environment and NavigateTo in Collecting Cans environment across our approach and ‘CI
+ QE’ (the most competitive baseline in these environments). As shown, by optimizing prediction
error ‘CI + QE’ learns a number of operators to describe the same amount of transitions that is cov-
ered by the single operator our approach learns. Upon inspection, ‘CI + QE‘ learns overly specific
operators when trying to cluster effects that try to predict the entire state to the point where ‘Quan-
tified Delete Effects’ are not fully utilized. For the full set of operators learned by our algorithm on
the ‘Sorting Books’ task, see Figure 6.

24

NavigateTo-pop0:
 Arguments: [?x0:pop]
 Preconditions: [

handempty(),
not-openable-pop(?x0:pop)]

 Add Effects: [reachable-pop(?x0:pop)]
 Delete Effects: []
 Quantified Delete Effects: [

ontop-pop-pop,
reachable-bed,
reachable-bucket,
reachable-pop]

 Controller: NavigateTo-pop(?x0:pop)}

NavigateTo-pop0:
 Arguments: [?x0:bed, ?x1:pop]
 Preconditions: [

handempty(),
not-openable-bed(?x0:bed),
not-openable-pop(?x1:pop),
ontop-pop-bed(?x1:pop, ?x0:bed),
reachable-bed(?x0:bed)]

 Add Effects: [reachable-pop(?x1:pop)]
 Delete Effects: [reachable-bed(?x0:bed)]
 Quantified Delete Effects: []
 Controller: NavigateTo-pop(?x1:pop),

NavigateTo-pop1:
 Arguments: [?x0:pop]
 Preconditions: [

handempty(),
not-openable-pop(?x0:pop),
reachable-pop(?x0:pop)]

 Add Effects: []
 Delete Effects: []
 Quantified Delete Effects: []
 Controller: NavigateTo-pop(?x0:pop),

NavigateTo-pop2:
 Arguments: [?x0:pop]
 Preconditions: [

handempty(),
not-openable-pop(?x0:pop)]

 Add Effects: [reachable-pop(?x0:pop)]
 Delete Effects: []
 Quantified Delete Effects: []
 Controller: NavigateTo-pop(?x0:pop),

Open-package0:
 Arguments: [?x0:package]
 Preconditions: [

closed-package(?x0:package),
handempty(),
openable-package(?x0:package),
reachable-package(?x0:package)]

 Add Effects: [open-package(?x0:package)]
 Delete Effects: [closed-package(?x0:package)]
 Quantified Delete Effects: []
 Controller: Open-package(?x0:package),

Open-package1:
 Arguments: [?x0:room_floor, ?x1:package]
 Preconditions: [

closed-package(?x1:package),
handempty(),
not-openable-room_floor(?x0:room_floor),
ontop-package-room_floor(?x1:package, ?x0:room_floor),
openable-package(?x1:package),
reachable-package(?x1:package),
reachable-room_floor(?x0:room_floor)]

 Add Effects: [open-package(?x1:package)]
 Delete Effects: [closed-package(?x1:package),

ontop-package-room_floor(?x1:package, ?x0:room_floor)]
 Quantified Delete Effects: []
 Controller: Open-package(?x1:package)}

Open-package0:
 Arguments: [?x0:package]
 Preconditions: [

closed-package(?x0:package),
handempty(),
openable-package(?x0:package),
reachable-package(?x0:package)]

 Add Effects: [open-package(?x0:package)]
 Delete Effects: [closed-package(?x0:package)]
 Quantified Delete Effects:

[ontop-package-room_floor]
 Controller: Open-package(?x0:package),

Figure 5: Operator Comparison. Operators learned after our approach (left) and ‘CI+QE‘ (right), for Open
in Opening Packages environment (top) and NavigateTo in Collecting Cans Cans environment. Our approach
learns fewer operators that are generally simpler, and thus more conducive to effective bilevel planning and
generalization.

25

Grasp-notebook0:
 Arguments: [?x0:notebook]
 Preconditions: [handempty(), not-openable-notebook(?x0:notebook), reachable-notebook(?x0:notebook)]
 Add Effects: [holding-notebook(?x0:notebook)]
 Delete Effects: [handempty(), reachable-notebook(?x0:notebook)]
 Quantified Delete Effects: [ontop-notebook-coffee_table, ontop-notebook-room_floor]
 Controller: Grasp-notebook(?x0:notebook)

NavigateTo-notebook0:
 Arguments: [?x0:notebook]
 Preconditions: [handempty(), not-openable-notebook(?x0:notebook)]
 Add Effects: [reachable-notebook(?x0:notebook)]
 Delete Effects: []
 Quantified Delete Effects: [reachable-board_game, reachable-coffee_table, reachable-hardback, reachable-notebook, reachable-shelf, reachable-video_game]
 Controller: NavigateTo-notebook(?x0:notebook)

PlaceOnTop-shelf0:
 Arguments: [?x0:shelf, ?x1:hardback]
 Preconditions: [holding-hardback(?x1:hardback), not-openable-hardback(?x1:hardback), not-openable-shelf(?x0:shelf), reachable-shelf(?x0:shelf)]
 Add Effects: [handempty(), ontop-hardback-shelf(?x1:hardback, ?x0:shelf)]
 Delete Effects: [holding-hardback(?x1:hardback)]
 Quantified Delete Effects: []
 Controller: PlaceOnTop-shelf(?x0:shelf)

PlaceOnTop-shelf1:
 Arguments: [?x0:shelf, ?x1:notebook]
 Preconditions: [holding-notebook(?x1:notebook), not-openable-notebook(?x1:notebook), not-openable-shelf(?x0:shelf), reachable-shelf(?x0:shelf)]
 Add Effects: [handempty(), ontop-notebook-shelf(?x1:notebook, ?x0:shelf)]
 Delete Effects: [holding-notebook(?x1:notebook)]
 Quantified Delete Effects: []
 Controller: PlaceOnTop-shelf(?x0:shelf)

Grasp-hardback0:
 Arguments: [?x0:hardback]
 Preconditions: [handempty(), not-openable-hardback(?x0:hardback), reachable-hardback(?x0:hardback)]
 Add Effects: [holding-hardback(?x0:hardback)]
 Delete Effects: [handempty(), reachable-hardback(?x0:hardback)]
 Quantified Delete Effects: [ontop-hardback-coffee_table, ontop-hardback-room_floor]
 Controller: Grasp-hardback(?x0:hardback)

NavigateTo-shelf0:
 Arguments: [?x0:shelf]
 Preconditions: [not-openable-shelf(?x0:shelf)]
 Add Effects: [reachable-shelf(?x0:shelf)]
 Delete Effects: []
 Quantified Delete Effects: [ontop-hardback-coffee_table, reachable-board_game, reachable-coffee_table, reachable-hardback, reachable-notebook,
reachable-video_game]
 Controller: NavigateTo-shelf(?x0:shelf)

NavigateTo-hardback0:
 Arguments: [?x0:hardback]
 Preconditions: [handempty(), not-openable-hardback(?x0:hardback)]
 Add Effects: [reachable-hardback(?x0:hardback)]
 Delete Effects: []
 Quantified Delete Effects: [reachable-board_game, reachable-coffee_table, reachable-hardback, reachable-notebook, reachable-shelf, reachable-video_game]
 Controller: NavigateTo-hardback(?x0:hardback)

Figure 6: Sorting Books learned operators.

26

	Introduction
	Problem Setting
	Operators for Bilevel Planning
	Learning Operators from Demonstrations
	Experimental Results
	Related Work
	Limitations, Conclusions and Future Work
	Bilevel Planning Algorithm Details
	Detailed Description of Successor Generators
	ImproveCoverage
	ReduceComplexity

	Associating Transitions with Operators
	Learning Samplers
	Additional Experiment Details
	Screws Environment Details
	Cluttered 1D Environment Details
	Satellites Environment Details
	Painting Environment Details
	Cluttered Painting Environment Details
	BEHAVIOR Environment Details

	Additional Approach Details
	Ours
	Cluster and Intersect:
	LOFT:
	CI + QE:
	GNN Shooting:
	GNN Model-Free:

	Additional Experimental Results and Analyses
	Learned Operator Examples

