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A DISCUSSION OF METHODOLOGICAL ASSUMPTIONS

In the main text of the paper our primary methodological assumptions included assumptions on the
monotonicity of activation functions, architecture of the neural network, and representation of the
input and parameter sets. Below, we discuss how and when these assumptions can be relaxed. We
also visualize the various threat models and attack targets in Figure 8.

Activation Monotonicity Activation functions being monotonic is important to the method as in-
put extrema are also output extrema. That is, if the function is monotonically increasing (as is the
case with ReLu, Tanh, Sigmoid) then evaluating the activation function at the maximum and min-
imum values for the domain will correspond to the maximum and minimum values for the range.
When an activation is monotonically decreasing, the maximum of the domain interval will corre-
spond to the minimum of the range interval and visa versa. While this makes exposition of the
method convenient we note that our propagation method can be extended to activation functions
with a bounded number of local maxima and minima. By breaking the function up at these points
we get a series of monotonically increasing and decreasing segments and computing the extrema
over all such segments suffices for computing the extrema over the range of the function.

Architectural Assumptions In the main text we assume that all layers of the neural network
are affine transformations followed by the application of a non-linear activation function. This is
generally true of sound certification procedures (certified smoothing not being considered wholly
sound, but statistically sound). Our assumption covers convolutional and fully connected layers,
but does not handle pooling and batch-norm layers as these layers in their natural formulation are
not amenable to reverse propagation with bound propagation methods. This remains an area of
study that can enhance bound propagation methods. We are unable to scale to large neural network
architectures such as VGG16 due to the fact that current methods for convex relaxation of such
complex networks incur too much approximation for non-trivial certification Gowal et al. (2018). As
convex relaxation for neural networks advance our presented methodology for certifying explanation
robustness will also advance.

Input and Parameter Set Representation In our exposition we only provide a formulation for
intervals over inputs and parameter sets. Along with (Gowal et al., 2018), we find that the interval
representation of constraints is sufficient. However, there are more complex input properties which
may not be captured well by this assumption, and there is research on more expressive abstractions.
For a full treatment we reference interested readers to (Gehr et al., 2018). In Gehr et al. (2018) the
authors discuss and evalute different approximations for verifying properties of neural networks in-
cluding the box domain (called intervals in this work), zonotope domain, and the polyhedra domain.
In general, more complex abstract domains allow expression of more complex properties.

Bound Propagation Technique In Section 5 we point out that our bounds are not the tightest
bounds that can be achieved for the interval domain. There have been many advances in bound
propagation for sound certification of neural networks Tjeng et al. (2017); Gehr et al. (2018); Fa-
zlyab et al. (2019); Benussi et al.. More complex propagation techniques arrive at tighter bounds,
in our case on the values of � and E. For example MILP formulations are exact in the limit of
computational time and refinement iterations Benussi et al.. However, it is well known that MILP
is exponentially more expensive than the methods presented in this paper. The specifications and
techniques in this work can be adapted to any solver, and some solvers give tighter bounds at the cost
of increased computational complexity. We have chosen IBP for this method as its computational
efficiency allows us to scale to CNNs with over half a million parameters which is infeasable with
MILP methods (Benussi et al.).

B EFFECT OF EXPLANATION REGULARIZATION METHODS

In this section we perform an empirical study of the effects of robust explanations training meth-
ods, visualized in Figure 5. For this, we revisit the half-moons dataset and we train classifiers with
our method, Hessian regularization (Dombrowski et al., 2019), and L2 adversarial training (Chen
et al., 2019). We find that each of the methods smooth the clssification boundary. We highlight
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Figure 5: An empirical comparison of how different robust explanation regularization affect the
decision boundaries of learned neural networks. From right to left we increase the regularization
parameter (denoted ↵ in the main text). Top Row: Grad. cert. regularization. Middle Row: L2
regularization Chen et al. (2019). Bottom Row: Hessian regularization Dombrowski et al. (2019).

Figure 6: Decision boundaries and confidences for neural networks trained with certified prediction
training using (Gowal et al., 2018). We highlight that this method does not have the linearizing
effect observed for robust explanations methods and may even lead to misleading explanations when
relying on the input gradients as we demonstrate the box in the far right plot.

that while our method and that of (Chen et al., 2019) enforce local linearity, Hessian regularization
enforces smoothness but not linearity. We notice that our method is slightly more linear than the
other methods for extreme values of the regularization parameters, but in practice, such regulariza-
tion would not occur due to the considerable performance trade-off that comes with using a linear
model. However, we do notice that for more complex datasets the models do have different robust-
ness performance and we find that only our method is able to train NNs with certifiable explanation
robustness, see Figure 2.

C EFFECT OF ROBUST PREDICTIONS TRAINING

In this section we empirically compare our training with prediction robustness training. Robust
prediction training (Gowal et al., 2018; Mirman et al., 2018) ensures that the prediction does not
change for any point in the input interval whereas our method ensures the gradient doesn’t change
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Figure 7: When visualizing the input gradients for different training methods, we see that the pre-
diction robustness training using (Gowal et al., 2018) leads to more sparse explanations (center
gradient), but is not nearly as effective as gradient certified training (far right gradient).
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Figure 8: Example of threat models for explanation methods and their affects on a normally trained
network versus a network trained with the gradient certification loss. Top row: the explanations
given for an input classified as a ‘3’ for a normally trained neural network (left) and for the GradCert
network (right). Center row: The result of using the first-order attack proposed in Dombrowski et al.
(2019) on the normal neural network (left) where it is successful and the GradCert (right) where it
is unsuccessful. Bottom row: The result of using a single-image version of Heo et al. (2019) on a
normal neural network (left) and a GradCert neural network (right).
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Figure 9: We see that our label poisoning has the intended effect of increasing the bias/unfairness
of the classifier. Top row: We plot the individual fairness of the classifiers as we increase the
poisoning rate. Higher individual fairness values indicate more bias. Bottom row: We plot the
equalized opportunity, a group fairness metric, and find that for this metric we also increase bias for
the Adult dataset, but it is less clear for the German dataset.

inside of the input interval and is unconstrained by the ground truth input. We compare our method
with certified robust prediction training proposed in (Gowal et al., 2018). In Figure 6 we plot the
resulting neural network decision boundary for different values of ↵ when training with certified
prediction robustness. We highlight that for large values of the regularization parameter ↵ the robust
prediction method does not induce a linear classifier. We also place a grey box on the far right
plot to indicate where the network explanation based on the input gradient may be misleading. We
also run the (Gowal et al., 2018) training methodology on PneumoniaMNIST. We plot the resulting
input gradients in Figure 7. We find that certified robust training does lead to sparser input gradients
compared with standard training, but our training procedure is noticeably sparser. We also evaluate
the average value of �i over 100 test-set images for each method and find that standard training has
an average � = 10.199, robust prediction training has an average � = 2.035, and our method has an
average � = 0.026. Thus, while robust training makes explanations considerably more robust, there
is still a two orders of magnitude gap between robust explanations training and robust predictions
training.

D FURTHER FAIRNESS DISCUSSION

In order to detect bias, we first train classifiers on dataset in which we introduce bias. In order to
introduce bias we take a random proportion p 2 [0, 1] of individuals from the majority and minority
classes and poison their labels, we call the proportion p the ‘induced bias’. For the proportion p of
individuals in the majority class we set the label to a positive classification and for proportion p of
individuals in the minority class we change the label to a negative classification. The key idea here
is that the neural network will pick up on the correlation between the majority/minority features
and the label and will predict based on the sensitive attribute. In Figure 9 we plot measures of
individual fairness Benussi et al. and group fairness Binns (2020). Individual fairness measures the
difference in output for individuals who are comparable, in our case, only differ by values of their
sensitive output. For individual fairness what is plotted is the difference in softmax classification
vectors for individuals (taken from the test set) who are identical save for their sensitive features.
Higher values indicate more unfairness. We highlight that increases in discrimination according to
individual fairness metrics rise with our increase in induced bias. In the bottom row of Figure 9
we plot a notion of group fairness which measures statistically how similar different majority and
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Figure 10: Analysis of three MedMNIST datasets. Top Row: Explanations on a test set DermaM-
NIST image, Grad Cert explanations (outlined in green) are nicely correlated with the key input
features. The robustness and accuracy statistics indicate that there is a considerable 20% reduction
in test-set accuracy we gain substantial robustness benefits (from 0% to 73% input certified robust-
ness). This figure extends Figure 4 in the main text.

minority groups are treated, again higher values indicate more discrimination. We find that for the
Adult dataset, group fairness metrics increase with increases in ‘induced bias’ but for the German
dataset it is less clear of a trend.

We would like to urge all readers that algorithmic fairness is a serious issue. While our method for
robust explainability training seems to help indicate when the model is making bias predictions and
may supplement fairness analysis, it should not substitute a rigorous fairness evaluation at train time
and continuous fairness audits.

E EXTENDED MEDMNIST RESULTS

We extend the evaluation of our method on larger scale datasets by exploreing the BloodMNIST
dataset which consists of 28 by 28 full-color images of stained blood cells representing 8 different
blood disorders. The task of the neural network is to classify these disorders. In Figure 10 we find
that we are able to significantly improve both the sparsity of the explanations as well as the well
as the robustness of the network; however, it comes at the largest test set accuracy penalty of any
dataset tested at 20% test set accuracy loss. We note that further study into hyper-parameter tuning
could significantly improve this result.

F HYPER-PARAMETER VALUES

In this section we report the hyperparameters for the networks trained in
the main text. Code to reproduce all of the experiments can be found at
https://github.com/matthewwicker/RobustExplanationConstraintsForNeuralNetworks.

F.1 TABULAR HYPERPARAMETERS

For each dataset we use a fully-connected neural network with two layers and 256 hidden neurons
per layer. Each network uses ReLU activation functions save for the Hessian training which uses
softplus activations. Both our method and the L2 method (Chen et al., 2019) use ↵ = 1.0 and
Hessian regularization (Dombrowski et al., 2019) uses ↵ = 0.1 as using larger values leads to
significant performance drops. We see that in Figure 5 that Hessian training is more sensitive to
large changes in ↵. Each network is trained for 100 epochs.

F.2 MNIST HYPERPARAMETERS

We split the MNIST hyperparameter section into sections for the fully connected and convolutional
networks. As we use the same architecture for the convolutional networks on MedMNIST we report
the CNN hyperparameters in the MedMNIST section.
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Fully Connected Networks: We use neural networks with two hidden layers and 256 hidden neurons
per layer. As before, we use ReLu activation functions. We set ↵ = 0.5 for each and vary ✏t as shown
in Figure 3. Each network is trained for 35 epochs.

F.3 MEDMNIST HYPERPARAMETERS

Below we describe the training parameters used for our MedMNIST experiments.

Convolutional Neural Networks: We consider a small CNN model that was proposed in (Gowal
et al., 2018). The network contains of two convolutional layers with 4 by 4 filters. The first layer
consists of 16 filters and the second consists of 32 filters. We then flatten the features and pass it to
a fully connected hidden layer with 100 neurons. Each layer uses ReLu actiavtions. For MNIST we
set ↵ = 0.5 for each and vary ✏t as shown in Figure 3. Each network is trained for 35 epochs. For
MedMNIST we keep ↵ = 0.5 and set ✏t = 0.01 and �t = 0.01. We found empirically that these
gave good results without dropping accuracy.

Figure 11: Our method out performs other robust explanation regularization approaches on the
MNIST dataset. On the far left we plot standard training, center left we plot Hessian regularization,
center right we plot L2 regularization, and far right we plot our method. We find that though regular-
ization methods improve robustness against attacks and even provide some non-trivial certification
in the case of L2 regularization, our method considerably out-performs each method with limited
accuracy penalty.
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Figure 12: Our method out performs other robust explanation regularization approaches on the
Pneumonia MedMNIST dataset. On the far left we plot standard training, center left we plot Hessian
regularization, center right we plot L2 regularization, and far right we plot our method. We find that
though regularization methods improve robustness against attacks and even provide some non-trivial
certification in the case of L2 regularization, our method considerably out-performs each method
with limited accuracy penalty.

G EXTENDED COMPARISONS

In this Section, we provide further experimental comparisons between our method and previous
regularization methods. We start by stating the optimization objective of each approach followed by
the hyper-parameters used to generate the comparison in Figures 11 and 12. We conclude the section
with a discussion of the results. The first regularization tested comes from (Drucker & Le Cun, 1992)
and is also discussed in (Chen et al., 2019). The authors propose an objective:

LL2 = L(f✓(x), y) + ↵||rxf
✓(x0)||22

where we have added the additional term x0 = x + N (0, ✏) and ✏ 2 Rn defines the width of T .
This noise allows us to approximately minimize the gradient magnitude in a ball around the original
input. We call this the L2 loss and is what is tested in the main text. All methods trained with this
use ↵ = 0.5 with ✏ = 0.025 for MNIST and 0.02 for MEDMNIST. In Chen et al. (2019) the authors
propose an adversarial version of this loss. In this work, we generalize from integrated gradients to
standard gradients and thus drop the ‘I’ initial in the method name:

LGNORM = L(f✓(x), y) + ↵max
x02T

||rxf
✓(x)�rx0f✓(x0)||1

it is easy to observe that this is a similar loss to the Gradient Certified loss proposed in this paper
save they opt for an `1 norm penalty and approximately solve the optimization term via stochastic
gradient descent whereas the gradient certified loss uses an `2 norm penalty and computes an over-
approximate worst-case solution to the optimization problem. For MNIST we use ↵ = 1.0, ✏ =
0.025 and use ↵ = 0.5, ✏ = 0.02 for MEDMNIST as these were found to be the best performing
parameters. We use 10 iterations of projected gradient descent to solve the minimization term. We
also highlight that as this optimization relies on the Hessian we must swap rectified linear units
for softplus activations. We also consider Madry et al. (2018) as a baseline method. The robust
optimization proposes the following optimization objective:

LPGD = max
x02T

L(f✓(x0), y)
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where the maximization step is solved via projected gradient descent. When training NNs with this
loss we again use 10 iterations of PGD with no restarts. We use ✏ = 0.025 for MNIST and ✏ = 0.05
for MEDMNIST. Finally, in (Chen et al., 2019) the authors propose combining the two yielding
G-SUM-NORM:

LGSUMNORM = max
x02T

⇥
L(f✓(x), y) + ||rxf

✓(x)�rx0f✓(x0)||1
⇤

This is combination of robust optimization and robust gradient regularization. For this we use the
same parameters as GNORM, i.e., ↵ = 1.0, ✏ = 0.025 for MNIST and ↵ = 0.5, ✏ = 0.02 for
MEDMNIST.

In Figures 11 and 12 we plot test set accuracy, attack robustness, and certified robustness, as defined
for explanations in the main text, for each of the above methods. In Figure 11 we train the same
one hidden layer neural network with 128 hidden neurons varying only the train time regularization
used for each networks. We evaluate the robustness of these networks against an adversary with
✏ = 0.0125 which is considerably lower than what is tested in the main text. This is to display non-
trivial behavior for each baseline method. We find that all tested regularization methods lead to a
non-trivial level attack robustness. Additionally we find that L2 regularization leads to the best input-
certified explanations against an an adversary who perturbs the input by ✏ = 0.0125. We highlight
that, as in the main text, Grad. Cert. considerably out-performs all other regularization methods
in terms of certified performance. In Figure 12, we again empirically compare the accuracy, attack
robustness, and certified robustness of different regularization methods, this time on the pneumonia
dataset. We evaluate the network using a smaller ✏ than is considered in the text, here using ✏ = 0.02
with � = 0.0 in order to distinguish methods that have comparably less robustness than offered by
our method. Our empirical findings in Figure 12 mirror those of Figure 11. In particular, we find
that L2 regularization leads to the second best gradient performance while Grad. Cert. continues to
out-perform all other methods.

H CERTIFICATION OF COSINE SIMILARITY

In the main text we pose certification for targeted and untargetted attacks through the similarity
function h and focused on the `2-norm as the h function. In this section, we provide the details on
the h function and its approximation for when the measure of similarity (or dissimilarity) between
two explanations is taken as the cosine similarity.

H.1 COSINE SIMILARITY BOUND

We first recall that if h(v, v0) is the cosine similarity between the explanations v and v0, then the
function can be expressed as

h(v, v0) =

Pn
i=0 v

0
ivipPn

i=0 v
0
i

pPn
i=0 vi

We can again propose values of vcert that allow us to certify if an adversarial example exists in a
given input region.

Targeted Attacks Where vtarg is the target explanation vector and [vL, vU ] is the interval computed
by out method, outlined in Section 5, we can compute values for v0 2 [vL, vU ] that over-approximate
the how close an adversary can get to vtarg w.r.t. the cosine similarity. To minimize the cosine
similarity, we would like to maximize the denominator while minimizing the numerator. As we only
seek an over-approximate solution, we need not find a single value v0 2 [vL, vU ]. Instead we take
vdenom to be the smallest magnitude value in the range [vL, vU ] (either 0 or one of the end points)
and we take vnumer to be the value that minimizes the dot product with the target vector (again,
either 0 or one of the end points). The resulting value is an over-approximate minimum for the
smallest cosine similarity between the vector vtarg and any vector in the interval [vL, vU ].

I PROOF AND THEORETICAL DISCUSSION

In this section of the Appendix we provide a formal proof of Lemma 1 as well as a discussion of its
tightness.
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I.1 PROOF OF LEMMA 1

Recall that Lemma 1 operates on intervals over matrices. We take the first matrix interval to be
[AL, AU ] and the second matrix interval to be [BL, BU ]. Denoting generic operands in the interval
with A 2 Rn⇥m and B 2 Rm⇥k we would like to find upper and lower bounds on the product of
any two matrices from these intervals (the resulting product being a matrix in Rn⇥k). For any i 2 [n]
and j 2 [k] the i, j entry in the product-space can be written as Ai: · B:j , the dot-product of the ith

row of A with the jth column of B, which is defined as
Pm

t=0 Ai,tBt,j . We now focus bounding
the maximum of this dot product (the logic for the minimum follows the same pattern). This is
maximized when each term Ai,tBt,j is maximized. Given the bi-linear nature of this optimization,
the maximum is obtained at one of the four corners of the rectangle [AL

i,t, A
U
i,t] ⇥ [BL

t,j , B
U
t,j ]. We

now show that Lemma 1 over-approximates the maximizing corner. Recall our upper bound on this
rectangle is given as is Aµ

i,tB
µ
t,j + |Aµ

i,t|Br
t,j +Ar

i,t|B
µ
t,j |+ |Ar

i,t||Br
t,j |.

In the case that AL = AU and BL = BU , then we have that AL = AU = Aµ and BL = BU = Bµ.
Thus all of the corners of the rectangle ([AL

i,t, A
U
i,t] ⇥ [BL

t,j , B
U
t,j ]) are equal, and the bound returns

this value exactly, Aµ
i,tB

µ
t,j , as all values super-scripted r are equal to 0.

In the case that AL 6= AU but BL = BU , then we have that BL = BU = Bµ, thus the maximum
of the rectangle either occurs at AL

i,tB
µ
t,j or AU

i,tB
µ
t,j with the other containing the minimum. The

center of the interval by definition is Aµ
i,tB

µ
t,j and we observe that the width of the interval between

the maximum and minimum (regardless of which is which) is 2Ar
i,t|B

µ
t,j |, thus the maximum is

obtained at Aµ
i,tB

µ
t,j +Ar|Bµ| and the minimum at Aµ

i,tB
µ
t,j �Ar|Bµ|, as prescribed by the bound

(as Br
t,j = 0 erasing the contribution of the other terms).

Finally we have the case in which AL 6= AU and BL 6= BU . In this case we have that the maximum
and minimum could occur at any one of the four corners of the rectangle. As before, the center
of the interval in product space is Aµ

i,tB
µ
t,j . And, assuming that Bµ

t,j 6= 0, the width contributed
by the interval [AL

i,t, A
U
i,t] is given by Ar

i,t|B
µ
t,j |. Equivalently, assuming that Aµ

i,t 6= 0, the width
contributed by the interval [BL

i,t, B
U
i,t] is given by |Aµ

i,t|Br
t,j . In the case that both Aµ

i,t = 0 and
Bµ

t,j = 0, the term Ar
i,tB

r
t,j jointly accounts for both widths exactly. In the case that Aµ

i,t = 0

and Bµ
t,j 6= 0 our bound introduces approximation error by over counting the width of [BU

t,j , B
L
t,j ].

However this approximation is sound as we have over-approximated the minimum or maximum.

Above we have shown that Lemma 1 is a sounds over-approximation by exhausting all of the possi-
ble interval configurations and showing that Lemma 1 is sound for each.

I.2 DISCUSSION OF LEMMA 1 TIGHTNESS

The bound provided in Lemma 1 represents interval bound propagation jointly over two matrices.
As an interval bound, it is exact in every case save for when one of the bounds is centered exactly at
zero and the other is not. In this case, the alternative (tighter) interval bounding procedure would be
to compute each of the four corners [AL

i,t, A
U
i,t]⇥ [BL

t,j , B
U
t,j ] and subsequently taking the maximum

and minimum. This procedure requires an element-wise maximum and minimum operation which
make the optimization of such a bound more challenging for auto-differentiation software (Pytorch,
Tensorflow, etc), thus Lemma 1 is considerably more desirable when one wants to incorporate our
bounds into training. Though at test-time one can gain marginal improvements in certification by
taking elementwise maximums and minimums.

J FURTHER RELATED WORK

In our literature review we focus on gradient-based explanations and contextualizing the study
of their robustness. Here, we briefly cover explanation methods that use robustness as a primary
desiderata. In (Ignatiev et al., 2019) the authors rely on abductive reasoning to get guarantees that
are guaranteed to be minimal (e.g., in the number of explaining features used) but are not guaran-
teed to be robust. The authors of (La Malfa et al., 2021) build on abductive-based explanations
and consider explanations that are both minimal and optimally robust. In (Blanc et al., 2021) the
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authors also consider provable robustness as a key desiderata and achieve this by sampling a black-
box model exponentially many times and thus deriving statistical guarantees. Similarly an iterative,
greedy strategy is employed by (Ribeiro et al., 2018) to get some statistical guarantees on the quality
of their explanations. In counterfactual explanations, (Blanc et al., 2022) theoretically guarantees
optimal counterfactuals with their algorithm with analysis of their query complexity. In (Moham-
madi et al., 2021), the authors provide provable guarantees in terms of optimal distance, i.e., nearest
explanation, and perfect coverage. Concurrently developed with this work, a work was submitted
that has a similar aim of providing provable guarantees of counterfactual explanations to changes in
the weight-space of a given neural network model Jiang et al. (2023).
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