
Appendix

A Sampling from ACE

Sampling the proposal distribution can be performed in an autoregressive fashion where xui
is

sampled from q(xui
| xo) then added to the observed set, at which point xui+1

can be sampled.
We do this until all unobserved features have been sampled. The pseudocode for this procedure is
presented in Algorithm 2.

We also want to produce samples that come from the energy function. One drawback of energy-based
models is that we are unable to analytically sample the learned distribution. However, there are
several methods for obtaining approximate samples. We employ a modification of the proposal
sampling procedure such that many proposal samples are drawn at each step, and a single sample is
then chosen from that collection based on importance weights. As the number of samples goes to
infinity, this is consistent with drawing samples from the energy distribution. The pseudocode for this
procedure is presented in Algorithm 3. We note that this method of sampling is closely related to
sampling importance resampling [29].

B Algorithms

For convenience, we provide the procedure for ACE’s test-time likelihood evaluation in Algorithm 1
and sampling in Algorithm 2 and Algorithm 3.

C Order Consistency

Because ACE can compute likelihoods by using any permutation of u, there are numerous ways to
compute p(xu | xo) for a given xu and xo. However, due to inaccuracies in the learned model, we
may obtain different results depending on which ordering is used. This phenomenon has surfaced
in prior work as well [33, 8], where it has been argued that different orderings can be treated as an
advantageous ensemble of models. This perspective is certainly useful, but ideally, our model should
give equivalent likelihoods for all orderings. In order to better understand ACE’s susceptibility to
this problem, as well as how it may be addressed, we do a straightforward experiment in which we
fine-tune trained ACE models with an additional loss term that minimizes the variance of p(xu | xo)
computed (autoregressively) over 10 permutations of u. Intuitively, as the expected variance over all
x and b goes to zero, the distributions induced by different orderings of u become the same and the
model gives the same likelihood regardless of the chosen ordering.

Table 5 shows the results of these experiments. We find that ACE models can be effectively fine-tuned
to produce more consistent likelihoods over different orderings, at almost no cost in performance in
terms of the average likelihood. However, we see that if desired, even stronger consistency can be
obtained for a slight tradeoff in the average likelihood.

Table 5: Log-likelihoods after different amounts of consistency fine-tuning. The number after the ±
is the average standard deviation of p(xu | xo) when computed over 1000 randomly chosen orderings.
The coefficient refers to the weight of the variance term in the loss during fine-tuning. The 0.0
coefficient refers to the model with which the fine-tuning was initialized.

Coefficient 0.0 0.5 1.0 2.0

POWER 0.622± 0.072 0.622± 0.063 0.620± 0.058 0.619± 0.051
GAS 9.583± 0.513 9.587± 0.457 9.556± 0.420 9.497± 0.376
HEPMASS −3.555± 0.878 −3.669± 0.718 −3.823± 0.621 −4.090± 0.505

13



Algorithm 1 ACE Likelihood Evaluation

1: Input: xo, xu, b
2: Set xcur = φ(xo;b) and bcur = b
3: Initialize r = 0
4: Choose an arbitrary permutation u′ of u
5: for u′i in u′ do
6: Compute log p(xu′

i
| xcur) using Equation 8

7: Set r = r + log p(xu′
i
| xcur)

8: Set xcur[u
′
i] = xu′

i

9: Set bcur[u
′
i] = 1

10: end for
11: Output: r, which contains log p(xu | xo)

Algorithm 2 ACE Proposal Sampling

1: Input: xo, b, u
2: Set xcur = φ(xo;b) and bcur = b
3: Choose an arbitrary permutation u′ of u
4: for u′i in u′ do
5: Sample xu′

i
∼ q(xu′

i
| xcur;bcur)

6: Set xcur[u
′
i] = xu′

i

7: Set bcur[u
′
i] = 1

8: end for
9: Output: xcur, which contains the observed and imputed values

Algorithm 3 ACE Energy Sampling

1: Input: xo, b, u, N
2: Set xcur = φ(xo;b) and bcur = b
3: Choose an arbitrary permutation u′ of u
4: for u′i in u′ do
5: Draw samples {x(s)

u′
i
}Ns=1 from q(xu′

i
| xcur;bcur)

6: Compute importance weights for the N samples, as in Equation 6
7: Draw xu′

i
from the N samples according to the importance weights

8: Set xcur[u
′
i] = xu′

i

9: Set bcur[u
′
i] = 1

10: end for
11: Output: xcur, which contains the observed and imputed values

Table 6: UCI datasets used in our experiments.

Dataset Instances Dimensions

POWER 1.66M 6
GAS 852K 8
HEPMASS 315K 21
MINIBOONE 29.6K 43
BSDS 1M 63
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D Experimental and Implementation Details

We used a fully-connected residual architecture for both the proposal and energy networks. Each
network uses pre-activation residual blocks [13] and ReLU activations.

While the energy network only outputs one energy at a time, we can compute energies for every
unobserved dimension in parallel by processing them as a batch. A softplus activation is applied
to the network’s output to ensure energies are nonnegative. We also enforce an upper bound on the
energies by manually clipping the network outputs. This is equivalent to setting a lower bound on the
unnormalized likelihoods, and we found it improved stability during training. A bound of 30 worked
well in our experiments.

During training, we approximate normalizing constants with 20 importance samples from the proposal
distribution. Proposal distributions used 10 mixture components, and the minimum allowed scale of
each component was 0.001. A small amount of Gaussian noise was added to continuous values in
each batch of data during training, as we found it improved stability. The learning rate was linearly
annealed over the course of training. We used a warm-up period at the beginning of training where
only the proposal network is optimized so that importance sampling does not occur until the proposal
is sufficiently similar to the target distribution. Table 7 gives the hyperparameters that varied between
datasets. Evaluations were performed using the weights that produced the highest likelihoods on a set
of validation data during training.

All models except for MNIST were trained on two Tesla V100 GPUs, and training time varied from
roughly a few hours to a day depending on the dataset. The MNIST model trained on four Tesla
V100 GPUs for between one and two days. However, we note that multiple GPUs are not necessary
for good results — we found that state-of-the-art performance can still be achieved by training ACE
models on a single GPU with smaller batch sizes.

D.1 MNIST

When training on MNIST, images were scaled to the range [0, 1], and the reported likelihoods are
evaluated in that space.

For MNIST, we use a different masking scheme during training so that the model learns to inpaint
specific types of regions, such as square cutouts. The mask for each example is sampled from a
mixture of the following distributions:

• Bernoulli: Each pixel is randomly selected to be observed with probability p = 0.5.
• Half: The upper, lower, left, or right half of the image is randomly selected to be observed.
• Rectangular: A random rectangle within the image is selected to be unobserved, with the

constraint that the area of the rectangle is at least 30% of the image.
• Square: A square with a fourth of the area of the image is randomly selected to be

unobserved.

During training (but not at test time), each sampled mask was also overlaid with an additional
Bernoulli mask for p ∼ U(0.02, 0.98) in order to help simulate the distribution of masks that the
model will encounter during the autoregressive procedures it uses during inference. At test time, the
extra Bernoulli noise was not used when sampling masks.

ACFlow was trained analogously to ACE, using the authors’ code.

E Results

Table 8 presents the full UCI likelihood results with standard deviations. In the main text, the
imputation results are presented as a graph. We give the values that generated the graph, along with
standard deviations, in Table 9.
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Table 7: Dataset-specific hyperparameters.

HYPERPARAMETER POWER GAS HEPMASS MINIBOONE BSDS ADULT MNIST

Dropout 0.2 0.0 0.2 0.5 0.2 0.5 0.2
MSE Penalty Coef. 1.0 0.0 0.0 0.0 0.0 1.0 0.0
Training Steps 1600000 1000000 1000000 15000 1000000 40000 800000
Warm-up Steps 5000 5000 5000 100 5000 2500 100000
Training Noise Scale 0.003 0.001 0.001 0.005 0.001 0.005 0.01
Learning Rate 0.0001 0.001 0.0005 0.001 0.001 0.0005 0.0002
Batch Size 512 2048 2048 2048 2048 1024 64
Proposal Hidden Dim. 512 512 512 512 1024 512 1024
Proposal Res. Blocks 4 4 4 4 4 4 5
Proposal Latent Output Dim. 64 64 64 64 64 64 128

4 14 32 17 9 3 13 21

4 14 0 17 0 0 13 0

1 1 0 1 0 0 1 0
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�(xo;b)

Figure 5: We use a bitmask b and zero-imputing function φ(·;b) to ensure network inputs always
have the same shape, regardless of how many features are observed or unobserved. In the figure,
shaded cells correspond to observed features.
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Table 8: Arbitrary conditional log-likelihood
results for UCI datasets. Standard deviation
is over 5 trials with different observed masks.

Dataset Method Missing Rate LL Mean LL Std.

Power ACE 0.0 0.631 0.002
Power ACE Proposal 0.0 0.583 0.003
Power ACFlow 0.0 0.561 0.003
Power ACFlow+BG 0.0 0.528 0.003
Power VAEAC 0.0 -0.042 0.002
Power ACE 0.1 0.633 0.003
Power ACE Proposal 0.1 0.573 0.003
Power ACFlow 0.1 0.557 0.003
Power ACFlow+BG 0.1 0.510 0.003
Power VAEAC 0.1 -0.103 0.005
Power ACE 0.5 0.600 0.003
Power ACE Proposal 0.5 0.542 0.003
Power ACFlow 0.5 0.458 0.005
Power ACFlow+BG 0.5 0.417 0.005
Power VAEAC 0.5 -0.343 0.004
Gas ACE 0.0 9.643 0.005
Gas ACE Proposal 0.0 9.484 0.005
Gas ACFlow 0.0 8.086 0.010
Gas ACFlow+BG 0.0 7.593 0.011
Gas VAEAC 0.0 2.418 0.006
Gas ACE 0.1 9.526 0.007
Gas ACE Proposal 0.1 9.348 0.007
Gas ACFlow 0.1 7.568 0.005
Gas ACFlow+BG 0.1 7.212 0.008
Gas VAEAC 0.1 2.823 0.009
Gas ACE 0.5 8.530 0.007
Gas ACE Proposal 0.5 8.183 0.005
Gas ACFlow 0.5 5.405 0.008
Gas ACFlow+BG 0.5 4.818 0.009
Gas VAEAC 0.5 1.952 0.023
Hepmass ACE 0.0 -3.859 0.005
Hepmass ACE Proposal 0.0 -4.417 0.005
Hepmass ACFlow 0.0 -8.197 0.008
Hepmass ACFlow+BG 0.0 -6.833 0.006
Hepmass VAEAC 0.0 -10.082 0.010
Hepmass ACE 0.1 -4.255 0.003
Hepmass ACE Proposal 0.1 -4.796 0.003
Hepmass ACFlow 0.1 -7.784 0.006
Hepmass ACFlow+BG 0.1 -9.670 0.007
Hepmass VAEAC 0.1 -10.389 0.005
Hepmass ACE 0.5 -8.133 0.007
Hepmass ACE Proposal 0.5 -8.497 0.006
Hepmass ACFlow 0.5 -10.538 0.006
Hepmass ACFlow+BG 0.5 -10.975 0.006
Hepmass VAEAC 0.5 -11.415 0.012
Miniboone ACE 0.0 0.310 0.054
Miniboone ACE Proposal 0.0 -0.241 0.056
Miniboone ACFlow 0.0 -0.972 0.022
Miniboone ACFlow+BG 0.0 -1.098 0.032
Miniboone VAEAC 0.0 -3.452 0.067
Miniboone ACE 0.1 -0.688 0.046
Miniboone ACE Proposal 0.1 -1.328 0.057
Miniboone ACFlow 0.1 -5.150 0.053
Miniboone ACFlow+BG 0.1 -3.577 0.057
Miniboone VAEAC 0.1 -4.242 0.071
Miniboone ACE 0.5 -5.701 0.050
Miniboone ACE Proposal 0.5 -9.169 0.083
Miniboone ACFlow 0.5 -9.892 0.084
Miniboone ACFlow+BG 0.5 -10.849 0.105
Miniboone VAEAC 0.5 -9.051 0.079
BSDS ACE 0.0 86.701 0.008
BSDS ACE Proposal 0.0 85.228 0.009
BSDS ACFlow 0.0 81.827 0.007
BSDS ACFlow+BG 0.0 81.399 0.008
BSDS VAEAC 0.0 74.850 0.005
BSDS ACE 0.1 86.130 0.022
BSDS ACE Proposal 0.1 84.204 0.020
BSDS ACFlow 0.1 80.783 0.018
BSDS ACFlow+BG 0.1 79.745 0.017
BSDS VAEAC 0.1 74.313 0.015
BSDS ACE 0.5 80.613 0.027
BSDS ACE Proposal 0.5 75.767 0.131
BSDS ACFlow 0.5 75.050 0.010
BSDS ACFlow+BG 0.5 73.061 0.015
BSDS VAEAC 0.5 66.628 0.029

Table 9: Imputation results for UCI datasets. Stan-
dard deviation is over 5 trials with different observed
masks.

Dataset Method Missing Rate NRMSE Mean NRMSE Std.

Power ACE 0.0 0.828 0.002
Power ACE Proposal 0.0 0.828 0.002
Power ACFlow 0.0 0.877 0.001
Power ACFlow+BG 0.0 0.833 0.002
Power VAEAC 0.0 0.880 0.001
Power ACE 0.1 0.653 0.000
Power ACE Proposal 0.1 0.653 0.000
Power ACFlow 0.1 0.877 0.002
Power ACFlow+BG 0.1 0.836 0.002
Power VAEAC 0.1 0.881 0.003
Power ACE 0.5 0.831 0.000
Power ACE Proposal 0.5 0.831 0.000
Power ACFlow 0.5 0.890 0.000
Power ACFlow+BG 0.5 0.843 0.001
Power VAEAC 0.5 0.892 0.002
Gas ACE 0.0 0.335 0.027
Gas ACE Proposal 0.0 0.312 0.033
Gas ACFlow 0.0 0.567 0.050
Gas ACFlow+BG 0.0 0.369 0.016
Gas VAEAC 0.0 0.574 0.033
Gas ACE 0.1 0.135 0.014
Gas ACE Proposal 0.1 0.077 0.000
Gas ACFlow 0.1 0.588 0.025
Gas ACFlow+BG 0.1 0.384 0.018
Gas VAEAC 0.1 0.558 0.047
Gas ACE 0.5 0.404 0.052
Gas ACE Proposal 0.5 0.325 0.000
Gas ACFlow 0.5 0.488 0.030
Gas ACFlow+BG 0.5 0.421 0.016
Gas VAEAC 0.5 0.531 0.036
Hepmass ACE 0.0 0.830 0.001
Hepmass ACE Proposal 0.0 0.832 0.001
Hepmass ACFlow 0.0 0.909 0.000
Hepmass ACFlow+BG 0.0 0.861 0.001
Hepmass VAEAC 0.0 0.896 0.001
Hepmass ACE 0.1 0.610 0.000
Hepmass ACE Proposal 0.1 0.623 0.000
Hepmass ACFlow 0.1 0.908 0.001
Hepmass ACFlow+BG 0.1 0.863 0.001
Hepmass VAEAC 0.1 0.899 0.000
Hepmass ACE 0.5 0.858 0.000
Hepmass ACE Proposal 0.5 0.858 0.000
Hepmass ACFlow 0.5 0.938 0.000
Hepmass ACFlow+BG 0.5 0.890 0.000
Hepmass VAEAC 0.5 0.915 0.001
Miniboone ACE 0.0 0.432 0.003
Miniboone ACE Proposal 0.0 0.436 0.004
Miniboone ACFlow 0.0 0.478 0.004
Miniboone ACFlow+BG 0.0 0.442 0.001
Miniboone VAEAC 0.0 0.462 0.002
Miniboone ACE 0.1 0.346 0.001
Miniboone ACE Proposal 0.1 0.355 0.000
Miniboone ACFlow 0.1 0.533 0.005
Miniboone ACFlow+BG 0.1 0.468 0.003
Miniboone VAEAC 0.1 0.467 0.004
Miniboone ACE 0.5 0.497 0.000
Miniboone ACE Proposal 0.5 0.500 0.000
Miniboone ACFlow 0.5 0.614 0.004
Miniboone ACFlow+BG 0.5 0.582 0.007
Miniboone VAEAC 0.5 0.513 0.004
BSDS ACE 0.0 0.525 0.000
BSDS ACE Proposal 0.0 0.535 0.000
BSDS ACFlow 0.0 0.603 0.000
BSDS ACFlow+BG 0.0 0.572 0.000
BSDS VAEAC 0.0 0.615 0.000
BSDS ACE 0.1 0.389 0.000
BSDS ACE Proposal 0.1 0.407 0.000
BSDS ACFlow 0.1 0.610 0.000
BSDS ACFlow+BG 0.1 0.586 0.001
BSDS VAEAC 0.1 0.620 0.000
BSDS ACE 0.5 0.560 0.000
BSDS ACE Proposal 0.5 0.579 0.000
BSDS ACFlow 0.5 0.667 0.001
BSDS ACFlow+BG 0.5 0.645 0.000
BSDS VAEAC 0.5 0.666 0.001
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