Appendix

A Sampling from ACE

Sampling the proposal distribution can be performed in an autoregressive fashion where $x_{u_{i}}$ is sampled from $q\left(x_{u_{i}} \mid \mathbf{x}_{o}\right)$ then added to the observed set, at which point $x_{u_{i+1}}$ can be sampled. We do this until all unobserved features have been sampled. The pseudocode for this procedure is presented in Algorithm 2.
We also want to produce samples that come from the energy function. One drawback of energy-based models is that we are unable to analytically sample the learned distribution. However, there are several methods for obtaining approximate samples. We employ a modification of the proposal sampling procedure such that many proposal samples are drawn at each step, and a single sample is then chosen from that collection based on importance weights. As the number of samples goes to infinity, this is consistent with drawing samples from the energy distribution. The pseudocode for this procedure is presented in Algorithm 3 . We note that this method of sampling is closely related to sampling importance resampling [29].

B Algorithms

For convenience, we provide the procedure for ACE's test-time likelihood evaluation in Algorithm 1 and sampling in Algorithm 2 and Algorithm 3.

C Order Consistency

Because ACE can compute likelihoods by using any permutation of u, there are numerous ways to compute $p\left(\mathbf{x}_{u} \mid \mathbf{x}_{o}\right)$ for a given \mathbf{x}_{u} and \mathbf{x}_{o}. However, due to inaccuracies in the learned model, we may obtain different results depending on which ordering is used. This phenomenon has surfaced in prior work as well [33, 8], where it has been argued that different orderings can be treated as an advantageous ensemble of models. This perspective is certainly useful, but ideally, our model should give equivalent likelihoods for all orderings. In order to better understand ACE's susceptibility to this problem, as well as how it may be addressed, we do a straightforward experiment in which we fine-tune trained ACE models with an additional loss term that minimizes the variance of $p\left(\mathbf{x}_{u} \mid \mathbf{x}_{o}\right)$ computed (autoregressively) over 10 permutations of u. Intuitively, as the expected variance over all \mathbf{x} and \mathbf{b} goes to zero, the distributions induced by different orderings of u become the same and the model gives the same likelihood regardless of the chosen ordering.
Table 5 shows the results of these experiments. We find that ACE models can be effectively fine-tuned to produce more consistent likelihoods over different orderings, at almost no cost in performance in terms of the average likelihood. However, we see that if desired, even stronger consistency can be obtained for a slight tradeoff in the average likelihood.

Table 5: Log-likelihoods after different amounts of consistency fine-tuning. The number after the \pm is the average standard deviation of $p\left(\mathbf{x}_{u} \mid \mathbf{x}_{o}\right)$ when computed over 1000 randomly chosen orderings. The coefficient refers to the weight of the variance term in the loss during fine-tuning. The 0.0 coefficient refers to the model with which the fine-tuning was initialized.

Coefficient	0.0	0.5	1.0	2.0
POWER	0.622 ± 0.072	0.622 ± 0.063	0.620 ± 0.058	0.619 ± 0.051
GAS	9.583 ± 0.513	9.587 ± 0.457	9.556 ± 0.420	9.497 ± 0.376
HEPMASS	-3.555 ± 0.878	-3.669 ± 0.718	-3.823 ± 0.621	-4.090 ± 0.505

```
Algorithm 1 ACE Likelihood Evaluation
    Input: \(\mathbf{x}_{o}, \mathbf{x}_{u}, \mathbf{b}\)
    Set \(\mathbf{x}_{c u r}=\phi\left(\mathbf{x}_{o} ; \mathbf{b}\right)\) and \(\mathbf{b}_{\text {cur }}=\mathbf{b}\)
    Initialize \(r=0\)
    Choose an arbitrary permutation \(u^{\prime}\) of \(u\)
    for \(u_{i}^{\prime}\) in \(u^{\prime}\) do
        Compute \(\log p\left(x_{u_{i}^{\prime}} \mid \mathbf{x}_{\text {cur }}\right)\) using Equation 8
        Set \(r=r+\log p\left(x_{u_{i}^{\prime}} \mid \mathbf{x}_{\text {cur }}\right)\)
        Set \(\mathbf{x}_{\text {cur }}\left[u_{i}^{\prime}\right]=x_{u_{i}^{\prime}}\)
        Set \(\mathbf{b}_{\text {cur }}\left[u_{i}^{\prime}\right]=1\)
    end for
    Output: \(r\), which contains \(\log p\left(\mathbf{x}_{u} \mid \mathbf{x}_{o}\right)\)
```

```
Algorithm 2 ACE Proposal Sampling
    Input: \(\mathbf{x}_{o}, \mathbf{b}, u\)
    Set \(\mathbf{x}_{c u r}=\phi\left(\mathbf{x}_{o} ; \mathbf{b}\right)\) and \(\mathbf{b}_{c u r}=\mathbf{b}\)
    Choose an arbitrary permutation \(u^{\prime}\) of \(u\)
    for \(u_{i}^{\prime}\) in \(u^{\prime}\) do
        Sample \(x_{u_{i}^{\prime}} \sim q\left(x_{u_{i}^{\prime}} \mid \mathbf{x}_{\text {cur }} ; \mathbf{b}_{\text {cur }}\right)\)
        Set \(\mathbf{x}_{\text {cur }}\left[u_{i}^{\prime}\right]=x_{u_{i}^{\prime}}\)
        Set \(\mathbf{b}_{\text {cur }}\left[u_{i}^{\prime}\right]=1\)
    end for
    Output: \(\mathbf{x}_{c u r}\), which contains the observed and imputed values
```

```
Algorithm 3 ACE Energy Sampling
    Input: \(\mathbf{x}_{o}, \mathbf{b}, u, N\)
    Set \(\mathbf{x}_{c u r}=\phi\left(\mathbf{x}_{o} ; \mathbf{b}\right)\) and \(\mathbf{b}_{c u r}=\mathbf{b}\)
    Choose an arbitrary permutation \(u^{\prime}\) of \(u\)
    for \(u_{i}^{\prime}\) in \(u^{\prime}\) do
        Draw samples \(\left\{x_{u_{i}^{\prime}}^{(s)}\right\}_{s=1}^{N}\) from \(q\left(x_{u_{i}^{\prime}} \mid \mathbf{x}_{\text {cur }} ; \mathbf{b}_{\text {cur }}\right)\)
        Compute importance weights for the \(N\) samples, as in Equation 6
        Draw \(x_{u_{i}^{\prime}}\) from the \(N\) samples according to the importance weights
        Set \(\mathbf{x}_{\text {cur }}\left[u_{i}^{\prime}\right]=x_{u_{i}^{\prime}}\)
        Set \(\mathbf{b}_{\text {cur }}\left[u_{i}^{\prime}\right]=1\)
    end for
    Output: \(\mathbf{x}_{\text {cur }}\), which contains the observed and imputed values
```

Table 6: UCI datasets used in our experiments.

Dataset	Instances	Dimensions
POWER	1.66 M	6
GAS	852 K	8
HEPMASS	315 K	21
MINIBOONE	29.6 K	43
BSDS	1 M	63

D Experimental and Implementation Details

We used a fully-connected residual architecture for both the proposal and energy networks. Each network uses pre-activation residual blocks [13] and ReLU activations.

While the energy network only outputs one energy at a time, we can compute energies for every unobserved dimension in parallel by processing them as a batch. A softplus activation is applied to the network's output to ensure energies are nonnegative. We also enforce an upper bound on the energies by manually clipping the network outputs. This is equivalent to setting a lower bound on the unnormalized likelihoods, and we found it improved stability during training. A bound of 30 worked well in our experiments.
During training, we approximate normalizing constants with 20 importance samples from the proposal distribution. Proposal distributions used 10 mixture components, and the minimum allowed scale of each component was 0.001 . A small amount of Gaussian noise was added to continuous values in each batch of data during training, as we found it improved stability. The learning rate was linearly annealed over the course of training. We used a warm-up period at the beginning of training where only the proposal network is optimized so that importance sampling does not occur until the proposal is sufficiently similar to the target distribution. Table 7 gives the hyperparameters that varied between datasets. Evaluations were performed using the weights that produced the highest likelihoods on a set of validation data during training.

All models except for MNIST were trained on two Tesla V100 GPUs, and training time varied from roughly a few hours to a day depending on the dataset. The MNIST model trained on four Tesla V100 GPUs for between one and two days. However, we note that multiple GPUs are not necessary for good results - we found that state-of-the-art performance can still be achieved by training ACE models on a single GPU with smaller batch sizes.

D. 1 MNIST

When training on MNIST, images were scaled to the range $[0,1]$, and the reported likelihoods are evaluated in that space.
For MNIST, we use a different masking scheme during training so that the model learns to inpaint specific types of regions, such as square cutouts. The mask for each example is sampled from a mixture of the following distributions:

- Bernoulli: Each pixel is randomly selected to be observed with probability $p=0.5$.
- Half: The upper, lower, left, or right half of the image is randomly selected to be observed.
- Rectangular: A random rectangle within the image is selected to be unobserved, with the constraint that the area of the rectangle is at least 30% of the image.
- Square: A square with a fourth of the area of the image is randomly selected to be unobserved.

During training (but not at test time), each sampled mask was also overlaid with an additional Bernoulli mask for $p \sim \mathcal{U}(0.02,0.98)$ in order to help simulate the distribution of masks that the model will encounter during the autoregressive procedures it uses during inference. At test time, the extra Bernoulli noise was not used when sampling masks.

ACFlow was trained analogously to ACE, using the authors' code.

E Results

Table 8 presents the full UCI likelihood results with standard deviations. In the main text, the imputation results are presented as a graph. We give the values that generated the graph, along with standard deviations, in Table 9

Table 7: Dataset-specific hyperparameters.

HYPERPARAMETER	POWER	GAS	HEPMASS	MINIBOONE	BSDS	ADULT	MNIST
Dropout	0.2	0.0	0.2	0.5	0.2	0.5	0.2
MSE Penalty Coef.	1.0	0.0	0.0	0.0	0.0	1.0	0.0
Training Steps	1600000	1000000	1000000	15000	1000000	40000	800000
Warm-up Steps	5000	5000	5000	100	5000	2500	100000
Training Noise Scale	0.003	0.001	0.001	0.005	0.001	0.005	0.01
Learning Rate	0.0001	0.001	0.0005	0.001	0.001	0.0005	0.0002
Batch Size	512	2048	2048	2048	2048	1024	64
Proposal Hidden Dim.	512	512	512	512	1024	512	1024
Proposal Res. Blocks	4	4	4	4	4	4	5
Proposal Latent Output Dim.	64	64	64	64	64	64	128

Figure 5: We use a bitmask \mathbf{b} and zero-imputing function $\phi(\cdot ; \mathbf{b})$ to ensure network inputs always have the same shape, regardless of how many features are observed or unobserved. In the figure, shaded cells correspond to observed features.

Table 8: Arbitrary conditional log-likelihood results for UCI datasets. Standard deviation is over 5 trials with different observed masks.

Dataset	Method	Missing Rate	LL Mean	LL Std.
Power	ACE	0.0	0.631	0.002
Power	ACE Proposal	0.0	0.583	0.003
Power	ACFlow	0.0	0.561	0.003
Power	ACFlow+BG	0.0	0.528	0.003
Power	VAEAC	0.0	-0.042	0.002
Power	ACE	0.1	0.633	0.003
Power	ACE Proposal	0.1	0.573	0.003
Power	ACFlow	0.1	0.557	0.003
Power	ACFlow+BG	0.1	0.510	0.003
Power	VAEAC	0.1	-0.103	0.005
Power	ACE	0.5	0.600	0.003
Power	ACE Proposal	0.5	0.542	0.003
Power	ACFlow	0.5	0.458	0.005
Power	ACFlow+BG	0.5	0.417	0.005
Power	VAEAC	0.5	-0.343	0.004
Gas	ACE	0.0	9.643	0.005
Gas	ACE Proposal	0.0	9.484	0.005
Gas	ACFlow	0.0	8.086	0.010
Gas	ACFlow+BG	0.0	7.593	0.011
Gas	VAEAC	0.0	2.418	0.006
Gas	ACE	0.1	9.526	0.007
Gas	ACE Proposal	0.1	9.348	0.007
Gas	ACFlow	0.1	7.568	0.005
Gas	ACFlow+BG	0.1	7.212	0.008
Gas	VAEAC	0.1	2.823	0.009
Gas	ACE	0.5	8.530	0.007
Gas	ACE Proposal	0.5	8.183	0.005
Gas	ACFlow	0.5	5.405	0.008
Gas	ACFlow+BG	0.5	4.818	0.009
Gas	VAEAC	0.5	1.952	0.023
Hepmass	ACE	0.0	-3.859	0.005
Hepmass	ACE Proposal	0.0	-4.417	0.005
Hepmass	ACFlow	0.0	-8.197	0.008
Hepmass	ACFlow+BG	0.0	-6.833	0.006
Hepmass	VAEAC	0.0	-10.082	0.010
Hepmass	ACE	0.1	-4.255	0.003
Hepmass	ACE Proposal	0.1	-4.796	0.003
Hepmass	ACFlow	0.1	-7.784	0.006
Hepmass	ACFlow+BG	0.1	-9.670	0.007
Hepmass	VAEAC	0.1	-10.389	0.005
Hepmass	ACE	0.5	-8.133	0.007
Hepmass	ACE Proposal	0.5	-8.497	0.006
Hepmass	ACFlow	0.5	-10.538	0.006
Hepmass	ACFlow+BG	0.5	-10.975	0.006
Hepmass	VAEAC	0.5	-11.415	0.012
Miniboone	ACE	0.0	0.310	0.054
Miniboone	ACE Proposal	0.0	-0.241	0.056
Miniboone	ACFlow	0.0	-0.972	0.022
Miniboone	ACFlow+BG	0.0	-1.098	0.032
Miniboone	VAEAC	0.0	-3.452	0.067
Miniboone	ACE	0.1	-0.688	0.046
Miniboone	ACE Proposal	0.1	-1.328	0.057
Miniboone	ACFlow	0.1	-5.150	0.053
Miniboone	ACFlow+BG	0.1	-3.577	0.057
Miniboone	VAEAC	0.1	-4.242	0.071
Miniboone	ACE	0.5	-5.701	0.050
Miniboone	ACE Proposal	0.5	-9.169	0.083
Miniboone	ACFlow	0.5	-9.892	0.084
Miniboone	ACFlow+BG	0.5	-10.849	0.105
Miniboone	VAEAC	0.5	-9.051	0.079
BSDS	ACE	0.0	86.701	0.008
BSDS	ACE Proposal	0.0	85.228	0.009
BSDS	ACFlow	0.0	81.827	0.007
BSDS	ACFlow+BG	0.0	81.399	0.008
BSDS	VAEAC	0.0	74.850	0.005
BSDS	ACE	0.1	86.130	0.022
BSDS	ACE Proposal	0.1	84.204	0.020
BSDS	ACFlow	0.1	80.783	0.018
BSDS	ACFlow+BG	0.1	79.745	0.017
BSDS	VAEAC	0.1	74.313	0.015
BSDS	ACE	0.5	80.613	0.027
BSDS	ACE Proposal	0.5	75.767	0.131
BSDS	ACFlow	0.5	75.050	0.010
BSDS	ACFlow+BG	0.5	73.061	0.015
BSDS	VAEAC	0.5	66.628	0.029

Table 9: Imputation results for UCI datasets. Standard deviation is over 5 trials with different observed masks.

Dataset	Method	Missing Rate	NRMSE Mean	NRMSE Std.
Power	ACE	0.0	0.828	0.002
Power	ACE Proposal	0.0	0.828	0.002
Power	ACFlow	0.0	0.877	0.001
Power	ACFlow+BG	0.0	0.833	0.002
Power	VAEAC	0.0	0.880	0.001
Power	ACE	0.1	0.653	0.000
Power	ACE Proposal	0.1	0.653	0.000
Power	ACFlow	0.1	0.877	0.002
Power	ACFlow+BG	0.1	0.836	0.002
Power	VAEAC	0.1	0.881	0.003
Power	ACE	0.5	0.831	0.000
Power	ACE Proposal	0.5	0.831	0.000
Power	ACFlow	0.5	0.890	0.000
Power	ACFlow+BG	0.5	0.843	0.001
Power	VAEAC	0.5	0.892	0.002
Gas	ACE	0.0	0.335	0.027
Gas	ACE Proposal	0.0	0.312	0.033
Gas	ACFlow	0.0	0.567	0.050
Gas	ACFlow+BG	0.0	0.369	0.016
Gas	VAEAC	0.0	0.574	0.033
Gas	ACE	0.1	0.135	0.014
Gas	ACE Proposal	0.1	0.077	0.000
Gas	ACFlow	0.1	0.588	0.025
Gas	ACFlow+BG	0.1	0.384	0.018
Gas	VAEAC	0.1	0.558	0.047
Gas	ACE	0.5	0.404	0.052
Gas	ACE Proposal	0.5	0.325	0.000
Gas	ACFlow	0.5	0.488	0.030
Gas	ACFlow+BG	0.5	0.421	0.016
Gas	VAEAC	0.5	0.531	0.036
Hepmass	ACE	0.0	0.830	0.001
Hepmass	ACE Proposal	0.0	0.832	0.001
Hepmass	ACFlow	0.0	0.909	0.000
Hepmass	ACFlow+BG	0.0	0.861	0.001
Hepmass	VAEAC	0.0	0.896	0.001
Hepmass	ACE	0.1	0.610	0.000
Hepmass	ACE Proposal	0.1	0.623	0.000
Hepmass	ACFlow	0.1	0.908	0.001
Hepmass	ACFlow+BG	0.1	0.863	0.001
Hepmass	VAEAC	0.1	0.899	0.000
Hepmass	ACE	0.5	0.858	0.000
Hepmass	ACE Proposal	0.5	0.858	0.000
Hepmass	ACFlow	0.5	0.938	0.000
Hepmass	ACFlow+BG	0.5	0.890	0.000
Hepmass	VAEAC	0.5	0.915	0.001
Miniboone	ACE	0.0	0.432	0.003
Miniboone	ACE Proposal	0.0	0.436	0.004
Miniboone	ACFlow	0.0	0.478	0.004
Miniboone	ACFlow+BG	0.0	0.442	0.001
Miniboone	VAEAC	0.0	0.462	0.002
Miniboone	ACE	0.1	0.346	0.001
Miniboone	ACE Proposal	0.1	0.355	0.000
Miniboone	ACFlow	0.1	0.533	0.005
Miniboone	ACFlow+BG	0.1	0.468	0.003
Miniboone	VAEAC	0.1	0.467	0.004
Miniboone	ACE	0.5	0.497	0.000
Miniboone	ACE Proposal	0.5	0.500	0.000
Miniboone	ACFlow	0.5	0.614	0.004
Miniboone	ACFlow+BG	0.5	0.582	0.007
Miniboone	VAEAC	0.5	0.513	0.004
BSDS	ACE	0.0	0.525	0.000
BSDS	ACE Proposal	0.0	0.535	0.000
BSDS	ACFlow	0.0	0.603	0.000
BSDS	ACFlow+BG	0.0	0.572	0.000
BSDS	VAEAC	0.0	0.615	0.000
BSDS	ACE	0.1	0.389	0.000
BSDS	ACE Proposal	0.1	0.407	0.000
BSDS	ACFlow	0.1	0.610	0.000
BSDS	ACFlow+BG	0.1	0.586	0.001
BSDS	VAEAC	0.1	0.620	0.000
BSDS	ACE	0.5	0.560	0.000
BSDS	ACE Proposal	0.5	0.579	0.000
BSDS	ACFlow	0.5	0.667	0.001
BSDS	ACFlow+BG	0.5	0.645	0.000
BSDS	VAEAC	0.5	0.666	0.001

