
A Appendix

A.1 Additional Results on 50th Percentile Scores

In the main paper, we have provided results for the 100th percentile metric and here we provide
additional results on the 50th percentile metric, also used in the prior work design-bench, to verify
the effectiveness of BDI. Table 5 and Table 6, report 50th percentile results for continuous tasks and
discrete tasks, respectively. We can observe from Table 6 that BDI achieves the best result in terms
of ranking. Note that there is no randomness for BDI by the nature of the method, once the initial
design has been selected. To quantify the robustness of BDI to this starting design, we perturb each
initial design by performing a small gradient ascent step according to a trained DNN model on the
design. The mean and standard deviation are obtained over 8 different seeds. We can see that BDI is
robust to the randomness.

A.2 Analysis of multiple high-scoring designs

We now discuss the high-scoring design number M >1 scenarios and consider two cases: (a) all
M high-scoring designs are learnable; (b) only one high-scoring design is learnable and the other
M− 1 designs are fixed. In both cases, we set the predefined target score yh as 10. For case (a), we
first choose a design from the static dataset and perform M−1 gradient ascent steps on the design
to obtain the M−1 designs. Then BDI is performed between the static dataset and the M designs.
Finally, the design with the maximal predicted score among the M designs is chosen for evaluation.
For case (b), we choose M−1 designs from the static dataset along with their ground-truth scores and
then perform our BDI algorithm.

We report the results of cases (a) and (b) in Table 7 and Table 8, respectively. In both cases the M >1
settings work well but are generally worse than M = 1. One possible explanation is that BDI cannot
distill sufficient information from the static dataset into the high-scoring design when the other M− 1
designs also contribute to the backward mapping. As a result, the M = 1 setting yields a better result.

A.3 Computational Complexity

The only learnable part of BDI is Xh. Other coefficients, like (KXlXl
+ βI)−1yl in Eq. (12), can

be pre-computed. Thus the computational time of BDI consists of two parts: pre-computation and
gradient update. The main bottleneck of pre-computation lies in (KXlXl

+βI)−1yl, which results in
the O(N3) time complexity, where N is the size of the static dataset D. Note that the precomputation
time includes the kernel matrix construction. The N of the static dataset usually is not large which
means the computational time is usually reasonable, especially considering the potentially enormous
cost of evaluating the unknown objective function later in the design cycle.

In many real-world settings, for example, those that involve biological or chemical experiments,
the majority of the time in the production cycle will be spent on evaluating the unknown objective
function. As a result, the time difference between the methods for obtaining the high score design is
less significant in a real production environment.

Table 5: Experimental results of 50th on continuous tasks for comparison.
Method Superconductor Ant Morphology D’Kitty Morphology Hopper Controller
D(best) 0.399 0.565 0.884 1.000
BO-qEI 0.300± 0.015 0.567± 0.000 0.883 ± 0.000 0.343± 0.010

CMA-ES 0.379± 0.003 −0.045± 0.004 0.684± 0.016 −0.033± 0.005
REINFORCE 0.463 ± 0.016 0.138± 0.032 0.356± 0.131 −0.064± 0.003

CbAS 0.111± 0.017 0.384± 0.016 0.753± 0.008 0.015± 0.002
Auto.CbAS 0.131± 0.010 0.364± 0.014 0.736± 0.025 0.019± 0.008

MIN 0.325± 0.021 0.606 ± 0.025 0.886 ± 0.003 0.027± 0.115
Grad 0.400± 0.059 0.311± 0.046 0.736± 0.168 0.195± 0.086

COMs 0.365± 0.045 0.386± 0.083 0.685± 0.022 0.322± 0.032
ROMA 0.354± 0.014 0.383± 0.029 0.775± 0.009 0.358± 0.011
NEMO 0.359± 0.021 0.390± 0.028 0.800± 0.020 0.345± 0.034

BDI(ours) 0.408± 0.012 0.569± 0.000 0.875± 0.001 0.419 ± 0.003
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As for the gradient update, its computation bottleneck lies in the forward and backward passes of
NTK computation. We report the details of BDI computational time on different tasks in Table 9.
All experiments are performed on CPUs in the same cluster. For other gradient-based methods, the
computational time is on the same scale as BDI.

A.4 Predefined Target Scores

We report the unnormalized experimental results on different predefined target scores in Table 10 and
these results correspond to Figure 3 in the main paper. Recall that the ground truth score returned by
the evaluation oracle is y and we compute the normalized ground truth score as yn = y−ymin

ymax−ymin

where ymin and ymax represent the lowest score and the highest score in the full unobserved dataset,
respectively. We also report the normalized experimental results in Table 11. We can observe all
tasks are robust to yh. Although we set yh as 10, which is smaller than the maximal score 10.2 for
Hopper, BDI still yields a good result, which demonstrates the robustness of BDI.

A.5 Considering Sequential Nature

We adopt DNABert [51] and ProtBert [52] to model the sequential nature of DNA/protein sequences.
We conduct an ablation study, removing the backward mapping to verify its effectiveness. We also
remove the forward mapping to assess its importance. The following experiments demonstrate our
intuition: backward mapping matters.

For the DNA experiments, we consider the task with an exact oracle: TFBind8, and obtain the 100th
percentile results in Table 12. We can see that both the backward mapping and the forward mapping
matter in BDI. We further consider a harder task setting TFBind8(reduce) or TFBind8(r): reduce the
size of the offline dataset from 32896 to 5000. The results verify the effectiveness and the robustness
of bidirectional mappings.

For the protein experiments, we first consider the GFP task we used in our paper, and obtain the same
0.864 results for all variants, which is also mentioned in [1] “lack in-distinguishable results across all
methods”. To further investigate this problem, we introduce 5 new protein tasks used in recent works:
LACT, AMP, ALIP, LEV, and SUMO, and present the task details and the results in the following.

• LACT: We measure the thermodynamic stability of the TEM-1 β-Lactamase protein se-
quence. The oracle is trained on 17857 samples from [53, 54]. The bottom half of these
samples are used for offline algorithms.

• AMP: Antimicrobial peptides are short protein sequences that act against pathogens. We
use the 6760 AMPs from [55] to train the oracle and the bottom half of the AMPs for the
offline algorithms.

• ALIP: We measure the enzyme activity of the Aliphatic Amide Hydrolase sequence follow-
ing [56]. We use the 6629 samples from [56] to train the oracle and the bottom half of them
for the offline algorithms.

Table 6: Experimental results of 50th on discrete tasks & ranking on all tasks for comparison.
Method GFP TF Bind 8 UTR Rank Mean Rank Median
D(best) 0.789 0.439 0.593
BO-qEI 0.246± 0.341 0.439± 0.000 0.571± 0.000 6.0/11 5/11

CMA-ES 0.047± 0.000 0.537± 0.014 0.612± 0.014 7.1/11 10/11
REINFORCE 0.844± 0.003 0.462± 0.021 0.568± 0.017 7.4/11 10/11

CbAS 0.852 ± 0.004 0.428± 0.010 0.572± 0.023 7.4/11 9/11
Auto.CbAS 0.848± 0.007 0.419± 0.007 0.576± 0.011 7.9/11 8/11

MIN 0.427± 0.012 0.421± 0.015 0.586± 0.007 6.0/11 7/11
Grad 0.836± 0.000 0.439± 0.000 0.611± 0.000 5.4/11 5/11

COMs 0.737± 0.262 0.512± 0.051 0.608± 0.012 5.3/11 5/11
ROMA 0.541± 0.382 0.439± 0.000 0.592± 0.005 5.4/11 5/11
NEMO 0.146± 0.260 0.439± 0.000 0.590± 0.007 5.4/11 5/11

BDI(ours) 0.860 ± 0.010 0.595 ± 0.000 0.664 ± 0.000 1.6/11 1/11
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Table 7: Experimental results on different Ms with all high-scoring designs learnable.
Task Dbest M = 1 M = 2 M = 3 M = 4
GFP 0.789 0.864 0.864 0.864 0.864
TFB 0.439 0.973 0.973 0.973 0.973
UTR 0.593 0.760 0.762 0.757 0.757

SuperC 0.399 0.520 0.502 0.485 0.510
Ant 0.565 0.962 0.323 0.275 0.277

D’Kitty 0.884 0.941 0.717 0.718 0.718
Hopper 1.000 1.989 1.412 1.299 1.319

Table 8: Experimental results on different Ms with one high-scoring design learnable.
Task Dbest M = 1 M = 2 M = 3 M = 4
GFP 0.789 0.864 0.854 0.857 0.858
TFB 0.439 0.973 0.779 0.934 0.934
UTR 0.593 0.760 0.728 0.720 0.720

SuperC 0.399 0.520 0.508 0.483 0.485
Ant 0.565 0.962 0.169 0.174 0.214

D’Kitty 0.884 0.941 0.721 0.720 0.719
Hopper 1.000 1.989 1.378 1.815 1.354

Table 9: Computational time of BDI on different tasks.
Task GFP TFB UTR SuperC Ant D’Kitty Hopper

Size N 5000 32896 140000 17010 10004 10004 3200
Pre(mins) 0.2 4.1 64.5 1.2 0.5 0.5 0.1

Grad(mins) 67.1 9.3 93.6 9.1 7.6 9.8 54.6
Total(mins) 67.3 13.4 158.1 10.3 8.1 10.3 54.7

Table 10: Experimental results on different predefined target scores.
Task Dbest 5 10 15 20 25 30
GFP 1.444 6.294 6.294 6.294 6.294 6.294 6.294
TFB 1.480 8.409 8.462 8.462 8.239 8.239 8.239
UTR 7.116 8.796 9.120 8.532 8.676 8.820 8.868

SuperC 2.652 3.609 3.746 3.792 3.801 3.637 3.573
Ant 1.756 5.554 5.526 5.250 5.383 4.785 5.364

D’Kitty 0.934 1.190 1.194 1.167 1.176 1.176 1.176
Hopper 10.221 19.797 23.906 24.363 26.121 30.203 25.609

Table 11: Experimental results on different predefined target scores (normalized).
Task Dbest 5 10 15 20 25 30
GFP 0.789 0.864 0.864 0.864 0.864 0.864 0.864
TFB 0.439 0.969 0.973 0.973 0.956 0.956 0.956
UTR 0.593 0.733 0.760 0.711 0.723 0.735 0.739

SuperC 0.399 0.505 0.524 0.525 0.526 0.508 0.501
Ant 0.565 0.965 0.962 0.933 0.947 0.884 0.945

D’Kitty 0.884 0.940 0.941 0.935 0.937 0.937 0.937
Hopper 1.000 1.692 1.989 2.022 2.149 2.444 2.112

Table 12: Ablation studies on BDI components considering sequential nature.
Task TFB TFB(reduce) LACT AMP ALIP LEV SUMO
BDI 0.986 0.957 0.820 0.772 0.813 0.859 1.489

w/o Ll2h 0.954 0.849 −0.134 0.765 0.659 0.577 0.773
w/o Lh2l 0.952 0.900 0.550 0.753 0.699 0.556 0.596
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Table 13: Comparison between BDI and pure maximization.
Task GFP TFB UTR SuperC Ant D’Kitty Hopper

Best Result 0.865 0.973 0.760 0.520 0.962 0.941 1.989
Our BDI 0.864 0.973 0.760 0.520 0.962 0.941 1.989

Pure Maxi 0.520 0.911 0.937 1.830 0.864 0.956 0.734

Table 14: Experimental results on different predefined target scores (normalized).
Task/Weight 0.00 0.50 0.80 0.90 1.00 1.10 1.20 1.50 2.00

Ant 0.933 0.950 0.970 0.944 0.962 0.943 0.956 0.941 0.938
TFB 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973

• LEV: In an ATP-dependent reaction, LG can be converted by Levoglucosan kinase to the
glucose-6-phosphate. Following [57], we measure the enzyme activity of this reaction. All
7891 protein sequences are used to train the oracle and the bottom half are for the offline
algorithms.

• SUMO: Following [58], we measure the growth rescue rate of human SUMO E2 conjugase
protein. Around 2000 samples are used to train the oracle and the bottom half are used for
the offline algorithms.

As shown in Table 12, these results demonstrate the effectiveness of our backward mapping and
forward mapping. Besides the sequential nature, the structural information [59, 47] can also be
considered for protein design and we leave it to future work.

A.6 Comparison between Maximization and Regression

We change the regression to the pure maximization (Pure Maxi) of the predictions of the learned
objective function and report the experimental results on all tasks.

As we can see in Table 13, Pure Maxi results are generally worse than the regression form and we
conjecture that the advantage of the regression form arises due to the consistency between the forward
mapping and the backward mapping which both use the same predefined target score yh.

A.7 Varying Weights

We simply assign the forward mapping and the backward mapping equal weight since the two terms
are symmetric and thus viewed as equally important. In this subsection, we view the weight term of
the backward mapping as a hyperparameter and study the hyperparameter sensitivity on Ant and TFB
as we did in Sec 4.6.

For the ANT task, we find the results generally improve for any weight greater than zero. This
demonstrates the effectiveness of backward mapping.

For the TFB task, we find the behavior of BDI is identical for different weight terms. One possible
reason is that BDI here does not consider the sequential nature of DNA and thus the backward
mapping cannot provide significant performance gain as we have discussed before.

A.8 Analysis of Backward Mapping

In this subsection, we provide more visualization and analysis to verify the effectiveness of the
backward mapping. We use the NTK k(xi,xj) to measure the similarity between two points and
compute the similarity between the generated high-scoring design xh and the high-scoring designs
X in the offline dataset. This is defined as:

simi(xh,X) = mean(k(xh,X)). (15)

As shown in Table 15, we find that simi(xbackward
h ,X) >simi(xbdi

h ,X) >simi(xforward
h ,X).

This can be explained as follows. Since the backward mapping extracts the high-scoring fea-
tures from the offline dataset, xbackward

h is the closest to the high-scoring designs X in the offline
dataset and thus simi(xbackward

h ,X) is large. While encouraging the design xforward
h to explore

18



Table 15: Analysis of backward mapping.
Task BDI forward mapping backward mapping
Ant 0.0752 0.0739 0.0808
TFB 0.2646 0.2395 0.3570

a high score, the forward mapping alone leads to the design far from the offline dataset, and thus
simi(xforward

h ,X) is the smallest. BDI can explore a high score (forward mapping) and stay close to
the offline dataset (backward mapping), which leads to simi(xbdi

h ,X) between simi(xforward
h ,X)

and simi(xbackward
h ,X).
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