
Supplementary material for “Post-hoc estimators for learning to
defer to an expert”

A Proofs

A.1 Proof of Lemma 1

Proof. To show that our proposed loss is calibrated for the cost function cexp(x, y), we write out the
conditional risk for the loss:
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For any y 2 Y, the optimal scorer is thus

f⇤
y (x) = argmin

v2R
a(x) · �(v) + (1� a(x)) · �(�v)

a(x)
.
=
⌘y(x) + cmax � 1

cmax
.

Similarly, for the defer logit,
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By definition of a strictly proper composite loss [28], the optimal scorer f⇤ then takes the form:

 (f⇤
y0(x)) =

(
1

cmax
(⌘y0(x) + cmax � 1) if y0 2 [L]

1
cmax

�
cmax � Ey|x [c(x, y)]

�
if y0 =?,

where  is the inverse link function associated with �, and the corresponding classifier h̄⇤(x) 2
argmaxy02[L][{?} f
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as desired.

A.2 Proof of Theorem 2

Proof. The proof is similar to that of a regret bound in Narasimhan et al. [20, Lemma 14] for a general-
cost-sensitive risk. As noted in §4.1, we denote ⌘y(x) = P(y | x) and ⌘(x) .

= [P(1 | x), . . . ,P(L |

14



x)]>. We will denote the expected cost of deferring to the expert using Cexp(x)
.
= E

y|x
[cexp(x, y)] and

use Ĉexp(x) to denote an estimate of this quantity.
We then re-write the learning to defer risk in (1) in terms of ⌘(x) and Cexp(x):
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We also define an empirical version of the learning to defer risk, in which ⌘(x) is replaced by an
estimate ⇡(x) and the cost Cexp(x) is replaced by Ĉexp(x):
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Finally, consider an empirical version of the Bayes-optimal classifier in (3):
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The excess risk can then be expanded as:
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where the inequality in (17) follows from (16) with h = h⇤; the inequality in (18) follows from
Hölder’s inequality; and the inequality in (19) uses the fact that k⇡(x)k1 = 1 and 1(h̄(x) 6=?)  1.
The last step uses Hölder’s inequality.
Further expanding the inner 1-norm term in (20), we have for any x:
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where we use the fact that Cexp(x)  cmax and cmax � 1. Substituting this back in (20), we get:
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Setting Cexp(x) = P(y 6= hexp(x)) + c0 and Ĉexp(x) = ✏(x) + c0 completes the proof.

A.3 Proof of Lemma 3

Proof. The conditional risk for the loss is
E
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Consequently, since � is strictly proper composite, the Bayes-optimal must satisfy [28]  (r⇤(x)) =
a(x). Note that a(x) > 0.5 () E
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model exceeds that of querying the expert.

A.4 Proof of Theorem 4

Let h̄⇤ denote the Bayes-optimal classifier that minimizes the L2D risk in (13). We can re-write h̄⇤ in
terms of a base classifier and a rejector:

h̄⇤(x) =

⇢
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? else.

,
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Notice that h⇤ is also the Bayes-optimal classifier for the standard misclassification error Rerr(h).
We will find it useful to first define a normalized version of the L2D risk:
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where
L�(x, h, r) = E

y|x
[1(y 6= h(x))] · �(r(x)) + E

y|x
[cexp(x, y)] · �(�r(x)).

We will also find the following lemmas useful for proving the theorem.
Lemma 5. Suppose cexp(x, y) 2 [cmin, cmax] for some cmin > 0. Then for any fixed base classifier

ĥ, the normalized excess risks can be bounded in terms of the unnormalized excess risks as follows:
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Proof. Expanding the normalized excess misclassification risk, we have:
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L(x, ĥ, r̂)�min

z2R
L(x, ĥ, z)
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,

where in the second step, we use the fact that the optimal rejector is point-wise optimal, and in the
penultimate step, we use Z(x) = E

y|x
[1(y 6= h(x)) + cexp(x, y)]  1 + cmax.

Similarly, expanding the normalized excess surrogate risk, we have:
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def(ĥ, r̂)� min
r:X!R

R�
def(ĥ, r)
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where we have used the fact Z(x) � cmin.

The next lemma builds on Lemma 5 to provide a excess risk bound for the rejector.
Lemma 6. Suppose � is classification calibrated and cexp(x, y) 2 [cmin, cmax] for some cmin > 0.

Then for any fixed base classifier ĥ,

Rdef(ĥ, r̂)� min
r:X!R

Rdef(ĥ, r)   
✓
R�

def(ĥ, r̂)� min
r:X!R

R�
def(ĥ, r)

◆
,

for some increasing function  : R+ ! R+ with  (0) = 0.

Proof. Using the fact that � is classification calibrated, one can directly apply the surrogate excess
risk bounds from Bartlett et al. [3] to the normalized surrogate risk. Specifically, we first note that for
the label distribution q(x) = 1

Z(x) · Ey|x [1(y 6= h(x)], the normalized risks can be written as:

R̃def(h, r) = q(x) · �(r(x)) + (1� q(x)) · �(�r(x));
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R̃�
def(h, r) = q(x) · 1(r(x) < 0) + (1� q(x)) · 1(r(x) > 0).

We can then bound the excess normalized surrogate risk in terms of the excess normalized misclassifi-
cation risk:

R̃def(ĥ, r̂)� min
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◆
,

for some increasing function ⇣ : R+ ! R+ with ⇣(0) = 0.

We then apply Lemma 5 to lower bound the LHS and upper bound the RHS:
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Setting  (z) = (1 + cmax) · ⇣
⇣

1
cmin

· z
⌘

completes the proof.

We are now ready to prove Theorem 4.

Proof of Theorem 4. We have:
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(21)

We first bound the second term below:

min
r:X!R
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h
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i
� Ey|x [1(y 6= h⇤(x))]

i
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where the last step uses the fact that 1(r⇤(x) < 0)  1 and by definition of h⇤, Ey|x [1(y 6= h(x))] �
Ey|x [1(y 6= h⇤(x))] , for all classifiers h.
Substituting this back into (21) to bound the second term, and applying Lemma 6 to bound the first
term, we have:

Rdef(ĥ, r̂)�Rdef(h
⇤, r⇤)

  
✓
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◆
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i
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h:X![L]
E [1(y 6= h⇤(x))] ,

where  is some increasing function with  (0) = 0, and in the second inequality, we use the fact that
h⇤ is the Bayes-optimal classifier for the misclassification error.

B Learning to defer as cost-sensitive learning

For a classifier h : X ! Y, the misclassification error R(h) = P(y 6= h(x)) assumes that all
mispredictions are equally undesirable, and that the classifier can only output labels from Y. More
generally, cost-sensitive classification [11] seeks h : X ! Ŷ that minimises

Rcs(h) = E(x,y) [↵(x, y, h(x))] ,
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for cost function↵ : X⇥Y⇥Ŷ ! R+ and prediction space Ŷ. When Ŷ = Y and↵(x, y, ŷ) = 1(y 6= ŷ),
Rcs(h) = R(h). The Bayes-optimal cost-sensitive classifier is

(8x 2 X)h⇤(x) = argmin
ŷ2Ŷ

E
y|x

[↵(x, y, ŷ)] . (22)

In the learning to defer (L2D) problem [18], one seeks a classifier that can either make a standard
prediction in Y, or defer its prediction to an expert model hexp : X ! Y. Invoking an expert carries an
associated sample-dependent cost cexp(x, y) > 0, so as to prevent the classifier from deferring on all
samples. Concretely, let Ŷ = Y [ {?}, where ? denotes the “defer” option. Consider a classifier
h̄ : X ! Ŷ equipped with a “defer” option ?. Our goal is then to minimise

Rdef(h̄) = E(x,y)

⇥
↵(x, y, h̄(x))

⇤
for ↵(x, y, ŷ) =

⇢
1(y 6= ŷ) if ŷ 6=?
cexp(x, y) else.

(23)

C On the Bayes-optimal deferral logit and probability

We now detail the form of the Bayes-optimal defer logit f̄⇤
?(x) for the cost-sensitive softmax cross-

entropy, assuming that all other logits f̄1(x), . . . , f̄L(x) are fixed, and chosen arbitrarily. This is
slightly more general than (5), which considered the joint Bayes-optimal solution for all logits. This
analysis highlights two points: first, even when the other logits f̄1(x), . . . , f̄L(x) are chosen arbitrarily,
there is no dependence of the optimal defer probability p̄⇤?(x) on the logits f̄1(x), . . . , f̄L(x). Second,
as a qualifier to the above, there is however a dependence of the optimal defer logit f̄⇤

?(x) on the
logits f̄1(x), . . . , f̄L(x).
From (4), the cost-sensitive softmax cross-entropy has conditional risk

L(x, f̄(x)) = E
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⇥
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⇤
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4
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3
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=
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Z̄(x)
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exp(f̄?(x))

Z̄(x)
,

where Z̄(x)
.
= Z(x) + exp(f̄?(x)) and Z(x)

.
=

P
y02Y exp(f̄y0(x)). Thus, the terms involving

f̄?(x) are
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At optimality, for any choice of f̄1, . . . , f̄L, we thus have

L · (cmax � 1) + 1 + cmax � E

y|x
[cexp(x, y)]

�
· exp(f̄⇤

?(x))

Z(x) + exp(f̄⇤
?(x))
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[cexp(x, y)]

() p̄⇤?(x) =

cmax � E
y|x

[cexp(x, y)]

L · (cmax � 1) + 1 + cmax � E
y|x

[cexp(x, y)]
.

Thus, for any f̄1, . . . , f̄L, the probability assigned to the deferral label will be independent of these
logits. Note however that the deferral logit f̄⇤

? itself will necessarily depend on these logits: intuitively,
it serves to re-normalise the softmax probabilities of these logits to ensure p̄? takes the desired form.
Indeed, some simple algebra reveals that

f̄⇤
?(x) = logZ(x) + log

cmax � E
y|x

[cexp(x, y)]

L · (cmax � 1) + 1

= log

2

4
X

y02Y

exp(f̄y0(x))

3

5+ log

cmax � E
y|x

[cexp(x, y)]

L · (cmax � 1) + 1
. (24)

Thus, the Bayes-optimal defer logit has a non-linear dependence on the logits f̄1, . . . , f̄L. We further
remark that when the model class is f̄ is of insu�ciently high capacity, it may not be feasible to
achieve this Bayes-optimal solution (even though p̄⇤?(x) is relatively simple). For example, suppose
we parameterise f̄y0(x) = w>

y0�(x) + by0 . Then, it is not possible to express f̄⇤
?(x) from (24) in the

form w>
?�(x) + b?, since log

hP
y02Y exp(f̄y0(x))

i
is non-linear in �(x).

As a final remark, we note that the picture changes when considering the one-versus-all loss: here, re-

gardless of the choice of f̄1, . . . , f̄L the Bayes-optimal solution f̄⇤
? will be  �1

✓
1� E

y|x
[cexp(x, y)]

◆
.

This is owing to the decoupled nature of the loss; consequently, there is no influence of the other
logits on f̄⇤

?.

D General one-versus-all loss

We now present a more general form of the one-versus-all loss, where we allow for a generic cost
function ↵(x, y, h̄(x)) following (23). Consider a loss of the form

`(x, y, f̄(x)) =
X

y02Ŷ

[ayy0(x) · �(fy(x)) + byy0(x) · �(fy0(x))] (25)

for ayy0(x), byy0(x) 2 R. The conditional risk is

E
y|x

⇥
`(x, y, f̄(x))

⇤
=

X

y02Ŷ

[Ay0(x) · �(fy(x)) +By0(x) · �(fy0(x))] ,

where Ay0(x)
.
= E

y|x
[ayy0(x)] and By0(x)

.
= E

y|x
[byy0(x)]. The Bayes-optimal scorer for a strictly

proper composite loss with inverse link  is thus

(8x 2 X) (f⇤
y0(x)) =

Ay0(x)

By0(x) +By0(x)
(26)

Now observe that the Bayes-optimal solution for the cost-sensitive problem (22) is expressible as

h⇤(x) = argmax
ŷ2Ŷ

f⇤
y0(x)

f⇤
y0(x) = 1�

E
y|x

[↵(x, y, y0)]

↵max
,
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where ↵max is an upper bound on ↵(x, y, y0). Thus, if we set

ayy0(x) = 1� ↵(x, y, y0)

↵max

byy0(x) =
↵(x, y, y0)

↵max
,

the Bayes-optimal scorer in (26) will precisely yield  (f⇤
y0(x)) = 1�

E
y|x

[↵(x,y,y0)]
↵max

.

As a sanity check, when ↵ corresponds to the learning to defer risk, we have

ayy0(x) =

(
cmax�1(y 6=y0)

cmax
if y0 6=?

cmax�cexp(x,y)
cmax

if y0 =?

byy0(x) =

(
1(y 6=y0)
cmax

if y0 6=?
cexp(x,y)
cmax

if y0 =?,

which is seen to yield the OvA loss in (10).

E Summary of losses for learning to defer

Table 1 summarises various approaches for learning to defer. Each method employs a base loss
`(y, x, f(x); cbase) to train the base model with a base deferral cost cbase, and optionally optimizes a
rejector model using the rejector loss provided in (14) with the user-specified fixed deferral cost c0:

`rej(x, y, r(x); c0) = cmod(x, y) · �(r(x)) + (c0 + 1 (y 6= hexp(x))) · �(�r(x)).

Prior methods by Mozannar and Sontag [19] and Verma and Nalisnick [34] include the user-specified
cost c0 in the base loss, i.e., set cbase = c0, and do not train an explicit rejector. The proposed methods
in this paper set cbase = 0 in the base loss, and include c0 either as a part of a post-hoc thresholding

step, or as a part of the rejector loss in an explicit post-hoc training step.
We also include a variant where one minimizes the standard softmax cross-entropy loss `CE(y, f(x)) =
log

⇥P
y02Y efy0 (x)

⇤
� fy(x) to train the base model, and trains the rejector in a post-hoc manner.

F Parameterising the post-hoc rejector

In constructing the rejector model r : X ! R, it may be beneficial to paramterize it in terms of the
base model’s probabilities. For example, if the base loss is the CSS loss in (8), then we may want to
use a rejector of the form:

r(x) = g?(x) +
p̄?(x)

1� p̄?(x)
� max

y2[L]

p̄y(x)

1� p̄?(x)
,

where p̄ denotes a softmax transformation of the L + 1 logits from the fixed base model f̄ , and
g? : X ! R is a example-dependent bias term that we explicitly train.
Notice that if the first L probabilities from the base model accurately estimate the underlying
conditional-class probabilities, i.e., p̄y(x) / P(y | x), 8y 2 [L], and the reject probability is an
accurate estimate of the expert’s error, i.e., p̄?(x) / P(y 6= hexp(x)), then r(x) > 0 matches the
Bayes-optimal deferral decision when g?(x) = c0. In practice, the base model may not accurately
estimate either P(y | x) or the expert’s error, and therefore the additional term g?(x) that we train
can be seen as correcting errors in the base model’s estimates.
Table 1 also presents the rejector parameterisation for other base losses, such as the OvA loss and the
SOvA loss. In each case, the form of the rejector is chosen to recover the Bayes-optimal decision rule
when the base model provides calibrated probability estimates for P(y | x) and P(y 6= hexp(x)). We
employ these parameterisations in all our experiments in §5.
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Table 1: Summary of old and new approaches for learning to defer. We use f̄(x) and f(x) to denote scoring
functions with and without defer option ?. We use p̄(x) to denote a softmax transformation on all
L+ 1 logits of f̄ , and p(x) to denote a softmax transformation on the first L logits of either f or f̄ .
We use �(z) = 1

1+e�z to denote the sigmoid function. Rows 2–5 describe the post-hoc thresholding
approach in §4.1. Rows 6–8 describe the post-hoc training approach in §4.2.

Base Loss Rejector Loss Deferral rule Description

`CSS(y, x, f̄(x); c0) — maxy p̄y(x) < p̄?(x) Cost-sensitive CE [19]

`OVA(y, x, f̄(x); c0) — maxy f̄y(x) < f̄?(x) Cost-sensitive OVA [34]

`CSS(y, x, f̄(x); 0) — maxy p̄y(x) < (1 + c0) · p̄?(x)� c0 CSS + Post-thresholding

`OVA(y, x, f̄(x); 0) — maxy �
�
f̄y(x)

�
< �

�
f̄?(x)

�
� c0 OVA + Post-thresholding

`SOVA(y, x, f̄(x); 0) — maxy py(x) < �
�
f̄?(x)

�
� c0 SOVA + Post-thresholding

`CE(y, f(x)) `rej(y, x, r(x); c0), where r(x) > 0 CE + Post-hoc training

r(x) = g?(x)� max
y2[L]

py(x)

`CSS(y, x, f̄(x); 0) `rej(y, x, r(x); c0), where r(x) > 0 CSS + Post-hoc training

r(x) = g?(x) +
p̄?(x)

1� p̄?(x)
� max

y2[L]

p̄y(x)

1� p̄?(x)

`OVA(y, x, f̄(x); 0) `rej(y, x, r(x); c0), where r(x) > 0 OVA + Post-hoc training

r(x) = g?(x) + �
�
f̄?(x)

�
� max

y2[L]
�
�
f̄y(x)

�

`SOVA(y, x, f̄(x); 0) `rej(y, x, r(x); c0), where r(x) > 0 SOVA + Post-hoc training

r(x) = g?(x) + �
�
f̄?(x)

�
� max

y2[L]
py(x)

G Relation to di�erentiable triage paradigm

Okati et al. [22] consider a variant of the L2D setup where one is given a budget on the fraction of
examples on which the model is allowed to defer. The goal is to now learn a base model and deferral
rule satisfying this budget constraint. An analogous constrained setting has also been considered in
the adaptive inference literature [15]. One potential approach to incorporating post-hoc techniques
into this framework is to formulate an equivalent Lagrangian saddle-point problem, and perform
alternating stochastic updates on f̄ , and updates on the multiplier associated with the budget constraint.
Further exploring this would be of interest.

H Details of experiment parameters

H.1 Synthetic dataset

We construct a distribution P(x, y) =
P

a2{0,1} P(x, y, a) as follows. We fix P(a = 1) = 0.5,
P(y = 1 | a) = 0.5. For subgroup a = 0, we set P(x | y, a = 0) = N(µ(y,a),⌃(y,a)). We draw
the elements of µ(0,0)

0 ⇠ Unif(�2,�1), µ(0,0)
1 ⇠ Unif(�1,�1), and set µ(1,0)

0 = µ(0,0)
0 + z for

z ⇠ Unif(3, 4). We set ⌃(0,0) = ⌃(1,0) to be the identity matrix scaled by a random constant
s ⇠ Unif(0, 1). Observe that the Gaussians for a = 0 both have identical isotropic covariance. The
Bayes-optimal solution for the subgroup P(x, y | a = 0) is a linear classifier over the raw features x.
For subgroup a = 1, we draw ✓ ⇠ Unif(0, 2⇡), and set r = 5 + y. We then collect samples of the
form (r cos ✓, r sin ✓).

H.2 Real-world datasets

For all datasets, we perform minibatch SGD optimisation with momentum 0.9. Dataset specific
settings are given below.
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Quantity CIFAR-* ImageNet

Weight decay 10�4 5⇥ 10�4

Epochs 256 90
Batch size 1024 512
Learning rate: peak 1.0 0.4
Learning rate: warmup epochs 15 5
Learning rate: annealing Decay by 0.1 after 96th,

192nd, 224th epoch
Cosine

Data augmentation [14] [12]
Table 2: Details of hyperparameters for various datasets.

Figure 7: Illustration of underfitting of the cost-sensitive softmax cross-entropy (CSS) loss of Mozannar and
Sontag [19] on CIFAR-100. For the setup in Figure 1, we plot the margins in logit and probability
space as c0 is varied. These confirm that the range of scores shrinks as c0 increases.

I Additional experiments: underfitting of existing losses

I.1 Underfitting of cost-sensitive softmax cross-entropy

For the setting in Figure 1, Figure 7 shows plots of the logit margins fy(x)�maxy0 6=y fy0(x), and
the probability margins py(x)�maxy0 6=y py0(x). Both of these degrade as c0 increases, indicating
that the probability of the true label is increasingly confusable with that of other labels.

I.2 Underfitting of one-versus-all loss

For the setting in Figure 1, Figure 7 shows analogous plots for the one-versus-all loss of Verma and
Nalisnick [34]. From the top left panel, we see that as c0 increases, the training accuracy degrades.
There is a sharper transition here in the margin distributions as c0 becomes non-zero. Nonetheless, we
again see that while c0 = 0 produces highly confident predictions on the training set (e.g., from the
entropy plot), the introduction of c0 > 0 makes the predictions much less confident (e.g., as evident
from the entropy and margin plots).

I.3 Impact of expert cost function on underfitting

We emphasise here that the underfitting issues above are a consequence of incorporating a fixed
deferral cost c0 > 0 in addition to the expert error probability. In settings where c0 = 0, or where the
expert is assumed to be perfect, such an issue is not present. The former has been considered as part
of the plots in the previous section. The latter is potentially applicable in some settings, and indeed
corresponds to the classic learning to reject setting [2, 9, 6]. Here, we may set cmax = 1, and the
cost-sensitive softmax cross-entropy simplifies to

`CSS(x, y, f̄(x)) = � log(p̄y(x))� (1� c0) · log(p̄?(x)),

which is similar in nature to (8). As with (8), we will not exhibit severe underfitting as a result of the
loss only considering p̄y and p̄?, as opposed to all possible labels.
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Figure 8: Illustration of underfitting of the one-versus-all (OvA) loss of Verma and Nalisnick [34] on CIFAR-100.
These confirm that as with the CSS loss, the model underfits as c0 increases, which is a consequence of
shrinking margins and increased entropy.

Figure 9: Illustration of impact of choice of expert cost function on underfitting. We follow the same setup as
Figure 1 on CIFAR-100, but employ a constant expert cost cexp(x, y) = c0  1, with cmax = 1.
Here, we see that as c0 increases, there is no degradation of training accuracy. This is owing to this
choice of cost only corresponding to a mild form of label smoothing.

To confirm this, we repeat the CIFAR-100 experiment considered in Figure 1 with a constant cost of
cexp(x, y) = c0.

I.4 Impact of number of labels on underfitting

Figure 10 shows an analogue of Figure 1 for the CIFAR-10 dataset. We see largely similar trends,
although the magnitude of degradation is not as severe as CIFAR-100. This is consistent with our
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Figure 10: Illustration of underfitting of the cost-sensitive softmax cross-entropy (CSS) loss of Mozannar and
Sontag [19]. We repeat the setup in Figure 1 for the CIFAR-10 dataset. We see largely similar trends
as in CIFAR-100.

analysis of the large L setting being problematic, since the amount of label smoothing on all labels
scales with L.

J Additional experiments: quality of one-versus-all probability estimates

We demonstrate that the probabilities p̄1, . . . , p̄L for the standard labels obtained from the one-versus-
all loss (OvA) may underperform those obtained from the hybrid softmax cross-entropy plus OvA loss.
Figure 11 compares the distribution of the log-loss � log p̄y(x), the entropy normalised by logL, and
the logit and probability margins. We see that the hybrid softmax cross-entropy plus OvA loss results
in consistently lower log-loss values, as well as entropies and margins. Intuitively, the latter suggests
that in the regular OvA loss, there are multiple labels y0 for which f̄y0 is large, resulting in multiple
large p̄y0 values. As a qualifying comment, the value of OvA probabilities has been demonstrated in
out-of-domain settings [23]; it is of interest to further study the intersection of this with the deferral
setup considered in the present work.
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Figure 11: Comparison of standard OvA loss with hybrid softmax cross-entropy plus OvA, CIFAR-100 dataset.
We see that the hybrid softmax cross-entropy plus OvA loss results in consistently lower log-loss
values, as well as entropies and margins.
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K Additional experiments: OvA and SOvA losses under di�erent post-hoc
schemes

We explained in §4.1 why the hybrid softmax cross-entropy plus OvA loss is well-suited for use with
post-hoc thresholding approach, and provided empirical evidence in the previous section to showcase
why it is a better alternative to the standard OvA loss. For the sake of completeness, we compare the
performance of these losses when combined with both the post-hoc schemes proposed in this paper.
Figure 12 presents results for all four combinations (OvA and SOvA with c0 = 0 coupled with either
post-hoc thresholding and post-hoc training) on the CIFAR-10 and CIFAR-100 datasets in a learning
to defer setting where the base models can defer to “specialist” experts (§5.2). On both datasets, it is
one of the SOvA-based post-hoc approaches that performs the best for most operating points. Between
the two post-hoc thresholding approaches, the one that uses the SOvA loss is clearly seen to yield
significantly higher accuracies than the OvA loss.
We also plot the results from two additional baselines. The first is post-hoc training on a base model
trained with the standard softmax cross-entropy (CE) loss. The fact that this baseline is seen to
under-perform for most deferral costs highlights the benefit of using a loss that explicitly allows the
base model to defer to the expert. The second is the confidence-based approach of Raghu et al. [26],
where one trains a base model using the CE loss, then trains a model to get confidence estimates for
the expert, and compares the base model’s confidence scores with those estimated for the expert to
decide whether to defer on an example. For the confidence estimation, we adopt the same architecture
as the post-hoc rejector we use in our post-hoc training scheme, namely a linear model on top of the
embeddings learned by the first model, and train it with the logistic loss to predict whether the expert
classifies a given training example correctly. As seen, at least one of the proposed post-hoc schemes
outperforms the baseline on almost all operating points, highlighting the benefit of training the defer
logit jointly with the base model.
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Figure 12: Additional results on CIFAR-10 (left), and CIFAR-100 (middle) in a learning to defer setting where a
base model is allowed to defer to a “specialist” expert (same setting as in Figure 5). We compare the
post-hoc thresholding and post-hoc training approaches with either the one-vs-all (OvA) loss or the
hybrid softmax cross-entropy plus OvA loss (SOvA) loss used to train the base model. We additionally
include post-hoc training on a base model trained with the softmax cross-entropy (CE) loss and the
confidence-based approach of Raghu et al. [26]. The post-hoc training methods use the rejector
parameterisations in Table 1.

L Additional experiments: OvA and CSS losses with di�erent post-hoc
thresholding rules

In another set of experiments, we train the base model using the OvA and CSS losses (with c0 = 0), and
apply the post-hoc thresholding rule in (11) to defer on an example. We also include a variant of this
approach, where we train using the OvA and CSS losses (with c0 = 0), ignore the defer logit, and apply
Chow’s rule [8] with cexp(x, y) = c0 to defer on an example. The latter approach does not explicitly
take the expert’s error into account. Figure 13 presents comparisons of all four combinations OvA and
CSS losses with two the di�erent thresholding schemes. We additionally include the standard Chow’s
rule for learning to reject with a constant rejection cost c0 (CE + Chow), and the proposed scheme of
training the base model using the SOvA loss (with c0 = 0) and applying our post-hoc thresholding
rule (SOvA + Post-hoc Thresholding). The proposed post-hoc thresholding approach is seen to yield a
higher accuracy than all the baselines at most operating points. Also, we see that, as expected, the use
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Figure 13: Additional results on CIFAR-10 (left), CIFAR-100 (middle), and ImageNet (right) in a learning
to defer setting where a base model is allowed to defer to a “specialist” expert (same setting as in
Figure 5). We compare for all four combinations of OvA and CSS losses (with c0 = 0) coupled with
either Chow’s rule or the post-hoc thresholding rule in (11). We also include the standard Chow’s rule
where the base model is trained with the CE loss and our proposed post-hoc thresholding approach
where the base model is trained with the SOvA loss.

of Chow’s thresholding rule generally under-performs a post-hoc thresholding scheme that explicitly
takes the expert’s error into account.

M Additional plots: deferral risk in (1) vs c0

The plots in the main body show the tradeo� between the fraction of samples deferred to the experts,
and the accuracy. In these plots, the role of the fixed cost c0 is implicit, with high fixed costs translating
to a small fraction of samples deferred to the expert. We may also make the role of c0 explicit, by
studying how varying c0 a�ects the deferral risk in (1). These are presented in Figures 14 and 15. As
with Figures 5 and 6, we see that the CSS and OvA losses tend to underperform at high fixed costs
c0. Figures 16 and 17 further show the accuracy of the final classifier as a function of c0. Again, we
observe that the CSS and OvA accuracy tends to su�er as c0 is increased. With the adaptive inference
experiments, CSS and OvA tend to defer a large proportion of the examples to the expert even at higher
costs (Figure 18), and as a result yield a higher accuracy, but with poorer deferral risk.
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Figure 14: Results on CIFAR-10 (left), CIFAR-100 (middle), and ImageNet (right) in a learning to defer setting,
where a base model is allowed to defer to a “specialist” expert. Here, we vary the fixed cost c0 and
study the resulting learning to defer risk (1).
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Figure 15: Results on CIFAR-100 (left), and ImageNet (right) in an adaptive inference setting, where a
computationally cheap base model is allowed to defer to a more expensive expert. Here, we vary the
fixed cost c0 and study the resulting learning to defer risk (1).
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Figure 16: Results on CIFAR-10 (left), CIFAR-100 (middle), and ImageNet (right) in a learning to defer setting,
where a base model is allowed to defer to a “specialist” expert. Here, we vary the fixed cost c0 and
study the resulting accuracy of the final classifier.
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Figure 17: Results on CIFAR-100 (left), and ImageNet (right) in an adaptive inference setting, where a
computationally cheap base model is allowed to defer to a more expensive expert. Here, we vary the
fixed cost c0 and study the resulting accuracy of the final classifier.
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Figure 18: Results on CIFAR-100 (left), and ImageNet (right) in an adaptive inference setting, where a
computationally cheap base model is allowed to defer to a more expensive expert. We vary the fixed
cost c0 and plot the resulting proportion of samples deferred to the expert.
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