
Supplementary Material of Neighborhood
Reconstructing Autoencoders

1 Experimental Details

In what follows we will call each experiment by its corresponding figure or table number for
convenience.

1.1 Dataset

Except for a few synthetic data whose generation processes are described in the main script (Figure
4, 7), we use the standard benchmark datasets downloaded from TorchVision library. For the
rotated/shifted MNIST images (Figure 8, 9), we use the Affine transformation function in the
TorchVision library.

For Figure 5, we select the first 100 images of digit 8 from 50000 training data in the original MNIST
dataset and rotate by 3.6 degrees 100 times to generate a new 10000 training data. For Figure 6, we
use the entire 50000 training data for training. For the rotated MNIST of digit 3 in Figure 8, we select
the first image of digit 3 from the original MNIST dataset and rotate by 9 degrees 20 times to generate
a new 20 training data. For the shifted MNIST of digit 7 in Figure 8, we select the first image of
digit 7 from the original MNIST dataset and transform with scale 0.8 and shift range [-10,10] to
generate 20 training data. For Figure 9, we select the first image of digit 6 from the original MNIST
dataset and rotate by 9 degrees 20 times to generate a new 20 training data. For Figure 10, we use the
1000,2000,...,10000 training data selected from the training dataset, 10000 validation data, and 50000
test data.

In experiments (Table 2, 3, 4, 5), we use either or both of the Large (L) and Small (S) dataset for
the standard benchmark vision data: MNIST, FMNIST, KMNIST, Omniglot, SVHN, CIFAR10,
CIFAR100, CELEBA. The large denotes the use of entire public data where training, validation,
and test splits are (50000,10000,10000) for MNIST, FMNIST, KMNIST, (15000,4280,13180) for
Omnigolot, (60000, 13257, 26032) for SVHN, (45000,5000,10000) for CIFAR10, CIFAR100,
and (162770,19867,19962) for CELEBA. The small denotes the use of 20 to 30 percents of the
entire public training data where training, validation, and test splits are (10000,2000,50000) for
MNIST, FMNIST, KMNIST, SVHN, CIFAR10, CIFAR100, (8000,1000,4180) for Omnigolot, and
(50000,10000,100000) for CELEBA. For Table 2, we use the large dataset. For Table 3, we use both
large and small datasets. For Table 4 and 5, we use the small dataset.

1.2 Network Architecture

In this paper, we use fully connected neural network and convolutional neural network. For VAE,
we use the Gaussian encoders whose output dimension is always doubled to represent both mean
and variance, and use the isotropic Gaussian decoders with trainable variances. For DAE, we use the
Gaussian noise in training. For WAE, we use the MMD loss and median heuristic.

Fully connected neural network (Figure 4, 5, 6, 7, 8, 9, 10) For Figure 4, we use the networks
of size (2-1024-1024-1) and (1-1024-1024-2) with ReLU activation functions for the encoder and
decoder, respectively. For Figure 5, we use the networks of size (784-1024-1024-1024-2) and (2-
1024-1024-1024-784) with ReLU activation functions for the encoder and decoder, respectively. For

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 6, we use the networks of size (784-500-500-2) and (2-500-500-784) with Softplus activation
functions (a smooth approximation of the ReLU function) for the encoder and decoder, respectively.
For Figure 7, we use the networks of size (2-512-512-1) and (1-512-512-2) with ReLU activation
functions for the encoder and decoder, respectively. For the rotated MNIST of digit 3 in Figure 8, we
use the networks of size (784-32-32-1) and (1-32-32-784) with ReLU activation functions for the
encoder and decoder, respectively. For the shifted MNIST of digit 7 in Figure 8, we use the networks
of size (784-128-128-128-128-1) and (1-128-128-128-128-784) with ReLU activation functions for
the encoder and decoder, respectively. For Figure 9, we use the networks of size (784-512-512-2)
and (2-512-512-784) with ReLU activation functions for the encoder and decoder, respectively,
where the latent values are normalized after encoding. For Figure 10, we use the networks of size
(784-512-512-m) and (m-512-512-784) with ELU activation functions for the encoder and decoder,
respectively. m is 16, 32, and 32 for MNIST, FMNIST, and KMNIST, respectively.

Convolutional neural network (Table 2, 3, 4, 5) We will denote a convolution and deconvolution
layer by Conv2d(a,b,c,d,e) and ConvTranspose2d(a,b,c,d,e), respectively, where a is the number of
input channel, b is the number of output channel, c is the kernel size, d is the stride (biases are always
set True), and e is the padding. We use ReLU activation functions.

For MNIST, FMNIST, KMNIST, Omniglot whose image sizes are (1,28,28), we use the convolutional
encoder networks

Conv2d(1,128,3,2,0) - Conv2d(128,256,3,2,0) -
Conv2d(256,512,3,2,0) - Conv2d(512,1024,3,2,0) - Conv2d(1024,zdim,1,1,0),

and the decoder networks

ConvTranspose2d(zdim,1024,8,1,0) - ConvTranspose2d(1024,512,3,2,1) -
ConvTranspose2d(512,256,2,2,1) - ConvTranspose2d(256,1,1,1,0),

where zdim is 16,32,32,32, respectively.

For SVHN, CIFAR10, CFIAR100 whose image sizes are (3,32,32), we use the convolutional encoder
networks

Conv2d(3,128,4,2,0) - Conv2d(128,256,4,2,0) -
Conv2d(256,512,4,2,0) - Conv2d(512,1024,2,2,0) - Conv2d(1024,zdim,1,1,0),

and the decoder networks

ConvTranspose2d(zdim,1024,8,1,0) - ConvTranspose2d(1024,512,4,2,1) -
ConvTranspose2d(512,256,4,2,1) - ConvTranspose2d(256,3,1,1,0),

where zdim is 64,128,128, respectively.

For CELEBA whose image size is (3,64,64), we use the convolutional encoder networks

Conv2d(3,128,5,2,0) - Conv2d(128,256,5,2,0) -
Conv2d(256,512,5,2,0) - Conv2d(512,1024,5,2,0) - Conv2d(1024,zdim,1,1,0),

and the decoder networks

ConvTranspose2d(zdim,1024,8,1,0) - ConvTranspose2d(1024,512,4,2,1) -
ConvTranspose2d(512,256,4,2,1) - ConvTranspose2d(256,128,4,2,1) -

ConvTranspose2d(128,3,1,1,0),

where zdim is 128.

1.3 Training Details

We first introduce how we choose the hyperparameter for each algorithm and experiment. AE, VAE
do not have hyperparameters, WAE, CAE, SPAE have the regularization coefficients, DAE has the
noise level, and NRAE-L, NRAE-Q have λ. For NRAE, we fix the number of nearest neighbors

2

as 15 for MNIST, FMNIST, KMNIST, Omniglot, SVHN, CELEBA (S) and 30 for CIFAR10,
CIFAR100, CELEBA (L). We note that these values are not found through extensive search processes,
nevertheless, our algorithms show good results. The same numbers of nearest neighbors are used for
SPAE except for the CELEBA where we choose 15 nearest neighbors because the computational
complexity of SPAE largely increases as the number of nearest neighbors increases.

For experiments that show qualitative results (Figure 4, 5, 6, 7, 8, 9), we try our best for searching
proper hyperparameters for all experiments. For experiments that show quantitative results, we select
the best hyperparameters based on the reconstruction error metrics evaluated with the validation
data. For Figure 10, Table 3, the regularization coefficients for CAE, WAE are searched around
0.01 ∼ 0.001, the noise level used in DAE is searched around 0.1 ∼ 0.01, and the regularization
coefficient and λ for SPAE and NRAE are searched around 0.001 ∼ 0.0001. For Table 2, we use
the best hyperparameters selected from the Table 3, 5 except for the DAE (we use the same noise
statistics for DAE in training as the added noise statistics). For Table 4, we search the parameters
over the joint hyperparameter spaces.

For Figure 10 and Table 3, 4, 5, we use the Adam optimizer with learning rates 0.001 ∼ 0.0001 for
1000 epochs using 100 batch size. We use the following early-stopping criteria: we stop the training
if the mean reconstruction error on validation data increases 10 times in a row. For Table 2, we did
not use the early-stopping since we do not have clean data in this setting.

In experiments, we use the following GPU: TITAN X (Pascal), GeForce GRX 1080 Ti, GeForce RTX
2080 Ti, GeForce RTX 3090, each of which RAM has 10 ∼ 24 GB memory. For CAE, we need 24
GB RAM. We did not use multiple GPUs for each experiment; a single machine is enough to run the
experiments.

2 Additional Experimental Results.

2.1 Computational Time

In this section, all experiments are performed on TITAN X (Pascal) with 12GB RAM. We first
compare the per-epoch runtime of NRAE with the vanilla AE, VAE and the graph-based method
TopoAE in Table 1. The runtime of TopoAE is adopted from the original paper, and we take
experiments of AE, VAE, and NRAE with the same setting (100 batch size with MNIST dataset, 3
hidden FC layers). Although the device and other environments used in TopoAE experiment can be
different from those used in our experiments, as shown in Table 1, the difference in computational
time is big enough to compensate those differences in devices and environments. As discussed in
the main script, TopoAE-like methods that require to compute the topological features using the
persistent homology at every training iteration are yet computationally very expensive.

Table 1: Comparisons of the per-epoch runtime with 100 batch size with MNIST dataset. The network
architecture is composed of 3 hidden FC layers (1000-500-250) and (250-500-1000) for the encoder
and decoder, respectively, with two-dimensional latent space (The runtime of TopoAE is adopted
from the original paper).

AE VAE NRAE-L NRAE-Q TopoAE
time (s) 1.74 2.17 3.13 4.15 68

Using the fully connected neural networks, we compute the per-epoch runtimes (100 batch size and
50000 training data) of our algorithms and the baselines (Figure 1). Firstly, we compute the per-epoch
runtimes by changing the input dimension as 100, 500, 1000, 3000, 5000. The runtime of CAE
rapidly increases because it uses the full Jacobian in the loss function, and, when the input dimension
is beyond 1000, we couldn’t run the experiments due to the GPU memory limitation. On the other
hand, the runtimes of our algorithms are comparable with other existing methods. Secondly, we
compare the runtimes of our algorithms with the graph-based method SPAE by changing the number
of nearest neighborhood points. The runtime of the SPAE linearly increases (logarithmic in the graph)
since it requires to compute the forward pass of the encoder function as many times as the number of
neighborhood points during training. In contrast, our algorithms can use the batch sampling method
for the neighborhood points, thus the runtimes maintain constant.

3

Figure 1: The per-epoch runtimes as the functions of the input dimension (left) and the number of
nearest neighbors (right).

2.2 Robustness to the Choice of the Number of Nearest Neighbors

It is reasonable to ask how robust the NARE is to the choice of the number of nearest neighbors. We
take an experiment with the MNIST dataset to show its behavior given varying number of nearest
neighbors. Figure 2 shows the test mean reconstruction errors of NRAE as a function of the number
of nearest neighbors compared to the other baselines. As shown in the figure, the generalization
performances of NRAE are mostly better than the other baselines robustly to the number of nearest
neighbors.

Figure 2: Comparisons of the test mean reconstruction errors of NRAE and baseline AEs. For NRAE,
we report the results as a function of the number of nearest neighbors.

2.3 Robustness to the Choice of the Batch Size

In the main script, we set the neighborhood batch size two. We have conducted additional experiments
to test the robustness of our approach to the choice of neighborhood batch size (We use MNIST
data with a 16-dimensional latent space). For batch sizes (2, 4, 6, 8, 10, 12), the corresponding
reconstruction losses of NRAE-L are (0.00953, 0.00952, 0.00950, 0.00952, 0.00955, 0.00945), while
those of NRAE-Q are (0.00968, 0.00966, 0.00975, 0.00983, 0.00975, 0.00982), which we think is
quite robust.

2.4 Extension of the Table 3

In Table 3 of the main script, we only report the test MSE as a measure of the generalization
performance due to the space limitation. To better understand the algorithms, here we report the
following additional measures: the Frechet-Inception Distance (FID) scores and the Evidence Lower
Bound (ELBO). Also, to see the variances of the algorithms, we repeat the experiments with small
datasets five times to compute and report the standard errors of the test MSEs.

FID score and ELBO While the mean reconstruction error is one of the most intuitive methods
to measure the difference between data, there are other similarity measures frequently used in the
community. The Frechet-Inception Distance (FID) score is a measure of similarity between two
datasets of images. It was shown to correlate well with human judgement of visual quality and is most
often used to evaluate the quality of generated samples. FID score is calculated by computing the

4

Fréchet distance between two Gaussians fitted to latent feature representations of two sets of images.
We measure the FID score with a provided model from github.com/mseitzer/pytorch-fid.

As another way to measure the quality of the learned manifold or generalization performance, we
convert the trained deterministic models to stochastic models and compare the Evidence Lower
Bound (ELBO) (a lower bound of log probability) evaluated with the test data.

Once fθ and gφ of autoencoder are trained, adopting the idea in [1], we define a latent variable model
to estimate pD(x) as follows:

pσ,γ(x) =

∫
z

pσ(x|z)pγ(z)dz, (1)

where pγ(z) is a parametric density model such as the normalizing flow models [3, 4, 6, 5], and
pσ(x|z) is the stochastic decoder defined as the Gaussian ansatz:

pσ(x|z) :=
1√

(2π)n
∏n
i=1 σ

2
i

exp(−1

2

n∑
i=1

(xi − (fθ(z)i))
2

σ2
i

), (2)

where the noise covariance is the diagonal matrix with σ = (σ1, . . . , σn). We interpret the determin-
istic encoder function gθ as a stochastic encoder qε(z|x) = N (gθ(x), ε

2I) with a learnable scalar
parameter ε, and train pσ,γ and qε(z|x) by maximizing the evidence lower bound (ELBO) as in
variational autoencoders training [7] (θ, φ are fixed during training), where the ELBO at data point x
is obtained as follows:

ELBO(x) = Eqε(z|x)[log pσ(x|z)]−DKL(qε(z|x)||pγ(z)), (3)

where DKL is the KL-divergence. We use the realnvp model [4] for pγ where the depth is 8, the
lengths of hidden vectors are 32, and resale and permutation are set true.

Test Reconstruction MSEs, FID scores, and ELBOs. As shown in Table 2, the ELBOs are likely
to be high if the MSEs are low because the learned density functions tend to assign high probability
densities to the test data whose reconstruction errors are low. The NRAE-L and NRAE-Q mostly
show lower MSEs and higher ELBOs than the other baselines. However, for some cases such as
the FMNIST, KMNIST, and Omniglot, the CAE or SPAE produce higher ELBOs even though their
MSEs are higher than the NRAEs. This is because the ELBOs not only depend on the quality of
the learned manifolds but also how easily their encoded latent space distributions can be fit with
the normalizing flow models pγ (i.e., minimizing the KL-divergence term). The MSE and ELBO
results in Table 2 imply that the NRAE-L and NRAE-Q i) mostly learn better manifolds (i.e. low
MSEs) than the other baselines yet sometimes ii) produce latent space distributions that are difficult
to be learned with pγ . Although studying how to train the autoencoder in a way that its latent space
distribution can be easily learned is an out-of-scope of this paper, developing a new regularization
method that can be added to the NRAE for making its latent space distribution easier to be learned
would be an interesting future direction.

On the other hand, the FID scores are not always positively correlated to the MSEs. Since our
algorithms are implemented using the Euclidean distance metric for graph construction, the FID
scores may not be lower than the others. Nevertheless, for some examples especially small datasets,
the NRAE-L and NRAE-Q produce not only lower MSEs but also lower FID scores. For example,
the NRAE-L and NRAE-Q show lower MSEs and FID scores for SVHN (S,L), CIFAR10 (S), and
CIFAR100 (S), but show lower MSEs yet higher FID scores for CIFAR10 (L), CELEBA (L).

Figure 3 shows some of the test image reconstruction results of SVHN (S) and CIFAR10 (S). Not
only the MSEs and FID scores are lower, but also visual qualities of the reconstructed images by the
NARE-L and NRAE-Q are much better than the other baselines. Figure 4 shows some of the test
image reconstruction results of CIFAR10 (L) and CELEBA (L). For CIFAR10 (L), reconstructed
results are not significantly different, visually. For CELEBA (L), where the NRAE-L and NRAE-Q
show the lowest MSEs but the highest FID scores, reconstructed results of the NRAEs are little
more blurry than the others. Our algorithms seem to overly smooth out the CELEBA data. We
believe that this can be alleviated either by decreasing the number of nearest neighbors or decreasing
λ. Although we didn’t have enough time to empirically prove that NRAEs can better perform on
CELEBA (L) in FID scores, in principle, there exist proper number of nearest neighbors and λ with

5

github.com/mseitzer/pytorch-fid

which NRAEs perform at least better or equal to the vanilla AE in FID scores, because the NRAEs
have the convergence (to the vanilla AE) property.

It is remarkable that, especially for SVHN, CIFAR10, CIFAR100, CELEBA datasets, the NRAE-L
and NRAE-Q trained with small datasets i) largely outperform the other baselines trained with small
datasets and ii) show comparable performances compared to the other baselines trained with large
datasets. This shows that our algorithm, by leveraging the local geometric information contained in
the neighborhood graph, has a significant advantage in generalization when the number of training
data is small.

Table 2: The test reconstruction MSEs, FID scores (the lower the better) and ELBO (the higher the
better). The FID scores are computed on RGB-image datasets only. The best and second-best are
colored red and blue, respectively.

Dataset Metric Size AE VAE WAE DAE CAE SPAE NRAE-L NRAE-Q

MNIST
MSE S 0.01002 0.01091 0.01009 0.00999 0.00998 0.00989 0.00953 0.00968

L 0.00688 0.00756 0.00690 0.00684 0.00692 0.00694 0.00649 0.00683

ELBO S 202.59 209.31 208.34 201.38 252.31 239.96 371.01 413.16
L 327.65 223.62 375.6 366.38 458.34 375.62 631.17 658.87

FMNIST
MSE S 0.01485 0.01652 0.01428 0.01446 0.01319 0.01363 0.01289 0.01277

L 0.01118 0.01235 0.01106 0.01099 0.01052 0.01065 0.01060 0.01044

ELBO S 311.30 285.37 347.14 320.51 494.85 421.59 410.97 430.03
L 434.51 398.10 443.26 443.44 580.62 533.97 498.14 505.10

KMNIST
MSE S 0.03267 0.03234 0.03283 0.03280 0.03279 0.03268 0.03071 0.03021

L 0.02844 0.02963 0.02776 0.02814 0.02762 0.02732 0.02564 0.02602

ELBO S -19.19 22.17 12.98 -23.78 96.98 63.03 42.89 59.58
L 35.96 43.65 66.34 42.58 174.05 131.77 112.32 120.35

Omniglot
MSE S 0.03038 0.03627 0.03078 0.03068 0.02714 0.02889 0.02668 0.02631

L 0.02704 0.03192 0.02728 0.02696 0.02567 0.02644 0.02578 0.02539

ELBO S 33.00 -24.62 35.93 30.60 150.62 110.65 96.96 117.34
L 92.10 20.78 90.65 97.89 189.11 141.95 132.96 148.22

SVHN

MSE S 0.00320 0.00420 0.00320 0.00369 0.00273 0.00307 0.00202 0.00192
L 0.00174 0.00204 0.00190 0.00177 0.00178 0.00175 0.00148 0.00147

ELBO S 1146.20 987.80 1015.34 1145.97 1304.49 1291.12 3908.37 4050.09
L 3576.44 3307.51 3100.47 3567.15 4330.74 4130.41 5134.48 4762.67

FID S 91.69 124.51 105.00 90.54 60.48 77.38 31.54 28.61
L 40.44 40.88 40.16 38.34 41.02 40.20 36.95 35.95

CIFAR10

MSE S 0.01466 0.01620 0.01431 0.01427 0.01208 0.01504 0.00768 0.00691
L 0.00960 0.01123 0.00863 0.00900 0.00755 0.00898 0.00629 0.00587

ELBO S 565.04 269.54 398.32 547.34 908.45 768.79 1963.12 1823.59
L 520.46 342.21 425.80 631.54 1813.96 930.47 2607.25 2643.33

FID S 137.12 157.18 132.79 133.82 108.39 122.20 94.27 85.73
L 77.43 94.43 71.51 74.91 62.14 66.05 68.74 70.53

CIFAR100

MSE S 0.01465 0.01713 0.01463 0.01484 0.01369 0.01477 0.00765 0.00717
L 0.01015 0.01064 0.00951 0.00862 0.00842 0.00912 0.00678 0.00635

ELBO S 571.81 257.07 522.22 508.72 812.30 772.32 2004.62 1603.06
L 625.13 354.69 481.51 468.68 1446.45 917.11 2463.61 2498.37

FID S 122.28 139.20 131.91 156.50 127.29 108.86 85.56 80.06
L 81.35 86.96 78.77 73.95 65.02 66.68 64.84 68.02

CELEBA

MSE S 0.00780 0.00937 0.00830 0.00782 - 0.00861 0.00608 0.00747
L 0.00613 0.00646 0.00630 0.00590 - 0.00665 0.00563 0.00565

ELBO S 4298.56 4101.55 6043.03 4311.07 - 4513.48 12934.30 11692.26
L 11224.41 10628.09 11146.31 11634.83 - 11328.64 13456.26 13457.03

FID S 60.40 70.13 60.40 59.92 - 60.15 57.51 68.59
L 43.02 45.18 44.74 42.55 - 43.54 57.70 55.28

Standard errors of MSEs (5 times run). In this section, we report the means and standard errors
for 5 times run of NRAE and baseline AEs for small datasets. The hyperparameters during 5 times
run for each AE are same with the settings whose results are reported in Table 3 of Section 4.3. In
table 3, we report the means and standard errors of the test reconstruction MSEs. As shown in the
table, the standard errors are negligible and the NRAE-L and NRAE-Q show lower MSEs than the
other baselines.

3 Further Discussion

Relation to local polynomial regression. Smoothing data points by fitting a local polynomial
model is a well-known technique in non-parametric regression [2]. Assuming a fixed encoder
function g, training the decoder in NRAE shares some similarities to local polynomial regression.
For example, given a set of paired data Dp := {(z, x)|z = g(x), x ∈ D}, the local linear regression

6

Figure 3: The test image data reconstruction results where the NRAE-L and NRAE-Q show lower
MSEs and FID scores than the other baselines. (left) SVHN (S), (right) CIFAR10 (S).

Figure 4: The test image data reconstruction results where the NRAE-L and NRAE-Q show lower
MSEs but higher FID scores than the other baselines. (left) CIFAR (L), (right) CELEBA (L).

problem for estimating f at z is typically formulated as follows:

f(z), A∗(z) = argmin
x∈Rn,A∈Rn×m

∑
(z′,x′)∈Dp

K(z′, z) · ‖x′ − (x+A(z′ − z))‖2, (4)

where K(z′, z) is a kernel function, f(z) is the estimate of x at z, and A∗(z) ∈ Rn×m is the
estimated linear coefficient at z. While local polynomial regression is a non-parametric technique
that requires solving an optimization for every query point z, NRAE learns a parametric model fθ for
a similar-looking loss function that uses a local polynomial approximation of fθ.

Convergence to vanilla AE. NRAE is a generalization of a vanilla AE in the following sense:
NRAE converges to the vanilla AE – that is, the neighborhood reconstruction loss converges to the
point reconstruction loss – if N (x)→ {x} or K(x′, x)→ δ(x′, x).

Linear decoder function. As a special case, consider an autoencoder with a linear decoder function
such that fθ(z) = θ1z+θ0 for θ1 ∈ Rn×m, θ0 ∈ Rn. The second-order derivative of fθ is zero while
the first-order derivative ∂fθ(z)

∂z = θ1; the neighborhood reconstruction loss for a point x′ ∈ N (x)
then becomes

‖x′ − F̃θ,φ(x′;x)‖2 := ‖x′ − θ1gφ(x)− θ0 − θ1(gφ(x′)− gφ(x))‖2 = ‖x′ − Fθ,φ(x′)‖2. (5)

The above implies that NRAE with a linear decoder function is identical to the vanilla AE with the
linear decoder.

7

Table 3: The means and standard errors of the test reconstruction MSEs (the lower the better). The
metrics are computed with 5 times run except that metrics on the CELEBA data are computed with 3
times run. The best and second-best results are colored red and blue, respectively.

Dataset Statistic AE VAE WAE DAE CAE SPAE NRAE-L NRAE-Q

MNIST mean 0.010670 0.01094 0.01075 0.01065 0.01037 0.01064 0.00971 0.01013
ste ±0.00028 ±0.00006 ±0.00031 ±0.00026 ±0.00023 ±0.00034 ±0.00018 ±0.00020

FMNIST mean 0.01435 0.01656 0.01391 0.01403 0.01303 0.01342 0.01281 0.01273
ste ±0.00015 ±0.00003 ±0.00013 ±0.00014 ±0.00008 ±0.00009 ±0.00003 ±0.00003

KMNIST mean 0.03254 0.03251 0.03306 0.03283 0.03213 0.03255 0.03053 0.02996
ste ±0.00008 ±0.00008 ±0.00013 ±0.00027 ±0.00026 ±0.00019 ±0.00012 ±0.00010

Omniglot mean 0.03028 0.03146 0.03155 0.03086 0.02891 0.02886 0.02684 0.02631
ste ±0.00018 ±0.00109 ±0.00109 ±0.00020 ±0.00040 ±0.00011 ±0.00006 ±0.00016

SVHN mean 0.00323 0.00431 0.00319 0.00333 0.00271 0.00310 0.00205 0.00220
ste ±0.00002 ±0.00012 ±0.00004 ±0.00009 ±0.00004 ±0.00005 ±0.00002 ±0.00019

CIFAR10 mean 0.01472 0.01709 0.01445 0.01486 0.01251 0.01465 0.00816 0.00700
ste ±0.00032 ±0.00026 ±0.00022 ±0.00036 ±0.00011 ±0.00015 ±0.00070 ±0.00006

CIFAR100 mean 0.01463 0.017318 0.014548 0.01435 0.01361 0.01455 0.00781 0.00732
ste ±0.00008 ±0.00019 ±0.00023 ±0.00022 ±0.00026 ±0.00017 ±0.00011 ±0.00005

CELEBA mean 0.00797 0.00914 0.00821 0.00780 - 0.00839 0.00602 0.00727
ste ±0.00012 ±0.00010 ±0.00009 ±0.00001 - ±0.00009 ±0.00003 ±0.00008

References
[1] V. Böhm and U. Seljak. Probabilistic auto-encoder. arXiv preprint arXiv:2006.05479, 2020.

[2] W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American
statistical association, 74(368):829–836, 1979.

[3] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

[4] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

[5] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. Ffjord: Free-form continuous
dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367, 2018.

[6] D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039, 2018.

[7] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

8

	Experimental Details
	Dataset
	Network Architecture
	Training Details

	Additional Experimental Results.
	Computational Time
	Robustness to the Choice of the Number of Nearest Neighbors
	Robustness to the Choice of the Batch Size
	Extension of the Table 3

	Further Discussion

