
In this supplementary material, we provide further details, experiments, and descriptions of the at-
tached media, to reinforce the results and conclusions from the main body of our paper. For a more
fluid viewing experience please look through our project website, where videos (and corresponding
descriptions) are side-by-side: https://sites.google.com/view/lila-corl21. The top-level page
contains videos from our actual user study, showing the various models in practice, while the sub-
pages contain additional experiments exploring the poor performance of the imitation learning base-
line in our work, as well as justifications for the omission of the no-language latent actions baseline.

We additionally provide a full version of our code repository at the following url: https://github.
com/siddk/lila, with a detailed README spanning the entire LILA pipeline from demonstration
recording to training models, to deploying them on a robot.

A COVID-19 Impact Statement

Due to the ongoing COVID-19 Pandemic, the ability to run larger-scale user studies, and even have
reliable lab access for preparing experiments, was limited. We are in a University setting, and as
such, were susceptible to University restrictions.

All members of the authorship team had to go through a COVID-19 safety training, frequent testing,
as well as an official approval process to be granted permission to work in the robot lab. For User
Study participants, we were mostly limited to those with pre-existing access to the Engineering
Building (spanning both robotics and non-robotics students), as well as a limited number of other
University students granted approval to access other nearby buildings. This limited our ability to
launch a larger scale user study, with more than 10 participants from a more diverse population.

That being said, we strongly believe that our existing participant statistics – 10 students (5 female/5
male, age range 23.2 ± 1.87 – reflect a broader user pool. Coupled with the statistical significance
of the results we have already collected, we feel that the User Study results remain compelling, and
our conclusions hold. That being said, we would like to run additional studies once COVID-19
restrictions relax in our area.

B Related Work Discussion

The main body of our paper contains a cursory discussion of different approaches for language-
informed robotics, spanning a multitude of full-autonomy solutions. While this discussion helps
provide contrast for our shared-autonomy & language based approach, LILA, it does not do the ex-
isting work in the field justice, nor does it discuss the data, implementation, and feature-engineering
considerations that are coupled with these different approaches.

First, we discuss work that leverages structured logical forms as an intermediate representation for
mapping language. The benefits of these forms are that they induce logical forms – functional, often
programmatic – representations of meaning, that can then be executed on a robot, either by directly
formulating a plan (requiring a model of the environment), or learning a lightweight policy from
data that can fulfill these logical forms. A perceived benefit of these types of approaches is their
sample efficiency – by leveraging a highly structured logical form and possibly hand-engineered
features, one can learn the language to logical form mapping with 10s of examples. An example
of this work is MacGlashan et al. [1] that learns reward functions given hand-engineered linguistic
features; however, these reward functions are fed to a planner (requiring full knowledge of world
dynamics – a huge assumption) to generate robot behavior. Follow-up work by Arumugam et al. [2]
relax the hand-engineered language feature assumption by using more recent neural approaches, but
still hinge on using planners. While these approaches are sample-efficient, many of the assumptions
around planning and full dynamics are strong, and limit the potential of scaling this work (and for
manipulation, are not necessarily straightforward!). Other work that relaxes the planning/dynamics
assumption is Duvallet et al. [3]; this work uses hand-engineered features on top of a popular logical
form – Spatial Description Clauses (SDCs) – to learn policies for robot navigation. While seemingly
as sample efficient as the prior approaches without the downsides, there is still a high cost for

1

https://sites.google.com/view/lila-corl21
https://github.com/siddk/lila
https://github.com/siddk/lila


s “Grab the cereal bowl”

“Pick up the bowl”
“Put the banana away” 

h

Training ExemplarsLILA Decoder

Fi
LM

-D
ec

γ×

β+

Distil-RoBERTa 
w/ Mean Pooling

Distil-RoBERTa 
w/ Mean Pooling

Sim. Search

↦ a′ 

h γ×

↦ z

LILA Encoder

Fi
LM

-E
ncβ+

“Pick up the bowl”

Distil-RoBERTa 
w/ Mean Pooling

s a z
“Put the banana away”

Add to Store of 
Training Exemplars!

Training Deployment

Figure 1: An overview of our language-informed latent actions (LILA) models with the FiLM mod-
ules highlighted. For additional clarity, we provide partial views of both the Encoder (during train-
ing) and Decoder (during deployment).

policy learning. Though the approach only required 10s of examples to learn to map language
to the appropriate SDC, learning an effective policy (note this is just discrete node navigation – not
continuous manipulation) required running DAgger [4] for 25 iterations on top of their existing data,
collecting an order of magnitude more demonstration data (or demonstration edits/corrections as in
DAgger) than originally given – 100s - 1000s of demonstrations.

On the other end of the spectrum are more recent approaches in end-to-end robot learning for more
complicated tasks spanning navigation [5, 6] and manipulation [7]. This work is done in simulation,
where one has the ability to do virtually infinite policy rollouts given a language instruction paired
with a reward function, to learn robust policies via reinforcement learning. Other work in this
paradigm that uses imitation learning, but with real-world deployments include works for quadcopter
flight [8] and some limited manipulation [9]. These works still require 1000s of demonstrations, but
use smart tricks for data augmentation and synthetic generation to learn robust policies.

LILA hopes to fill a void between these two classes of approaches; retaining the sample-efficiency
of the earlier approaches, without the need for hand-engineered features, strong assumptions about
known dynamics, or limited generalization potential. The experiments in the main body show that
LILA is extremely sample efficient; however, the scope of this work is mostly using language as a
means for disambiguation. It is our ardent hope that future work in language & latent actions (and
shared autonomy more generally) turns to more dynamic settings, richer language, and hard forms
of generalization; this work is just the first step.

Finally, we want to help fill out the story of language-informed robotics with work that does not
necessarily involve execution (learning a policy or control space for robots to follow language in-
structions), but that can help language-based methods generalize better, from less data, or that lever-
age other modalities to help with specification. For example, Matuszek et al. [10] learn to map
unscripted interactions consisting of language and gestures to object localizations from relatively
few interactions; such methods are crucial for scaling up LILA to multiple objects, referring expres-
sions, and compositional language instructions. Other work looks at other modalities like speech
and gesture to learn logical forms that allow for efficient generalization [11]. Other work combines
several modalities on top of language like gaze, gesture, and intonation to further help lift represen-
tations of human intent from language [12, 13]. All this work, though not directly related to LILA
in that they do not help learn meaningful control spaces, do present possible avenues through which
we might scale this approach to new contexts, language instructions, and behaviors.

2



C Model Architectures & Training

Following from the main body of the paper, we provide additional details on the model architectures,
and additional data processing/augmentation we use in this work. We start with a more thorough de-
scription of the feature-wise linear modulation (FiLM [14]) mechanism we use to integrate language
into the latent actions pipeline.

FiLM Architecture for LILA. Prior work in latent actions [15, 16] implement the latent action
models as simple feed-forward multi-layer perceptrons (MLPs) with tanh activations as the non-
linearity between layers. The Encoder and Decoder are symmetrical, with the Encoder encoding
a combination of (s, a) pairs down to the latent space z (via an intermediate layer or two), and
the decoder decoding from (s, z) back up to the 7-DoF action a. The intermediate layers in both
the Encoder and Decoder have the same dimensionality of 30 – we refer the reader to consult the
attached code for more detail.

With LILA, the two differences are that 1) we use the GELU activation instead of the tanh due to
its better stability, and 2) we incorporate language into this existing pipeline. Recall that we use a
version of the pretrained Distil-RoBERTA language model [17, 18] to generate embeddings of each
user utterance. These embeddings have dimensionality of 768, which far exceeds the dimensionality
of the 7-DoF (s, a) of the typical pipeline. Initial experiments attempting to naively concatenate the
language embedding with the 7-DoF states and actions (or states and z values, in the case of the
decoder) were not fruitful, as we were unable to learn (loss failed to decrease when training).

Instead, we turned to FiLM. The core principle with FiLM is that it’s a fusion mechanism that does
not increase the intrinsic parameter count of the core neural network (e.g., the original Latent Action
MLP described above). FiLM has found great success in many multi-modal tasks for this reason,
integrating with pre-existing pipelines in image classification to enable visual-question answering
[14], as well as integrating into existing pipelines for instruction following in reinforcement learning
[19, 20]. FiLM works as follows: given an intermediate representation from the Encoder or Decoder
h with dimensionality d (say after the first layer of the corresponding MLPs), and a language em-
bedding e, FiLM works in the following fashion:

FiLM-Genθ(e) = γe, βe

h′ = γe ⊙ h+ βe

where h′ is the representation fed to later layers in the Encoder/Decoder MLP, and ⊙ denotes the
Hadamard product (component-wise multiplication). Simply put, Film-Genθ is a module that learns
to shape the representations learned by the core Latent Actions MLP, injecting language information
through this affine transformation defined by γe, βe. We implement Film-Genθ as a separate two-
layer MLP that also uses the GELU activation. Fig. 1 breaks this down visually, showing how the
FiLM modules are added for both the Encoder and Decoder.

Imitation Learning Architecture. For Imitation Learning, we do not have this Encoder-Decoder
structure, with two separate FiLM modules. Instead, Imitation Learning is implemented as a single
MLP (of same parameter count/number of layers as the Encoder + Decoder in LILA) that conditions
on the state s; we add a single FiLM module after the first-layer of this MLP.

Data Augmentation. Of secondary importance is in how we perform data augmentation for train-
ing. There are two key aspects to our data augmentation procedure: 1) enforcing latent action
consistency, and 2) adding robustness to noise.

A key desire in latent action models is consistency in nearby states – executing the
same latent action z in nearby states should be roughly similar. More formally,
dT (T (s1, ϕ(z, l, s1)), dT (T (s2, ϕ(z, l, s2)))) < ϵ for ∥s1 − s2∥ < δ, for some ϵ, δ > 0, where
dT is some distance metric (e.g., Euclidean distance between states). We enforce this with a sliding
window approach; given a sequence of states within a fixed window size, we train the decoder to
predict the same actions given the (z, l, s) triples for all states within the window.

3



pick cereal 

Imitation Learning (Normal) Imitation Learning 
(Trained on Latent Action demos)

pour cup 

Figure 2: Visualized Trajectories for an Imitation Learning model trained on the “pure” data (that is
reported in the paper), and an Imitation Learning model trained on the “LILA-style” demonstrations
with the “sweeping” motions. On the left are trajectories for the instruction “grab the cereal bowl”
and on the right, “pour the blue cup into the black coffee mug” – these two examples are from our
training language set. We observe that Imitation Learning trained on the “LILA-style” demonstra-
tions performs slightly worse by not following the complete ideal task trajectory, although neither
approach is able to successfully complete the task.

The second, and most important augmentation we do is adding robustness to noise. Though we
collect a dataset of (s, l, a) triples, we use a unique property of our control space to obtain better
robustness: because our states are the actual joint states (let’s call this q), and actions a are just joint
velocities (q̇), we can “re-compute” actions between two sequential states (s1, s2) by just taking the
finite difference a′ = s2 − s1. This allows us to do the following: add noise to each initial state
si subject to ϵ = N (0, σ) (we use σ = 0.01), then compute the “corresponding action” by taking
a′ = si+1 − (si + ϵ). Adding noise in this way significantly helps make our models more robust
to small variations in state space, and can be viewed as a simulated version of the DART paradigm
[21] for noise-robust imitation learning.

We train LILA models with both the above augmentations. While the former augmentation mode
is not directly applicable to Imitation Learning approaches, the second noise augmentation mode is
– indeed, we find we have to triple the amount of such augmentations, in order to get even slightly
meaningful behavior from Imitation Learning models.

D Demonstration Collection

Both Latent Action models and Imitation Learning models require a dataset of language paired with
corresponding demonstrations to perform learning. As mentioned in the main body of the paper, we
collect these demonstrations kinesthetically, manually moving the robot arm to complete specific
tasks, recording the joint states and actions along the way. Critically, for imitation learning, these
demonstrations consist solely of what we call the “forward”, or “pure” demonstration of a task:
starting at the home position, perform each of the individual subtasks smoothly and continuously,
until the task has been satisfied. For a task like “put the banana in the fruit basket” this corresponds
to 1) smoothly reaching for the banana and grasping it, 2) lifting the banana up and moving over to
the basket, and 3) inserting the banana into the basket and releasing the gripper.

However, when collecting demonstrations for latent action models, we find that we can learn bet-
ter, more reliable models by changing up the demonstration process a little, incorporating discrete
segments of the demonstration where we back off and then repeat a motion. Concretely, for a task

4



pick cereal 

LILA No-Language Latent Actions 

pour cup 

Figure 3: Visualized Trajectories for a No-Language Latent Actions model vs. LILA (with lan-
guage) trained on the same set of demonstrations, operated by an expert user. With the No-Language
Latent Actions model, the user tries their best to complete the task with the provided controls. On
the left are trajectories for the instruction “grab the cereal bowl” and on the right, “pour the blue
cup into the black coffee mug” – these two examples are from our training language set. We ob-
serve that the No-Language Latent Actions is unhelpful for completing the task, and unable to even
completely reach the target object for either task, demonstrating the importance of incorporating
language to help condition the learned latent actions.

like “put the banana in the fruit basket” this corresponds to 1) smoothly reaching for the banana,
pulling back to the home position, and then reaching for the banana again and grasping it, 2) lifting
the banana up, lowering it, then taking it to the basket, and 3) finally dropping the banana in the
basket. These “sweeping” back-and-forth motions intuitively help the latent actions model induce
control spaces that give users reversible control – the ability to move the robot back, rather than just
press forward; this is critical to usability and recoverability.

On the Fairness of Comparing Imitation Learning and LILA. Because LILA and Imitation
Learning are trained with different demonstrations, there is a plausible fear that our comparison
between LILA and Imitation Learning is unfair – specifically, because the latent actions demonstra-
tion incorporates extra motion, LILA technically may be seeing more (s, a) pairs per demonstration
compared to Imitation Learning, and can therefore learn better.

We mitigate this in two ways; first, as a side effect of doubling the number of collected demon-
strations for Imitation Learning – recall that, in the main paper, to get IL to show semantically
meaningful behavior, we needed to collect 30 demonstrations per task instead of the 15 per task
LILA was given – we found that Imitation Learning sees 40% more (s, a) pairs than LILA (even
more if you account for the fact that we tripled the data augmentation for Imitation Learning!). Sec-
ond, Appendix E presents a more concrete experiment where we train the Imitation Learning model
on the LILA demonstrations, and show that the resulting model performs worse than when trained
on the standard IL dataset.

E Additional Experiments: Imitation Learning Baseline

A critical question from our user study has to do with the poor performance of the imitation learning
baseline relative to both LILA and End-Effector control. This section explores additional ablation
experiments as well as a technical argument for why imitation learning performs poorly – namely
due to sample inefficiency, exacerbated by our real-robot setting.

5



Figure 4: We consider a sinusoidal trajectory of a simplified end-effector through 2D space, where
a robot’s motion is continuous. If we can sample states when collecting this “demonstration” at a
fixed interval, then the state-error of an imitation learning agent trained with behavior cloning grows
minimally over time. However, the fixed interval assumption may not be true when collecting data
on a real robot, where any noise can lead to compounding errors resulting in arbitrarily bad drift.
This example supports our observation of poor IL performance on the 7-DoF Franka Emika Panda
robot in our user study.

We also address the point raised in Appendix D – how Imitation Learning performs when trained
with the “latent actions” style demonstrations (“sweeping” motions) rather than the “pure,” straight-
through demonstrations.

Ablation Experiments. The following URL contains several sets of ablation experiments, with
corresponding text annotations: https://sites.google.com/view/lila-corl21/home/il-ablation.
Many of these experiments show qualitative behavior, and are best viewed via the linked URL;
however, we summarize the main findings here.

First, we put LILA and Imitation Learning on an equal footing, picking 3 of the 5 original tasks
we used in the user study – namely, Pick Cereal, Pick Fruit Basket, Pour Cup. We collect
10 demonstrations for each task, and trained a base model with the noise-based data augmentation
(add noise once for each state), for both LILA and Imitation Learning. We show that LILA is able
to fully succeed at all three of these tasks with only 10 demonstrations, whereas Imitation Learning
completely fails. However, we note that even at 10 demonstrations, Imitation Learning is starting
to show semantically meaningful behavior – for the Pick Cereal the end-effector clearly moves
toward the cereal bowl (though not close enough to grasp), and then down to the tray (though not
close enough to execute a successful drop).

We then experiment with the impact of data augmentation, first looking at 3x the amount of aug-
mentation (noising each state 3 times in the dataset following the procedure detailed above), and
then 5x. We show that Imitation Learning performance is slightly better than the reference with 3x
data augmentation, but that 5x doesn’t additionally help.

We then vary the number of demonstrations from 10 to 20, then 30 demonstrations per task, with 3x
data augmentation. Critically, we show that Imitation Learning improves as we add more demon-
strations, even though it still isn’t able to solve the tasks. As an interesting data point, at 20 demon-
strations, the Imitation Learning agent is able to execute a successful grasp of the cup (see the video
on the webpage), but cannot finish the task.

Unfortunately, after collecting 90 demonstrations (30 for each task), we felt we’d need close to
50-100 demonstrations per task to actually get imitation learning to solve these tasks – almost two
orders of magnitude more data than LILA needed. This would have been prohibitive to collect so
we stopped, and instead decided to analyze the possible cause of this extreme sample inefficiency.
Again, videos and annotations depicting these ablations visually, in an easy-to-follow format can be
found here: https://sites.google.com/view/lila-corl21/home/il-ablation.

Why is Imitation Learning Sample Inefficient? The above experiments point to an extreme sam-
ple inefficiency in Imitation Learning. Imitation Learning is generally subject to problems of cas-
cading errors and the general noise problems of real robotics (imprecise resets, inherent noise in
robot joints). However, we will now present an argument that illustrates why Imitation Learning

6

https://sites.google.com/view/lila-corl21/home/il-ablation
https://sites.google.com/view/lila-corl21/home/il-ablation


and LILA may be even worse than expected in our real-robot setting, due to specific implementa-
tion details in our publish/subscribe based methodology. Notably, there is imperfect communication
between the top-level Python process (housing the learned models) and the low-level C++ robot
controller that exacerbates the cascading errors imitation learning has to deal with. A graphical
walkthrough of this argument can be found at the bottom of the webpage for this section here:
https://sites.google.com/view/lila-corl21/home/il-ablation.

Consider the sinusoidal trajectory of a simplified end-effector through 2D space shown in Figure 4.
The robot’s motion is continuous, but we can sample states when collecting this ”demonstration”
at fixed intervals. Notably, this is an assumption present implicitly in most simulators (fixed frame
rate, or fixed control iterations/sec) – this is also usually true when operating with discrete action
spaces (move forward/right/left). However, this fixed interval assumption may not be true when
collecting data on a real robot, depending on the implementation. More on this in a bit, but for now,
let’s assume our demonstration data consists of evenly spaced (state, action) pairs with this fixed
interval between samples.

Consider training an imitation learning agent via behavioral cloning, where the policy is param-
eterized as a neural network. It’s not clear what a NN will do given a state outside it’s training
distribution (could be arbitrarily bad) , but to simplify, let’s assume given a new state, this policy
will predict an action based on retrieving the ”nearest-neighbor” from it’s training demo. Assume
there’s some noise in the reset (this is representative – there’s always *some* noise in the initial
joint states - this is represented in simulators like Mujoco and PyBullet). If you roll out the imitation
learning policy, you get behavior like that shown in the middle of Figure 4 – critically, assuming the
same constant sampling rate, the state-error grows minimally over time. However, for continuous
state and continuous action robotics grounded in a real-world robot, this assumption does not exist,
which leads to the following point.

With our implementation on a 7-DoF Franka Emika Panda robot, we noticed that despite our best
efforts, we are not able to ensure states/actions are dispatched at a constant sampling rate. The
result (based on our straw man nearest-neighbors NN argument from above – though note the real
world behavior, especially in higher dimensions will be much much worse!) is shown in Figure 4
on the right. With slippage in the read/publish times of states and actions, we can read states too
early or too late, execute a ”bad” action, and cascade to arbitrarily bad final states over the course
of execution (even completely breaking in the middle of execution).

Imitation Learning with Latent Action Demonstrations. Finally, as raised in Appendix D, there
is a question about the fairness of training on the “LILA-style” demonstrations with the “sweeping”
motion vs. the more pure, forward-only imitation learning demonstrations. To address this, we train
two Imitation Learning models (identical architecture, augmentation), with one model trained on the
original “pure” data (the model from the main paper, used in the user studies) and a model trained
on the “LILA-style” demonstrations with the sweeping behavior.

Fig. 2 shows visualizations of the trajectories for the models rolled out on two instructions from
the training set. We see that the Imitation Learning model trained on the LILA demonstrations is
worse than the “standard” Imitation Learning model. Whereas the pure model is able to at least
closely reach the target objects, the other model attempts to reach for an object, but wastes time
moving around the object rather than focusing on the task trajectory – intuitively this makes sense,
as the “sweeping” motions present in the LILA data are confusing for imitation learning; given two
opposing actions in the same state, what should it do?

These experiments, coupled with the experiments in the main paper provide ample evidence that
the comparison between LILA and Imitation Learning is not only fair, but highlights the sample
efficiency of LILA as well.

7

https://sites.google.com/view/lila-corl21/home/il-ablation


Figure 5: We train 3 different latent action models for the cross disambiguation task from Figure 2
of the main paper, which showed a simple ”cross” example, where starting from the mid-point, the
goal is to be able to navigate towards all 4 possible directions. As the standard LA framework only
takes in the controller inputs, it is impossible for a user to succeed with only 1 degree-of-freedom
(DoF). To solve this task, we need an additional axis to condition on (at least 2-DoF). Our results
show that, as expected, without any additional input such as language, a 1-DoF controller (left) is
incapable of task disambiguation, with a clear 0% task success rate for our simple cross setting.

F Additional Experiments: No-Language Ablation

Another possible question one might have is how latent actions performs on our tasks without lan-
guage – in other words, is LILA necessary, or are prior latent actions models expressive enough to
solve the tasks?

We answer this in two ways. First, we trained a latent actions model, completely ablating the
language encoding pipeline (keeping architecture the same, but removing the FiLM components
described in Appendix C). The corresponding latent action decoder only takes in the latent action
z and state s as an input to predict high-DoF actions a. Fig. 3 shows visualizations of trajectories
for this No-Language model as well as LILA operated by an expert user, trying to accomplish
two specific tasks. While LILA performs as expected, the No-Language model is unable to make
progress at all. As soon as control begins and the user moves the robot into a state close to any
object, the control space loses meaning, and the user is unable to recover, instead generating random
behavior. Again this makes sense; without language to condition on, the No-Language model has
no idea what task to perform. It lacks the ability to disambiguate tasks, and as such, cannot make
progress. We present additional videos and experiments to the above here: https://sites.google.

com/view/lila-corl21/home/no-lang-baseline.

Second, we train 3 different latent action models for the cross disambiguation task seen in Figure 2
of the main paper: A 1 DoF without language baseline, LILA (our proposed approach) with 1 DoF,
and a 2 DoF without language baseline. Each model is trained on a dataset of 100 demonstrations
collected across the 4 tasks. We then visualize movement trajectories (see Fig. 5) by controlling the
latent action (z for 1 DoF, z1 and z2 for 2 DoF). As expected, without any additional input such
as language, a 1-DoF controller is incapable of task disambiguation, with a clear 0% task success
rate for our simple cross setting. With both our 1-DoF controller w/ language input and a 2 DoF
controller, task disambiguation is possible – highlighting the necessity of additional information
of any modality. However, note that in large multi-task environments with dozens of tasks, re-
designing a controller can be difficult – language is a much more flexible and natural way to add this
information.

Together, these results motivate why no-language latent action baselines are incapable of being
useful for multi-task environments, as they are limited by total degrees of freedom of the controller.
Because the goal of our user study is to compare methods that could be useful for successful task
completion, If included, such a baseline would be uninformative as it would be impossible for any
user to achieve above a 0% task completion rate.

8

https://sites.google.com/view/lila-corl21/home/no-lang-baseline
https://sites.google.com/view/lila-corl21/home/no-lang-baseline


Figure 6: Interface shown to crowdworkers for collecting language utterances.

G Crowdsourcing & User Study

As described in the paper, to train LILA with language utterances, we hire crowdworkers on Amazon
Mechanical Turk to provide language utterances give video demonstrations of a human assisting
the robot arms. We paid crowdworkers 1.20 dollars to provide short utterances for seven videos.
Notably, crowdworkers were not given any information about the possible tasks, or names of the
objects in the scene. An image of the interface provided to crowdworkers is included in Fig. 6.

Algorithm 1 Filtering Language Utterances

1: for task = 1, 2, . . . , T do
2: Initialize list Etask.
3: for user = 1, 2, . . . , N do
4: Append embedding of utterance embed(user, task) to Etask
5: end for
6: end for
7: for user = 1, 2, . . . , N do
8: Initialize list Duser
9: for task = 1, 2, . . . , T do

10: Append cosine distance d between embed(user, task) and avg(Etask) to Duser
11: end for
12: end for
13: Filter out all utterances from users with K highest avg(Duser)

Filtering Crowdsourced Language Annotations. As described briefly in the main paper, one issue
with crowdsourcing language utterances from Amazon Mechanical Turk is the presence of “spam”,
noise, or extremely out-of-domain annotations. We accept and pay all crowdworkers for their re-
sponses, but adopt the following filtering algorithm before training on the collected utterances:

We set the threshold K to use utterances from 15 different crowdworkers for each of the 5 tasks.
Example utterances from crowdworkers who we filtered out include “move your arm outwards
towards the left about 10 inches, lower your arm until you can’t anymore then close your claw.” and
“the human the robot to take bowl”, highlighting the challenges of eliciting high quality language
utterances from demonstrations, and the necessity of such filtering methods.

All 15 utterances for each of the 5 tasks are listed in the attached file ‘full-annotations.txt’,
constituting the entirety of our training data. Furthermore, the file ‘filtered.txt’ contains the
utterances belonging to workers that were filtered out by our procedure.

User Study Instructions. As described in the main paper, we conducted a user study with 10
participants. The attached PDF file ‘user-study.pdf’ shows the example instructions provided to
each participant in our study.

9



References
[1] J. MacGlashan, M. Babes-Vroman, M. desJardins, M. Littman, S. Muresan, S. Squire,

S. Tellex, D. Arumugam, and L. Yang. Grounding English commands to reward functions.
In Robotics: Science and Systems (RSS), 2015.

[2] D. Arumugam, S. Karamcheti, N. Gopalan, L. L. S. Wong, and S. Tellex. Accurately and
efficiently interpreting human-robot instructions of varying granularities. In Robotics: Science
and Systems (RSS), 2017.

[3] F. Duvallet, T. Kollar, and A. Stentz. Imitation learning for natural language direction following
through unknown environments. In International Conference on Robotics and Automation
(ICRA), pages 1047–1053, 2013.

[4] S. Ross, G. Gordon, and A. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Artificial Intelligence and Statistics (AISTATS), 2011.

[5] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and
A. van den Hengel. Vision-and-language navigation: Interpreting visually-grounded naviga-
tion instructions in real environments. In Computer Vision and Pattern Recognition (CVPR),
2018.

[6] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge. Room-across-room: Multilingual vision-
and-language navigation with dense spatiotemporal grounding. In Empirical Methods in Nat-
ural Language Processing (EMNLP), 2020.

[7] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In
Computer Vision and Pattern Recognition (CVPR), 2020.

[8] V. Blukis, N. Brukhim, A. Bennett, R. A. Knepper, and Y. Artzi. Following high-level naviga-
tion instructions on a simulated quadcopter with imitation learning. In Robotics: Science and
Systems (RSS), 2018.

[9] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. B. Amor. Language-
conditioned imitation learning for robot manipulation tasks. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[10] C. Matuszek, L. Bo, L. Zettlemoyer, and D. Fox. Learning from unscripted deictic gesture
and language for human-robot interactions. In Association for the Advancement of Artificial
Intelligence (AAAI), 2014.

[11] T. Kollar, J. Krishnamurthy, and G. P. Strimel. Toward interactive grounded language acqusi-
tion. In Robotics: Science and Systems (RSS), 2013.

[12] C. Kennington, S. Kousidis, and D. Schlangen. Interpreting situated dialogue utterances: an
update model that uses speech, gaze, and gesture information. In SIGDIAL Conference, 2013.

[13] D. Whitney, M. Eldon, J. G. Oberlin, and S. Tellex. Interpreting multimodal referring expres-
sions in real time. In International Conference on Robotics and Automation (ICRA), pages
3331–3338, 2016.

[14] E. Perez, F. Strub, H. D. Vries, V. Dumoulin, and A. C. Courville. Film: Visual reasoning
with a general conditioning layer. In Association for the Advancement of Artificial Intelligence
(AAAI), 2018.

[15] D. P. Losey, K. Srinivasan, A. Mandlekar, A. Garg, and D. Sadigh. Controlling assistive robots
with learned latent actions. In International Conference on Robotics and Automation (ICRA),
pages 378–384, 2020.

10



[16] S. Karamcheti, A. Zhai, D. P. Losey, and D. Sadigh. Learning visually guided latent actions
for assistive teleoperation. In Learning for Dynamics & Control Conference (L4DC), 2021.

[17] N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-
networks. In Empirical Methods in Natural Language Processing (EMNLP), 2019.

[18] N. Reimers and I. Gurevych. Making monolingual sentence embeddings multilingual using
knowledge distillation. In Empirical Methods in Natural Language Processing (EMNLP),
2020.

[19] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and
Y. Bengio. Babyai: A platform to study the sample efficiency of grounded language learning.
In International Conference on Learning Representations (ICLR), 2019.

[20] D. Bahdanau, F. Hill, J. Leike, E. Hughes, S. A. Hosseini, P. Kohli, and E. Grefenstette. Learn-
ing to understand goal specifications by modelling reward. In International Conference on
Learning Representations (ICLR), 2019.

[21] M. Laskey, J. N. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on Robot Learning (CORL), 2017.

11


	COVID-19 Impact Statement
	Related Work Discussion
	Model Architectures & Training
	Demonstration Collection
	Additional Experiments: Imitation Learning Baseline
	Additional Experiments: No-Language Ablation
	Crowdsourcing & User Study

