
A More Descriptions of the Karel Domain

We present the full grammar of the Karel language in Fig. 9.

To represent the execution states, each Karel grid world has a maximum size of 18× 18, and each cell
in the grid world is represented by a 16-dimensional vector corresponding to the features in Table 5.
Therefore, each grid world is represented as a 16× 18× 18 tensor.

Prog p ::= def run() : s
Stmt s ::= while(b) : s | repeat(r) : s | s1 ; s2 | a

| if(b) : s | ifelse(b) : s1 else : s2
Cond b ::= frontIsClear() | leftIsClear() | rightIsClear

| markersPresent() | noMarkersPresent() | not b
Action a ::= move() | turnRight() | turnLeft()

| pickMarker() | putMarker()
Cste r ::= 0 | 1 | ... | 19

Figure 9: Grammar for the Karel task.

Robot facing North
Robot facing East

Robot facing South
Robot facing West

Obstacle
Grid boundary

1 marker
2 markers
3 markers
4 markers
5 markers
6 markers
7 markers
8 markers
9 markers
10 markers

Table 5: Representation of each cell in the Karel state.

B Details in Model Architecture

B.1 Program Decoder

Our model follows the encoder-decoder framework in prior work on neural program synthesis from
input-output examples [17, 9], which includes an encoder for the input-output pairs, and a decoder to
synthesize the program.

The program decoder is an LSTM (denoted as LSTMD), which decodes the program as a token
sequence. Let pt−1 be the decoded program token at step t− 1, Ep(pt−1) be the embedding vector of
pt−1, ht−1 be the hidden state of the program decoder at step t− 1, and Ît−1 and O be the sequences
of vectors representing the input list elements and output list elements. We first compute attention
vectors over both the input and output lists, following the double attention mechanism in RobustFill:

sOt = Attention(ht−1, O), sIt = Attention([ht−1; s
O
t], Ît−1)

The notation [a; b] means the concatenation of vectors a and b. Then we calculate the output vector
of the program decoder at step t as ht = LSTMD(ht−1, [Ep(pt−1); sIt ; s

O
t]).

14

Input-Output Encoder. For C program synthesis, our input-output encoder architecture is similar
to RobustFill [17]. For each input-output pair, we use two bi-directional LSTMs [24] to encode the
input and output lists respectively. To capture the relationship between the input and output lists,
the output list encoder computes attention vectors over the input list elements, using the standard
attention mechanism [5, 30]. We also employ different encoder architectures for program synthesis
tasks with other formats of input-output examples, as discussed in Sec. 5.

To capture the required arithmetic operation to convert from the program input to the output, we also
include the output of the operation predictor ôpt for program decoding, and we discuss the details
later. Afterwards, the max pooling layer aggregates the representation of different IO pairs to generate
a single vector:

mt = MaxPoolj∈{1,2,...,K}(tanh(W [s
I(j)
t ; s

O(j)
t ; ôp

(j)
t]))

Here the superscript (j) indicates that the representation is for the j-th IO pair, and W is a trainable
weight matrix.

To facilitate the prediction of long programs, we compute an attention vector over previously generated
program tokens as follows:

dt = Attention(mt, {Ep(p0), Ep(p1), ..., Ep(pt−1)})

Finally, the next token pt is sampled from P[pt] = Softmax(V dt)pt
where V is a trainable matrix.

B.2 Operation Predictor for Restricted C Domain

Training neural networks for mathematical reasoning is a challenging problem itself [43, 29], and
jointly predicting the mathematical calculations and other program operations imposes extra burden
on the program decoder. To mitigate the difficulty, we include a pre-computed table as part of the
model input, which describes possible mathematical operations to derive an output value given the
input number. For example, Fig. 2(d) shows that by applying the O = 2 + I operation to the input
I = 2, the output O = 4. For each valid input list value C, we include two operations O = C + I
and O = C − I in the table. Then for each operation O = C + I , we enumerate all valid integer list
values I , and we include the row [O = C + I, I, O] in the table when O is also within our bounded
range. In this way, the table covers all possible integer addition and subtraction operations for valid
input and output list values.

With the pre-computed table, the operation predictor aims to predict the most possible program
operation at the next step. First, we re-use the same embedding matrices as those in the input-output
encoder, and compute the embedding vectors for each numerical element in the table. Let R be the
number of table rows. For the i-th row, we refer to the embedding vector of the input and output
values as r[i] and c[i], respectively. Then we utilize sIt and sOt to compute the attention weights over
the table columns of input and output values as follows:

wi
[i]
t = AttentionWeight(sIt , {r[i]|i ∈ {1, 2, ..., R}})

wo
[i]
t = AttentionWeight(sOt , {c[i]|i ∈ {1, 2, ..., R}})

Let op[i] be the operation in row i, then the probability of selecting the operation in the i-th row at
step t is

P[opt = op[i]] ∝ wi
[i]
t · wo[i]t

Let Eop(op) be the embedding vector of the operation op, then the operation predictor output is

ôpt =
∑

i

P[opt = op[i]]Eop(op
[i])

15

To train the operation predictor, we provide the training supervision at step 0, when no transformation
has been applied to the program input:

LOp = Loss(wi
[i]
0 ,1[r[i] = Î0 = I]) + Loss(wo

[i]
0 ,1[c[i] = O]) (9)

B.3 Latent Executor

In RobustFill, the encoder only takes the initial input-output pairs as the input. On the other hand,
in recent work on execution-guided program synthesis [12, 47, 57, 18, 38, 37], the execution states
of partial programs are leveraged as the model input to guide the subsequent program prediction.
However, existing approaches mostly assume that the programs are sequential [57, 18], or require an
interpreter of partial programs [12]. To address these limitations, Nye et al. design neural networks
to represent the partial program semantics when they are not well-defined [37]. However, they need
to train a separate neural module to represent each program operation, thus it is hard to scale beyond
domain-specific languages.

In this work, we include another LSTM to approximate the program execution states, denoted as
LSTME . Let Ît−1 be the input of LSTME , which is the program input at step t− 1. The output of
LSTME is:

Exect = LSTME(ht, Ît−1)

B.3.1 Implementation for Restricted C Domain

For our restricted C domain, the length of Exect is the same as Ît−1, i.e., the input list length. Let L
be the length of input and output lists. Let P[It = v] be the probability that the execution result at
step t is v, then:

P[It,l = vl] = Softmax(WEExect,l)vl

Here the subscript l denotes that the representation is for the l-th list element, and WE is a trainable
weight matrix.

Finally, the approximated execution state Ît is the weighted sum of the embedding vectors of all
possible program input integers c ∈ [−4, 4] ∩ Z (where Z is the set of all integers):

Ît,l =
∑

c∈[−4,4]∩Z
P[It,l = c]Eio(c)

Here Eio(c) denotes the embedding vector of the list value c. At the next program decoding step, Ît
will be fed into the encoder to replace the previous input list Ît−1.

B.3.2 Implementation for Karel Domain

Similar to our restricted C domain, in our latent executor implementation for Karel domain, Ît,l is
also the weighted sum of all possible execution states. As described in Appendix A, each Karel state
describes the following variables: (1) (robotX , robotY) denotes the position of the Karel robot, where
0 ≤ robotX , robotY < 18; (2) robotdir ≤ {North, South, West, East} denotes the robot orientation
at (robotX , robotY); and (3) the number of markers in each grid. Therefore, we train 3 predictors on
top of LSTME to predict these variables: (1) a trainable layer that outputs a (18× 18)-dimensional
vector, representing the robot position; (2) a trainable layer that outputs a 4-dimensional vector,
representing the robot orientation; and (3) an LSTM that generates an 11-dimensional vector at each
step, representing the number of markers in each grid. We apply the softmax to all output vectors to
obtain the probability distributions of different variables.

Afterward, we combine the outputs of the predictors to construct a 16× 18× 18-dimensional vector
representing the Karel state, according to Table 5, with the value of each dimension in [0, 1]. Note
that Karel programs can not change the grid boundary and obstacles, thus we apply a mask on the
predicted intermediate execution states to ensure that the features representing the grid boundary and
obstacles remain the same, which are the last 2 dimensions described in Table 5.

16

Table 6: Results of iterative retraining on Karel dataset.
Iters 100% 10% 20% 30% 40% 50%

Generalization Accuracy
1 86.04% 70.92% 75.16% 78.84% 80.88% 82.08%
2 89.28% 76.20% 78.40% 81.08% 82.40% 83.40%
3 89.36% 78.12% 81.20% 83.68% 84.24% 86.32%

Exact Match Accuracy
1 39.40% 36.20% 37.20% 38.36% 40.20% 40.04%
2 41.56% 37.24% 37.28% 39.24% 39.72% 39.16%
3 41.16% 36.56% 38.16% 38.68% 38.72% 39.64%

Table 7: Results of iterative retraining on C dataset.
Iters 100% 10% 20% 30% 40% 50%
1 55.2% 11.9% 26.4% 39.1% 45.2% 48.5%
2 56.0% 39.6% 43.9% 48.7% 51.9% 54.1%
3 56.5% 41.7% 44.4% 49.4% 52.8% 54.4%

C Implementation Details

All encoders and decoders in our models are 2-layer bi-directional LSTMs with the hidden size of
512. The embedding size is 1024. We use the Adam optimizer [26] for training. The learning rate
starts from 1e-3, and is decayed by 0.9 for every 6000 timesteps. The batch size is 8. The training
converges in 200K batch updates. The norm for gradient clipping is 5.0. All models are trained
on a single GPU. The beam size is 64 for evaluating the model performance, and is 8 for iterative
retraining due to the large size of the training set.

About the implementation of the Property Signatures [39], we further illustrate the key difference
between our adaption for the restricted C domain and the original implementation in [39] with
the following example. Suppose an input-output pair is ([−4, 3, 1, 2, 1], [−4, 3, 3, 3, 3]), when the
feature is “Input == Output?”, the corresponding property signature is “False” according to the
implementation in [39], while the signature is “[True, True, False, False, False]” in our adapted
implementation. Compared to the original implementation of property signatures, our adaptation
better reveals which specific list elements are manipulated in the program. This modification makes
our implementation of property signatures a much stronger baseline for the restricted C domain,
because our C programs do not always perform the same manipulation steps over all elements in the
input list, and sometimes change the values of only a subset of the input numbers.

D More Results of Iterative Retraining

Figure 10 presents more examples of predicted correct programs that are more concise than the
randomly generated ground truth programs on C dataset.

Figure 11 presents more examples of predicted correct programs that are more concise than the
randomly generated ground truth programs on Karel dataset. Note that the predicted Karel program is
not semantically equivalent to the annotated ground truth in many cases. The main reason is because
the randomly generated ground truth program might include redundant branching statements, i.e., the
conditions always evaluate to true or false for all program inputs in the specification and the held-out
test cases.

We present the numerical results of iterative retraining on Karel and C benchmarks in Table 6 and
Table 7 respectively.

17

I1: [2, 4, 1, 2, -3]
O1: [2, 4, 3, 2, -3]
I2: [1, 0, 1, -3, 4]
O2: [1, 0, 3, -3, 4]
I3: [2, 2, -4, 2, 0]
O3: [2, 2, 3, 2, 0]
I4: [0, -2, 3, 1, 3]
O4: [0, -2, 3, 1, 3]
I5: [-2, 1, 4, 0, 0]
O5: [-2, 1, 3, 0, 0]

int * func_1(int a[])
{

int p_0 = 4;
int l_7 = 2;
int l_8 = 4;
a[l_7] = 3;
a[l_8] = a[p_0];
return a;

}

int * func_1(int a[])
{

int p_0 = 2;
a[p_0] = 3;
return a;

}

I1: [3, 1, 3, -2, -4]
O1: [3, 1, 2, -2, -4]
I2: [2, 0, -1, -1, 3]
O2: [2, 0, 2, -1, 3]
I3: [2, 0, -1, 4, 0]
O3: [2, 0, 2, 4, 0]
I4: [-2, -1, 3, 2, -4]
O4: [-2, -1, 2, 2, -4]
I5: [-4, 0, 3, 0, 1]
O5: [-4, 0, 2, 0, 1]

int * func_1(int a[])
{

int p_0 = 2;
int l_10 = 0;
int l_1 = 4;
l_10 = 2;
for (p_0 = 2; p_0 >= 1; p_0--)
{

a[p_0] = 3;
a[p_0] = 2;
if (a[p_0])

break;
a[p_0] = a[l_1];
a[p_0]++;

}
return a;

}

// Training on random programs
int * func_1(int a[])
{

int p_0 = 2;
int l_7 = 2;
a[l_7] = 2;
return a;

}

// After iterative retraining
int * func_1(int a[])
{

int p_0 = 2;
a[p_0] = 2;
return a;

}

I1: [0, 4, 0, 4, 2]
O1: [0, 4, 0, 1, 1]
I2: [4, 0, 1, 1, 4]
O2: [4, 0, 1, 1, 1]
I3: [3, 2, 3, 0, 0]
O3: [3, 2, 3, 1, 1]
I4: [1, 1, 4, 0, 4]
O4: [1, 1, 4, 1, 1]
I5: [1, 3, 0, 1, 1]
O5: [1, 3, 0, 1, 1]

int * func_1(int a[])
{

int p_0 = 0;
int l_10 = 3;
for (p_0 = 4; p_0 >= 0; p_0--)
{

a[p_0] = 3;
a[p_0] = a[p_0];
a[p_0] = 1;
if (a[p_0])

break;
}
a[l_10] = a[l_10];
a[l_10] = a[p_0];
return a;

}

int * func_1(int a[])
{

int p_0 = 4;
for (p_0 = 3; p_0 <= 4; p_0++)
{

a[p_0] = 1;
}
return a;

}

I1: [0, 3, -1, 0, 0]
O1: [4, 3, -1, 4, 4]
I2: [4, -3, 3, 4, 2]
O2: [4, -3, 3, 4, 4]
I3: [-4, 1, 0, 4, -2]
O3: [4, 1, 0, 4, 4]
I4: [0, 4, 3, 0, 4]
O4: [4, 4, 3, 4, 4]
I5: [2, 2, 0, 3, 2]
O5: [4, 2, 0, 4, 4]

int * func_1(int a[])
{

int p_0 = 0;
int l_11 = 3;
for (p_0 = 2; p_0 >= 1; p_0--)
{

for (int p_1 = 4; p_1 >= 3; p_1--)
{

a[p_1] = 4;
}

}
a[p_0] = a[l_11];
return a;

}

int * func_1(int a[])
{

int p_0 = 3;
int l_7 = 0;
a[l_7] = 4;
for (p_0 = 4; p_0 >= 3; p_0--)
{

a[p_0] = 4;
}
return a;

}

I1: [1, 0, 0, 4, -3]
O1: [1, 1, 1, 4, -3]
I2: [-3, 0, 0, -2, 4]
O2: [1, 1, 1, -2, 4]
I3: [0, 2, -2, 4, -3]
O3: [1, 1, 1, 4, -3]
I4: [4, -2, 0, -2, 0]
O4: [1, 1, 1, -2, 0]
I5: [0, 2, -4, 2, 2]
O5: [1, 1, 1, 2, 2]

int * func_1(int a[])
{

int p_0 = 4;
for (p_0 = 1; p_0 >= 0; p_0--)
{

a[p_0] = 1;
for (int p_1 = 2; p_1 >= 1; p_1--)
{

a[p_1] = 4;
a[p_1] = a[p_0];
if (a[p_1])

break;
}

}
return a;

}

int * func_1(int a[])
{

int p_0 = 1;
for (p_0 = 2; p_0 >= 0; p_0--)
{

a[p_0] = 1;
}
return a;

}

Figure 10: More examples of predicted correct programs that are more concise than the randomly generated
ground truth programs on C dataset. Left: input-output examples. Middle: the randomly generated ground truth
program. Right: the predicted programs. Unless otherwise specified, the predicted programs come from the
model trained on random programs.

18

def run():
repeat (5):

ifelse (rightIsClear):
move

else:
move

putMarker

def run():
repeat (5):

move
putMarker

def run():
move
turnRight
ifelse (noMarkersPresent):

repeat (2):
putMarker

else:
pickMarker

repeat (5):
turnRight

def run():
move
turnLeft
turnLeft
ifelse (markersPresent):

pickMarker
else:

putMarker
putMarker

def run():
pickMarker
move
ifelse (not rightIsClear):

putMarker
move

else:
move
putMarker
while (not rightIsClear):

move
putMarker

putMarker
turnRight
move

def run():
pickMarker
move
move
putMarker
putMarker
turnRight
move

def run():
move
turnRight
repeat (5):

pickMarker
putMarker

def run():
move
repeat (4):

pickMarker
turnRight

def run():
move
ifelse (markersPresent):

ifelse (frontIsClear):
putMarker

else:
pickMarker

else:
while (rightIsClear):

turnRight
repeat (2):

repeat (2):
putMarker

turnLeft

def run():
move
while (leftIsClear):

turnLeft
repeat (4):

putMarker

def run():
putMarker
move
ifelse (not leftIsClear):

putMarker
else:

turnRight
if (rightIsClear):

pickMarker

def run():
putMarker
move
putMarker
if (rightIsClear):

pickMarker

def run():
while (not rightIsClear):

while (noMarkersPresent):
putMarker

move
turnLeft
ifelse (rightIsClear):

while (noMarkersPresent):
putMarker
turnLeft
turnLeft
move

turnLeft
move

else:
turnLeft

turnLeft
turnLeft
repeat (4):

move
turnLeft

def run():
putMarker
move
if (noMarkersPresent):

putMarker
turnRight
move
putMarker
turnRight

while (not frontIsClear):
turnRight
move
turnRight

repeat (3):
move

turnLeft

def run():
repeat (6):

if (markersPresent):
repeat (9):

pickMarker
putMarker
move

putMarker
turnRight

def run():
repeat (6):

putMarker
move

putMarker
turnRight

def run():
turnRight
move
turnRight
move
while (not rightIsClear):

move
pickMarker
ifelse (not leftIsClear):

move
else:

move

def run():
turnRight
move
turnRight
move
pickMarker
move

def run():
while (frontIsClear):

ifelse (markersPresent):
move

else:
putMarker

def run():
while (frontIsClear):

putMarker
move

Figure 11: Examples of predicted correct programs that are more concise than the randomly generated ground
truth programs on Karel dataset. 1st and 3rd columns: the randomly generated ground truth programs. 2nd and
4th: the corresponding predicted programs. The predictions come from the model trained on random programs.

19

