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Abstract1

With the increasing use of Graph Neural Networks (GNNs) in critical real-world ap-2

plications, several post hoc explanation methods have been proposed to understand3

their predictions. However, there has been no work in generating explanations on4

the fly during model training and utilizing them to improve the expressive power5

of the underlying GNN models. In this work, we introduce a novel explanation-6

directed neural message passing framework for GNNs, EXPASS (EXplainable7

message PASSing), which aggregates only embeddings from nodes and edges8

identified as important by a GNN explanation method. EXPASS can be used with9

any existing GNN architecture and subgraph-optimizing explainer to learn accurate10

graph embeddings. We theoretically show that EXPASS alleviates the oversmooth-11

ing problem in GNNs by slowing the layer-wise loss of Dirichlet energy and that12

the embedding difference between the vanilla message passing and EXPASS frame-13

work can be upper bounded by the difference of their respective model weights.14

Our empirical results show that graph embeddings learned using EXPASS improve15

the predictive performance and alleviate the oversmoothing problems of GNNs,16

opening up new frontiers in graph machine learning to develop explanation-based17

training frameworks.18

1 Introduction19

Graph Neural Networks (GNNs) are increasingly used as powerful tools for representing graph-20

structured data, such as social, information, chemical, and biological networks [1, 2]. With the21

deployment of GNN models in critical applications (e.g., financial systems and crime forecasting [3,22

4]), it becomes essential to ensure that the relevant stakeholders understand and trust their decisions.23

To this end, several approaches [5–13] have been proposed in recent literature to generate post hoc24

explanations for predictions of GNN models.25

In contrast to other modalities like images and texts, generating instance-level explanations for26

graphs is non-trivial. In particular, it is more challenging since individual node embeddings in GNNs27

aggregate information using the entire graph structure, and, therefore, explanations can be on different28

levels (i.e., node attributes, nodes, and edges). While several categories of GNN explanation methods29

have been proposed: gradient-based [5, 10, 14], perturbation-based [8, 9, 11, 13, 15], and surrogate-30

based [7, 12], their utility is limited to generating post hoc node- and edge-level explanations for a31

given pre-trained GNN model. Thus, the capability of GNN explainers to improve the predictive32

performance of a GNN model lacks understanding as there is very little work on systematically33

analyzing the reliability of state-of-the-art GNN explanation methods on model performance [16].34

To address this, recent works have explored the joint optimization of machine learning models and35

explanation methods to improve the reliability of explanations [17, 18]. Zhou et al. [18] proposed36

DropEdge as a technique to drop random edges (similar to generating random edge explanations)37

during training to reduce overfitting in GNNs. More recently, Spinelli et al. [17] used meta-learning38

frameworks to generate GNN explanations and show an improvement in the performance of specific39

GNN explanation methods. While these works make an initial attempt at jointly optimizing explainers40

and predictive models, they are neither generalizable nor exhaustive. They fail to show improvement41
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in the downstream GNN performance [17] and degree of explainability [18] across diverse GNN42

architectures and explainers. Further, there is little to no work done on either theoretically analyzing43

the effect of GNN explanations on the neural message framework in GNNs or on important GNN44

properties like oversmoothing [19].45

Present work. In this work, we introduce a novel explanation-directed neural message passing46

framework, EXPASS, which can be used with any GNN model and subgraph-optimizing explainer to47

learn accurate graph representations. In particular, EXPASS utilizes GNN explanations to steer the48

underlying GNN model to learn graph embeddings using only important nodes and edges. EXPASS49

aims to define local neighborhoods for neural message passing, i.e., identify the most important50

edges and nodes, using explanation weights, in the k-hop local neighborhood of every node in the51

graph. Formally, we augment existing message passing architectures to allow information flow along52

important edges while blocking information along irrelevant edges.53

We present an extensive theoretical and empirical analysis to show the effectiveness of EXPASS on54

the predictive, explainability, and oversmoothing performance of GNNs. Our theoretical results show55

that the embedding difference between vanilla message passing and EXPASS frameworks is upper-56

bounded by the difference between their model weights. Further, we show that embeddings learned57

using EXPASS relieve the oversmoothing problem in GNNs as they reduce information propagation58

by slowing the layer-wise loss of Dirichlet energy (Section 4.2). For our empirical analysis, we59

integrate EXPASS into state-of-the-art GNN models and evaluate their predictive, oversmoothing,60

and explainability performance on real-world graph datasets (Section 5). Our results show that, on61

average, across five GNN models, EXPASS improves the degree of explainability of the underlying62

GNNs by 39.68%. Our ablation studies show that for an increasing number of GNN layers, EXPASS63

achieves 34.4% better oversmoothing performance than its vanilla counterpart. Finally, our results64

demonstrate the effectiveness of using explanations during training, paving the way for new frontiers65

in GraphXAI research to develop explanation-based training algorithms.66

2 Related works67

Graph Neural Networks. Graph Neural Networks (GNNs) are complex non-linear functions that68

transform input graph structures into a lower dimensional embedding space. The main goal of69

GNNs is to learn embeddings that reflect the underlying input graph structure, i.e., neighboring70

nodes in the graph are mapped to neighboring points in the embedding space. Prior works have71

proposed several GNN models using spectral and non-spectral approaches. Spectral models [20–24]72

leverage Fourier transform and graph Laplacian to define convolution approaches for GNN models.73

However, non-spectral approaches [25–29] define the convolution operation by leveraging the local74

neighborhood of individual nodes in the graph. Most modern non-spectral models are message75

passing frameworks [30, 31], where nodes update their embedding by aggregating information from76

k-hop neighboring nodes.77

Post hoc Explanations. With the increasing development of complex high-performing GNN mod-78

els [25–29], it becomes critical to understand their decisions. Prior works have focused on developing79

several post hoc explanation methods to explain the decisions of GNN models [5, 7, 9, 11–13, 32].80

More specifically, these explanation methods can be broadly categorized into i) gradient-based meth-81

ods [5] that leverage the gradients of the GNN model to generate explanations; ii) perturbation-based82

methods [9, 11, 13] that aim to generate explanations by calculating the change in GNN predictions83

upon perturbations of the input graph structure (nodes, edges, or subgraphs); and iii) surrogate-based84

methods [7, 12] that fit a simple interpretable model to approximate the predictive behavior of the85

given GNN model. Finally, recent works have introduced frameworks to theoretically and empirically86

analyze the behavior of state-of-the-art GNN explanation methods with respect to several desirable87

properties [16, 33].88

3 Preliminaries89

Notations. Let G = (V, E ,X) denote an undirected graph comprising of a set of nodes V and a90

set of edges E . Let X={x1,x2, . . . ,xN} denote the set of node feature vectors for all nodes in V ,91

where xv 2 Rd captures the attribute values of a node v and N=|V| denotes the number of nodes in92

the graph. Let A 2 RN⇥N be the graph adjacency matrix, where element Auv = 1 if there exists93

an edge e 2 E between nodes u and v and Auv = 0 otherwise. We use Nu to denote the set of94
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immediate neighbors of node u, i.e., , Nu = {v 2 V|Auv = 1}. Finally, the function deg : V 7! Z>095

is defined as deg(v) = |Nv| and outputs the degree of a node v 2 V96

Graph Neural Networks (GNNs). Formally, GNNs can be formulated as message passing net-97

works [30] specified by three key operators MSG, AGG, and UPD. These operators are recur-98

sively applied on a given graph G for a L-layer GNN model defining how neural messages are99

shared, aggregated, and updated between nodes to learn the final node representations in the L
th100

layer of the GNN. Commonly, a message between a pair of nodes (u, v) in layer l is charac-101

terized as a function of their hidden representations h
(l�1)
u and h

(l�1)
v from the previous layer:102

m
(l)
uv = MSG(h(l�1)

u ,h
(l�1)
v ). The AGG operator retrieves the messages from the neighborhood of103

node u and aggregates them as: m(l)
u = AGG(m(l)

uv | v 2 Nu). Next, the UPD operator takes the aggre-104

gated message m(l)
u at layer l and combines it with h

(l�1)
u to produce node u’s representation for layer105

l as h(l)
u = UPD(m(l)

u ,h
(l�1)
u ). Lastly, the final node representation for node u is given as zu = h

(L)
u .106

Graph Explanations. In contrast to other modalities like images and texts, an explanation method107

for graphs can formally generate multi-level explanations. For instance, in a graph classification task,108

the explanations for a given graph prediction can be with respect to node attributes Mx 2 Rd, nodes109

Mn 2 RN , or edges Me 2 RN⇥N . Note that these explanation masks are continuous but can be110

discretized using specific thresholding strategies [33].111

Oversmoothing. Cai et al. [34] and Zhou et al. [35] defined bounds for analyzing oversmoothing112

for a GNN using Dirichlet Energy. For a graph G with adjacency matrix A and degree matrix D, we113

define Ã=A+ IN and D̃=D+ IN as the adjacency and degree matrices respectively of the graph G114

with self-loops. We also define the augmented normalized Laplacian of G as �̃=IN � D̃
� 1

2 ÃD̃
� 1

2 ,115

and P=IN � �̃.116

4 Our Framework: EXPASS117

Here, we describe EXPASS, our proposed explainable message passing framework that aims to learn118

accurate and interpretable graph embeddings. In particular, EXPASS incorporates explanations into119

the message passing framework of GNN models by only aggregating embeddings from key nodes120

and edges as identified using an explanation method.121

Problem formulation (Explanation Directed Message Passing). Given a graph G = (V, E ,X),122

EXPASS aims to generate a d-dimensional embedding zu 2 Rd for each node u 2 V using an123

explanation-directed message passing framework that filters out the noise from unimportant edges124

and improves the expressive power of GNNs.125

4.1 Explanation Directed Message Passing126

The central idea of EXPASS is to propose a novel method for improving the neural message passing127

scheme of GNN models by utilizing explanations during model training and aggregating important128

neural messages along edges in graph neighborhoods. Next, we describe the existing message passing129

scheme in GNNs and our explainable counterpart.130

Message Passing. As described in Section 3, each GNN layer can be described using the MSG, AGG,131

and UPD operators. For each node u 2 V , the (l+1)th layer embeddings h(l+1)
u is computed using a132

GNN operating on the node’s neighboring attributes. Formally, the GNN layer can be formulated as:133

UPDATE AGGREGATE
MESSAGE

h
(l+1)
u = �

 
h
(l)
u ,

M

v2Nu

 (h(l)
u ,h

(l)
v )

!

where h
(l+1)
u represents the updated embedding of node u,  is the MSG operator,

L
is the AGG134

operator (e.g., summation), � is an UPD function (e.g., any non-linear activation function), and h
(l)
u135

represents the embedding of node u from the previous layer. We obtain an embedding zu for node136

u by stacking L GNN layers. Finally, the node embeddings Z 2 R are then passed to a READOUT137

function to obtain an embedding for the graph.138
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Figure 1: Overview of EXPASS: a) EXPASS investigates the problem of injecting explanations into the message
passing framework to increase the expressive power and performance of GNNs. b) Shown is the general message
passing scheme where, for node u, messages are aggregated from nodes vi 2 Nu in the 1-hop neighborhood of
u. c) EXPASS injects explanations into the message passing framework translates by masking out messages from
neighboring nodes vi 2 Nu with explanation scores suvi ⇡ 0 when u is correctly classified.

EXPASS. Here, we describe our proposed explainable message passing scheme that incorporates139

explanations into the message passing step in individual GNN layers on the fly during the training140

process. Given an explanation method, which generates an importance score suv 2 M
e
u for every141

edge euv 2 E , we can weight the edge contribution in the neighborhood Nu of node u as:

h
0 (l+1)
u = �

 
h
(l)
u ,

M

v2Nu

suv  (h
(l)
u ,h

(l)
v )

!

142

Note that EXPASS is agnostic to explanation types and can also incorporate explanations on node143

attributes and node level. For instance, the importance scores for individual nodes can be computed144

by averaging the outgoing scores suv for all v 2 Nu. Subsequently, we can replace the suv score145

by using the average score su to weight edges in the EXPASS layers, and for node attributes, we can146

multiply the node attribute explanation M
a
u to the original node attribute vector.147

To enable explainable message passing and only retain the important embeddings for node u, EXPASS148

removes the knowledge of irrelevant nodes and edges from the local neighborhood Nu of node u149

using its explanations. For instance, if node v is considered important to node u, EXPASS transforms150

the aggregated messages of node u using the node importance scores suv. Note that since the151

explanations of node u include important nodes and edges in the L-hop neighborhood of node u, even152

though node u is only locally modified, the change will spread through all the nodes in every GNN153

layer. Furthermore, to avoid spurious correlations, we ensure that explanations are only generated154

for correctly classified nodes and graphs. Explanation weights infuse information from higher-order155

neighborhoods into each layer of the GNN model, specifically, from as many L-hop neighbors156

because explanation weights within each layer are computed using the L-layer GNN model. To157

illustrate this, we next show the weight computations for a GNN explanation method.158

Without loss of generality, let us consider GNNExplainer as our explanation method whose mask159

for selected graph is formulated as: Gmask = (X0
,A

0) = (X � �(Mx),A � �(Me)), where160

W = [Mx
,M

e] are the explainers parameters, � is the sigmoid function, and � denotes element-161
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wise multiplication. Here, suv represents the element in row v and column u of Me. Gradient162

descent-based optimization is used to find the optimal values for the masks minimizing the following163

objective: Le = �
PC

c=1 1[y = c] log f✓(Y = y|Gmask), where f✓ is the L-layer GNN model and164

C is the total number of classes. This shows that a L-hop neighborhood is used to compute suv.165

Formally, it minimizes the uncertainty of the predictive model when the GNN computation is limited166

to the explanation subgraph. This uncertainty is minimized as a proxy of the maximization of the167

mutual information between the prediction with the unmasked graph and masked graph.168

4.2 Theoretical Analysis169

Here, we provide a detailed theoretical analysis of our proposed EXPASS framework. In particular, we170

(i) provide a theoretical upper bound on the embedding difference obtained from a vanilla message171

passing and EXPASS framework and (ii) show that graph embeddings learned using EXPASS relieves172

the oversmoothing problem in GNNs by reducing information propagation.173

Theorem 1 (Differences between EXPASS and Vanilla Message Passing). Given a non-linear174

activation function � that is Lipschitz continuous, the difference between the node embeddings175

between a vanilla message passing and EXPASS framework can be bounded by the difference in their176

individual weights, i.e.,177

kh(l)
u � h

0(l)
u k2  kW(l)

a �W
0(l)
a k2kh(l�1)

u k2 + kW(l)
n �W

0(l)
n k2

X

v2Nu\sv=1

kh(l�1)
v k2, (1)

where W
(l)
a and W

0(l)
a are the weights for node u in layer l of the vanilla message passing and178

EXPASS framework and W
(l)
n and W

0(l)
n are their respective weight matrix with the neighbors of179

node u at layer l.180

Proof Sketch. In Theorem 1, we prove that the `2-norm of the differences between the embeddings of181

vanilla message passing and EXPASS framework at layer l is upper bounded by the difference between182

their weights and the embeddings of node u and its subgraph. See Appendix A for more details.183

Definition 1 (Dirichlet Energy for a Node Embedding Matrix [35]). Given a node embedding matrix184

H
(l) = [h(l)

1 , . . . ,h
(l)
n ]T learned from the GNN model at the l

th layer, the Dirichlet Energy E(H(l))185

is defined as:186

E(H(l)) = tr(H(l)T �̃H
(l)) =

1

2

X

i,j2V
aij ||

H
(l)
ip

1 + degi
�

H
(l)
jp

1 + degj
||22 (2)

where aij are elements in the adjacency matrix Ã and degi, degj is the degree of node i and j,187

respectively.188

Cai et al. [34] extensively show that higher Dirichlet energies correspond to lower oversmoothing.189

Furthermore, they show that the removal of edges or, similarly, the reduction of edge weights on190

graphs helps alleviate oversmoothing.191

192

Proposition 1 (EXPASS relieves Oversmoothing). EXPASS alleviates oversmoothing by slowing the193

layer-wise loss of Dirichlet energy.194

The complete proof is provided in Appendix A.195

5 Experiments196

Next, we present experimental results for our EXPASS framework. More specifically, we address197

the following questions: Q1) Does EXPASS enable GNNs to learn more accurate embeddings198

and improve their degree of explainability? Q2) How does EXPASS affect the oversmoothing and199

predictive performance of GNNs with an increasing number of layers? Q3) Does EXPASS depend on200

the quality of explanations for improving the predictive and oversmoothing performance of GNNs201

and are they better than attention weights?202
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5.1 Datasets and Experimental setup203

We first describe the datasets used to study the utility of our proposed EXPASS framework and then204

outline the experimental setup.205

Datasets. We use real-world molecular chemistry datasets to evaluate the effectiveness of EXPASS206

w.r.t. the performance of the underlying GNN model and understand the trade-off between explain-207

ability and accuracy for a graph classification task. We consider four benchmark datasets, which208

includes Mutag [36], Alkane-Carbonyl [37], DD [38], and Proteins [39]. See Appendix B.1 for a209

detailed overview of the datasets.210

GNN Architectures and Explainers. To investigate the flexibility of EXPASS, we incorporate211

it into five different GNN models: GCN [40], GraphConv [41], LEConv [42], GraphSAGE [28],212

and GIN [27]. We use GNNExplainer [13] as our baseline GNN explanation method to generate213

edge-level explanations for most of our experiments. In addition, we use Integrated Gradients [43], a214

node-level explanation method, to demonstrate EXPASS’s sensitivity to the choice of explainers.215

Implementation details. We consider DropEdge [44] as our baseline method for comparing the216

oversmoothing performance of EXPASS as DropEdge randomly removes edges from the input graph217

at each training epoch, acting like a message passing reducer. Across all experiments, we use topK218

(k=40%) node features/edges, and use them to generate explanations for all explanation methods.219

All other hyperparameters of the explanation and baseline methods were set following the author’s220

guidelines. For all our experiments (unless mentioned otherwise), we use the baseline architectures221

with three GNN layers followed by ReLU layers and set the hidden dimensionality to 32. Finally,222

we use a single linear layer to transform the graph embeddings to their respective classes. See223

Appendix B.2 for more details.224

Performance metrics for GNN Explainers. To measure the reliability of GNN explanation methods,225

we use the graph explanation faithfulness metric [16]: GEF(ŷu, ŷu0) = 1� exp�KL(ŷu||ŷu0 ), where226

ŷu is predicted probability vector using the whole subgraph and ŷu0 is the predicted probability227

vector using the masked subgraph, where we generate the masked subgraph by only using the topK228

features identified by an explanation and the Kullback-Leibler (KL) divergence score (denoted by “||”229

operator) quantifies the distance between two probability distributions. Note that GEF is a measure230

of the unfaithfulness of the explanation. So, higher values indicate a higher degree of unfaithfulness.231

Performance metrics for Oversmoothing. Zhou et al. [18] introduced the Group Distance Ratio232

(GDR) metric to quantify oversmoothing in GNNs. It measures the ratio between the average of233

pairwise representation distances between graphs belonging to different (inter) and same (intra)234

groups. Formally, one would prefer to reduce the intra-group class representations and increase the235

inter-group distance to relieve the over-smoothing issue. Hence, lower GDR values denote higher236

oversmoothing in GNNs.237

Burn-in period. We defined the burn-in period as a number n of epochs during training in which no238

explanations are used. The burn-in period is necessary to avoid feeding spurious explanations to the239

model. The length of the burn-in period, e.g. the number of epochs, was treated as a hyperparameter240

and fine-tuned during the model fine-tuning phase. At the end of the burn-in period, a predefined241

percentage of correctly predicted graphs per batch is randomly sampled and their explanations are242

used in the model training. The percentage of correctly predicted graphs sampled in each batch was243

treated as an hyperparameter and was set to 0.4 for all our experiments.244

5.2 Results245

Q1) EXPASS improves the predictive performance and explainability of GNNs. To measure the246

predictive performance and degree of explainability of GNNs trained using EXPASS, we compute247

their average predictive performance (using AUROC and F1-score) and fidelity (using Graph Expla-248

nation Faithfulness) using different GNN models and datasets. Across four datasets and five GNN249

architectures, we find that EXPASS-augmented GNNs learn graph embeddings that are more accurate250

(higher AUROC and F1-score) and result in more faithful explanations (lower Graph Explanation251

Faithfulness score) than their vanilla counterparts. On average, EXPASS improves the AUROC252

and F1-score by 1.51% and 1.05%, respectively. In particular, we observe that EXPASS improves253

the predictive behavior of high-performing models like GIN (+2.06% in AUROC and +2.50% in254

F1-score) but shows little to no improvement in the case of LeConv, which utilizes a node-scoring255
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Table 1: Results of EXPASS for five GNNs and four graph datasets. Shown is average performance across three
independent runs. Arrows (", #) indicate the direction of better performance. EXPASS improves the predictive
power (AUROC and F1-score) and degree of explainability (Graph Explanation Faithfulness) of original GNNs
across multiple datasets (shaded area). Values corresponding to best performance are bolded.

Dataset Method AUROC (") F1-score (") GEF (#)

ALKANE-
CARBONYL

GCN
EXPASS-GCN

0.97±0.01
0.98±0.00

0.95±0.01
0.96±0.01

0.33±0.02
0.23±0.02

GraphConv
EXPASS-GraphConv

0.97±0.01
0.98±0.00

0.94±0.00
0.97±0.00

0.38±0.05
0.22±0.03

LeConv
EXPASS-LeConv

0.98±0.01
0.98±0.00

0.96±0.00
0.96±0.01

0.37±0.03
0.24±0.03

GraphSAGE
EXPASS-GraphSAGE

0.98±0.00
0.99±0.00

0.96±0.00
0.97±0.01

0.40±0.12
0.18±0.06

GIN
EXPASS-GIN

0.96±0.01
0.98±0.01

0.94±0.02
0.96±0.02

0.35±0.06
0.11±0.04

DD

GCN
EXPASS-GCN

0.73±0.02
0.74±0.01

0.70±0.02
0.70±0.02

0.49±0.04
0.30±0.09

GraphConv
EXPASS-GraphConv

0.75±0.03
0.77±0.03

0.73±0.03
0.73±0.03

0.25±0.10
0.19±0.04

LeConv
EXPASS-LeConv

0.76±0.03
0.77±0.03

0.74±0.02
0.73±0.04

0.17±0.03
0.31±0.10

GraphSAGE
EXPASS-GraphSAGE

0.74±0.02
0.76±0.03

0.70±0.02
0.71±0.02

0.21±0.04
0.20±0.03

GIN
EXPASS-GIN

0.74±0.01
0.76±0.01

0.70±0.01
0.74±0.01

0.37±0.03
0.35±0.05

MUTAG

GCN
EXPASS-GCN

0.71±0.11
0.77±0.02

0.87±0.01
0.89±0.00

0.09±0.03
0.04±0.01

GraphConv
EXPASS-GraphConv

0.91±0.02
0.93±0.01

0.94±0.02
0.94±0.01

0.66±0.03
0.24±0.03

LeConv
EXPASS-LeConv

0.92±0.03
0.92±0.03

0.94±0.02
0.96±0.01

0.65±0.05
0.30±0.06

GraphSAGE
EXPASS-GraphSAGE

0.76±0.02
0.76±0.02

0.86±0.03
0.87±0.03

0.24±0.08
0.11±0.03

GIN
EXPASS-GIN

0.92±0.02
0.94±0.02

0.93±0.01
0.95±0.01

0.61±0.05
0.32±0.04

PROTEINS

GCN
EXPASS-GCN

0.73±0.05
0.74±0.03

0.68±0.04
0.69±0.03

0.19±0.02
0.08±0.02

GraphConv
EXPASS-GraphConv

0.75±0.03
0.75±0.03

0.70±0.03
0.70±0.04

0.49±0.06
0.10±0.03

LeConv
EXPASS-LeConv

0.77±0.03
0.76±0.02

0.72±0.04
0.71±0.03

0.51±0.01
0.15±0.07

GraphSAGE
EXPASS-GraphSAGE

0.73±0.04
0.73±0.04

0.69±0.04
0.69±0.04

0.17±0.07
0.06±0.01

GIN
EXPASS-GIN

0.77±0.04
0.78±0.03

0.73±0.05
0.73±0.04

0.20±0.07
0.19±0.01

mechanism through the similarity between a node and its neighbors’ embeddings. Finally, we find256

that EXPASS-augmented GNNs significantly improve the explainability of a GNN and achieve a257

39.68% better faithfulness score as compared to vanilla GNNs (Table 1).258

Q2) EXPASS relieves Oversmoothing in GNNs. We examine the oversmoothing (using the Group259

Distance Ratio metric [18]) and predictive performance of GNNs trained using EXPASS with their260

vanilla counterparts. The oversmoothing problem in GNNs shows that the representations of nodes261

converge to similar vectors as the number of layers increases. Therefore, we analyze the oversmooth-262

ing of the GNNs for an increasing number of layers and find that, on average, across two architectures,263

EXPASS improves the group distance ratio by 34.4% (Figure 2). Further, our results indicate an inher-264

ent trade-off between oversmoothing and predictive performance of GNNs, as shown in Figures 4-6.265
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Figure 2: The effects of the number of GNN layers on the oversmoothing performance of EXPASS (orange) and
Vanilla (green) GCN (left column) and GIN (right column) models trained on Alkane-Carbonyl dataset. Across
models with increasing number of layers, EXPASS achieves higher GDR performance without sacrificing the
predictive performance of the GCN model. See Figs. 4-6 for predictive performance results.

Q3) Ablation studies. We conduct ablations on several components of EXPASS with respect to its266

oversmoothing and predictive performance.267

EXPASS for different TopK Explanations. We investigate the oversmoothing and predictive perfor-268

mance of GNNs for different topK explanations (i.e., topK edges identified by a GNN explanation)269

chosen in the message passing. Results show that EXPASS alleviates oversmoothing by using only270

the topK edges to learn graph embeddings and explicitly filter out the noise from unimportant edges.271

In particular, we observe that the GDR values decrease (denoting higher oversmoothing) with the272

increase in the use of topK edges (Figure 3). More specifically, we find that the GDR value at273

topK=0.1 is 11.92% higher than vanilla message passing (i.e., using all edges in the graph).274

EXPASS vs. DropEdge. We compare the predictive and oversmoothing and predictive performance275

of EXPASS and DropEdge. Here, we show that message passing using optimized explanation-directed276

information outperforms random edge removal. We find that EXPASS outperforms DropEdge across277

both oversmoothing and accuracy metrics. In particular, on average, across different topK values,278

EXPASS improves the oversmoothing, AUROC, and F1-score performance of vanilla message passing279

by 71.16%, 9.53%, and 12.63%, respectively (Figure 3).280

(a) Group Distance Ratio (b) AUROC (c) F1-Score

Figure 3: The effects of choosing only the topK percent of important edges on the (a) oversmoothing, (b)
AUROC, and (c) F1-score performance of GCN model trained on Alkane-Carbonyl dataset. Over a wide range
of topK values (0.1 < topK < 1.0), EXPASS outperforms DropEdge [44] on all the three metrics. Note that
their performance converges for topK = 1.0 as that denotes using all the edges in the graph.

EXPASS using Node Explanations. We investigate the effect of the choice of the baseline281

explanation method on the performance of EXPASS with respect to the vanilla message passing282

framework. More specifically, we evaluate the predictive and explainability performance of283

EXPASS-augmented GNNs when trained using node explanations generated using Integrated284

Gradients (IG) [43]. Similar to the results of EXPASS with GNNExplainer as the baseline explanation285

method (Table 1), we find that EXPASS trained using IG explanations also improves the AUROC286

(+2.80%), F1-score (+1.11%), and GEF (+23.67%) of the vanilla GNN model. Our results show that287

the choice of explainer can make a difference in the EXPASS performance, depending on the dataset.288

For instance, IG is a node-masking explainer that is not considered a strong explanation method289
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Table 2: Results of EXPASS for GCN using the node explanations from Integrated Gradients [43] for message
passing for various datasets. Shown is average performance across three independent runs. Arrows (", #) indicate
the direction of better performance. EXPASS improves the predictive power (AUROC and F1-score) and degree
of explainability (Graph Explanation Faithfulness) of original GNNs across multiple datasets (shaded area).

Dataset Method AUROC (") F1-score (") GEF (#)

DD GCN
EXPASS-GCN

0.73±0.02
0.75±0.01

0.70±0.02
0.71±0.03

0.25±0.03
0.23±0.04

ALKANE
GCN
EXPASS-GCN

0.97±0.01
0.97±0.01

0.95±0.01
0.95±0.01

0.09±0.01
0.1±0.01

MUTAG
GCN
EXPASS-GCN

0.71±0.11
0.77±0.02

0.87 ±0.01
0.88±0.01

0.09±0.02
0.04±0.02

PROTEINS
GCN
EXPASS-GCN

0.73±0.04
0.73±0.04

0.68±0.04
0.67±0.05

0.05±0.01
0.04±0.01

and its effects are variable across datasets [33]. We recommend using graph-specific explainers290

that optimize for fidelity and sparsity on the edges of the input graph, which would be a best fit to291

increase the performance of the network. Further, our results show that EXPASS is a model- and292

explainer-agnostic framework that can improve the downstream task and explainability performance293

across different GNN architectures using diverse GNN explainers.294

6 Conclusion295

In this work, we propose the problem of learning graph embeddings using explanation-directed296

message passing in GNNs. To this end, we introduce EXPASS, a novel message passing framework297

that can be used with any existing GNN model and subgraph-optimizing explainer to learn accurate298

embeddings by aggregating only embeddings from nodes and edges identified as important by a299

GNN explainer. We perform an extensive theoretical analysis to show that EXPASS relieves the300

oversmoothing problem in GNNs, and the embedding difference between the vanilla message passing301

framework and EXPASS can be upper bounded by the difference of their respective layer weights.302

Our empirical results on benchmark datasets show that EXPASS improves the explainability of the303

underlying GNN model without sacrificing its predictive performance. Our proposed method and304

findings open up exciting new avenues to generate graph embeddings by jointly training models and305

explanation methods. We anticipate that EXPASS could open new frontiers in graph machine learning306

for developing explanation-based training frameworks.307
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