
A Additional Related Works

Two other works [30, 31] are on reducing the dimensionality of the feature space using hashing
— note that these works do not consider the combination of gradient descent with dimensionality
reduction, and also have a different focus from our work. We note that the work [32] on feature
hashing shows that a Countsketch matrix S (with exactly 1 nonzero entry per column) has the JL
property when applied to vectors that are flat, i.e., S preserves the norm of x given a bound on
‖x‖∞/‖x‖2 — we are interested in the opposite case where the weight vector w∗ has heavy hitters.
[33] studies a more general setting of non-convex optimization/neural networks, but the focus is on
compressing the auxiliary variables in optimization algorithms such as ADAM, ADAGRAD, etc.
[34] is concerned with machine learning problems directly making use of the compressed weights,
rather than recovering estimates of the optimal weight vectors — in our setting, this corresponds to
classification on {Rxt}t∈[T]. Though it is not the main focus of our work, in Appendix D we give
guarantees on the classification error of our compressed model — our guarantees in Appendix D are
somewhat similar to those of [34], though in [34] they also analyze the generalization loss. The work
[35] on sketching for logistic regression gives algorithms with poly(d) memory, while our algorithms
have memory that is logarithmic in d, and [35] gives O(1)- and O(log n)-approximation algorithms
for logistic regression, whereas we focus on estimating the coordinates of the optimal weight vector.

B Missing Proofs from Section 2

B.1 Proof of Theorem 2.2

Our proof has the same structure as the batch setting analysis of [1], but we will note the key steps
in which it differs. We bound ‖Rw∗ − z∗‖2 by considering the optimal dual solutions for L and
L̂. First, let us compute the dual objective for L. Note that the primal problem can be re-written
as minu,w

1
T

∑T
t=1 `(ut) + λ

2 ‖w‖
2
2 subject to the constraints ut = ytw

Txt for all t ∈ [T]. We can
write the Lagrangian as

F (u,w, α) =
1

T

T∑
t=1

`(ut) +
λ

2
‖w‖22 +

1

T

T∑
t=1

αt(ytw
Txt − ut)

=
1

T

T∑
t=1

(`(ut)− αtut) +
λ

2
‖w‖22 +

1

T
(X̃α)Tw

(1)

where X̃ ∈ Rd×T such that X̃t = ytxt for t ∈ [T]. Thus, the optimal dual solution α∗ ∈ Rt is the
maximizer of

min
u,w

F (u,w, α) = − 1

T

T∑
t=1

`∗(αt)−
1

2λT 2
αTKα

where `∗ denotes the Fenchel conjugate of `, and K = X̃T X̃ . Equivalently, α∗ is the minimizer of

J(α) =
1

T

T∑
t=1

`∗(αt) +
1

2λT 2
αTKα

Furthermore, by the Karush-Kuhn-Tucker conditions, w∗ = − 1
λT X̃α∗. We can perform a similar

analysis for the “sketched” objective: it was shown in [1] that solving the dual of the sketched
problem is equivalent to minimizing

Ĵ(α̂) =
1

T

T∑
t=1

`∗(α̂t) +
1

2λT 2
α̂T K̂α̂∗

where K̂ = X̃TRTRX̃ . In addition, if α̂∗ = argmin Ĵ(α̂), then again by the Karush-Kuhn-Tucker
conditions, z∗ = − 1

λTRX̃α̂∗. Thus,

‖z∗ −Rw∗‖22 =
1

λ2T 2
‖RX̃(α̂∗ − α∗)‖22 =

1

λ2T 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗) (2)

15

To bound the final quantity in Equation 2, the following lemmas were shown by [1]. Note that they
were also shown in the case when R is the Countsketch matrix of [3], and hold regardless of the
number of rows R has.
Lemma B.1 ([1]).

1

λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗) ≤

1

λT 2
(α∗ − α̂∗)T (K̂ −K)α∗ ≤

1

T
‖α̂∗ − α∗‖1‖∆‖∞ (3)

where ∆ := 1
λT (K̂ −K)α.

Lemma B.2 ([1]). ‖α̂∗ − α∗‖1 ≤ 2Tβ‖∆‖∞

Combining the above two lemmas with Equation 2, we can conclude that

‖z∗ −Rw∗‖22 ≤
2β

λ
‖∆‖2∞ (4)

Now, to obtain the `2 guarantee, we bound ‖∆‖∞ more carefully than [1], using Theorem 2.1, as
follows (see Remark B.5 for a comparison of our argument to that of [1]):

Lemma B.3. For F ∈ (0, 1), if R is a sparse JL matrix with k = Θ(log(dT/δ)
F 2) rows, then with

probability 1− δ, the following hold simultaneously for all i, j ∈ [d] and t ∈ [T]:

1. |〈ei, w∗〉 − 〈Ri, Rw∗〉| ≤ F‖w∗‖2
2. |〈Rxt, Rw∗〉 − 〈xt, w∗〉| ≤ F‖xt‖2‖w∗‖2
3. |〈Ri, Rj〉 − 〈ei, ej〉| ≤ F

4. ‖Rxt‖2 = (1± F)‖xt‖2 ≤ 1 + F

5. ‖Rw∗‖2 = (1± F)‖w∗‖2

Proof. First, let u, v ∈ Rd with ‖u‖2 = ‖v‖2 = 1. If R has Θ(1
F 2 log(1

δ′)) rows, then with
probability 1− δ′, R preserves the `2 norms of u+ v and u− v up to a factor of 1±F , by Theorem
2.1. Thus,

〈Ru, Rv〉 =
‖R(u + v)‖22 − ‖R(u− v)‖22

4

=
(1± F)‖u + v‖22 − (1± F)‖u− v‖22

4

=
‖u + v‖22 − ‖u− v‖22

4
± F · ‖u + v‖22 + ‖u− v‖22

4
= 〈u,v〉 ±O(F)

(5)

where the last inequality is because ‖u+v‖2, ‖u−v‖2 = O(1). Thus, in general, if u,v ∈ Rd andR
has Θ(1

F 2 log(1
δ′)) rows, then with probability 1−δ′, 〈Ru, Rv〉 = 〈u,v〉±O(F‖u‖2‖v‖2). Finally,

in order for the conclusions of Lemma B.3 to hold, it suffices to have δ′ = δ
d+T+d2+T+1 = Θ(δ

T+d2),
since we can then union bound over the relevant pairs of points in Rd.

Lemma B.3 allows us to show the following bound on ‖∆‖∞:
Lemma B.4. ‖∆‖∞ ≤ F‖w∗‖2

Proof. We can write

∆ =
1

λT
(K̂ −K)α∗ =

1

λT
(X̃TRTRX̃ − X̃T X̃)α∗ = −X̃T (RTR− I)w∗ (6)

since w∗ = − 1
λT X̃α∗. Thus,

‖∆‖∞ = max
t∈[T]

|ytxTt (RTR− I)w∗|

= max
t∈[T]

|〈Rxt, Rw∗〉 − 〈xt, w∗〉|

≤ max
t∈[T]

F‖xt‖2‖w∗‖2

≤ F‖w∗‖2

(7)

16

where the first inequality is by Property (3) of Lemma B.3.

Remark B.5. Instead of Lemma B.3, [1] only used the fact that |〈Ri, Rj〉 − 〈ei, ej〉| ≤ F , as long
as R has enough rows. Once that fact is shown, then [1] used it to show that ‖∆‖∞ ≤ O(F‖w∗‖1)
instead, using an argument which the proof of our Lemma B.4 is based on.

Thus, by Equation 4 and Lemma B.4,

‖z∗ −Rw∗‖22 ≤
2β

λ
‖∆‖2∞ ≤

2βF 2

λ
‖w∗‖22 (8)

and taking square roots gives

‖z∗ −Rw∗‖2 ≤
√

2β

λ
F‖w∗‖2

In particular, if we let F = ε
√

λ
2β , then we get the desired result. This completes the proof.

B.2 Bound on ‖w∗‖2 and ‖z∗‖2

In this section we give an auxiliary lemma which we use in later proofs:

Lemma B.6. ‖w∗‖2 ≤ H/λ. In addition, if R is a sketching matrix for which the conclusion of
Lemma B.3 holds (e.g. if R is a sparse JL matrix with k = Θ(log(dT/δ)

F 2) rows for F ∈ (0, 1)), then
‖z∗‖2 ≤ O(H/λ).

Proof. Recall that

w∗ = argminw∈Rd
1

T

T∑
t=1

`(ytw
Txt) +

λ

2
‖w‖22 =: L(w)

Note that L is β + λ-smooth, since ` is β-smooth and ‖xt‖2 ≤ 1. Thus, by Theorem 3.3 of [36], if
w′k is the kth iterate of gradient descent on L (at an arbitrary initialization), then L(w′k)→ L(w∗) as
k →∞. Moreover, since L is λ-strongly convex, this implies that w′k → w∗ as k →∞. However,
the gradient descent update to w′k can be written as follows:

w′k+1 ← (1− ληk)w′k − ηk ·
1

T

T∑
t=1

`′(yt(w
′
k)Txt) · ytxt

Since ` is H-Lipschitz and ‖xt‖2 ≤ 1 for all t ∈ [T], we can show by induction that ‖w′k+1‖2 ≤ H
λ ,

and taking the limit as k →∞ gives ‖w∗‖2 ≤ H
λ . We can similarly show that ‖z∗‖2 ≤ O(Hλ), with

the only change in the proof being the observation that ‖Rxt‖2 ≤ O(1) by Lemma B.3.

B.3 Proof of Theorem 2.6

Throughout the proof of this theorem, R is a sparse JL matrix with O(log(dT/δ)
F 2) rows —

we will then choose F ∈ (0, 1) appropriately at the end of the proof. As before, w∗ =

argminw∈Rd
1
T

∑T
t=1 `(ytw

Txt) + λ
2 ‖w‖

2
2, and z∗ is defined analogously for the corresponding

sketched problem.

Lemma B.7. For all t ≥ 1,

‖wt+1 − ŵt+1‖2 ≤ (1− ληt)‖wt − ŵt‖2

+ ηtβ
(
‖wt − w∗‖2 +O(1)‖zt − z∗‖2 + Cβ,λF‖w∗‖2

) (9)

Proof. Recall that wt and ŵt are updated respectively according to

wt+1 ← (1− ληt)wt − ηtyt`′(ytwTt xt)xt

17

and
ŵt+1 ← (1− ληt)ŵt − ηtyt`′(ytzTt Rxt)xt

Therefore, by the triangle inequality,

‖wt+1 − ŵt+1‖2 ≤ (1− ληt)‖wt − ŵt‖2 + ηt|`′(ytwTt xt)− `′(ytzTt Rxt)|‖xt‖2
≤ (1− ληt)‖wt − ŵt‖2 + ηt|`′(ytwTt xt)− `′(ytzTt Rxt)|

(10)

where the second inequality is because ‖xt‖2 ≤ 1. Now, let us bound the difference of `′(ytwTt xt)
and `′(ytzTt Rxt): since ` is β-smooth,

|`′(ytwTt xt)− `′(ytzTt Rxt)| ≤ β|〈wt, xt〉 − 〈zt, Rxt〉| (11)

We can bound the difference of inner products on the right-hand side using the fact that R is a JL
matrix:

|〈wt, xt〉 − 〈zt, Rxt〉| ≤ |〈wt, xt〉 − 〈w∗, xt〉|+ |〈w∗, xt〉 − 〈z∗, Rxt〉|
+ |〈z∗, Rxt〉 − 〈zt, Rxt〉|

(12)

The first term on the right-hand side of (12) can be bounded as

|〈wt, xt〉 − 〈w∗, xt〉| = |〈wt − w∗, xt〉| ≤ ‖wt − w∗‖2‖xt‖2 ≤ ‖wt − w∗‖2

where the last inequality is because ‖xt‖2 ≤ 1. Similarly, the third term can be bounded as

|〈z∗, Rxt〉 − 〈zt, Rxt〉| = |〈z∗ − zt, Rxt〉| ≤ ‖zt − z∗‖2‖Rxt‖2 ≤ O(1)‖zt − z∗‖2

where the last inequality is by Lemma B.3. Finally, we can bound the second term as follows:

|〈w∗, xt〉 − 〈z∗, Rxt〉| ≤ |〈w∗, xt〉 − 〈Rw∗, Rxt〉|+ |〈Rw∗, Rxt〉 − 〈z∗, Rxt〉|
≤ F‖xt‖2‖w∗‖2 +O(1)‖z∗ −Rw∗‖2
≤ F‖w∗‖2 +O(1)‖z∗ −Rw∗‖2

≤ O
(

1 +

√
β

λ

)
F‖w∗‖2

(13)

Here in the second inequality, we bounded the first term according to property (2) of Lemma B.3,
and the second term according to property (4) of Lemma B.3, together with the Cauchy-Schwarz
inequality. The third inequality is because ‖xt‖2 ≤ 1. Finally, the fourth inequality is because,

by the proof of Theorem 2.2 in the previous section, ‖z∗ − Rw∗‖2 ≤
√

2β
λ F‖w∗‖2 when R has

O(log(dT/δ)
F 2) rows. Thus, for convenience, if we define Cβ,λ = O

(
1 +

√
β
λ

)
, then

|〈wt, xt〉 − 〈zt, Rxt〉| ≤ ‖wt − w∗‖2 +O(1)‖zt − z∗‖2 + Cβ,λF‖w∗‖2

In summary,

‖wt+1 − ŵt+1‖2 ≤ (1− ληt)‖wt − ŵt‖2

+ ηtβ
(
‖wt − w∗‖2 +O(1)‖zt − z∗‖2 + Cβ,λF‖w∗‖2

) (14)

From the above lemma, we can obtain the following non-recursive bound on ‖wt − ŵt‖2:

Lemma B.8. For all t ∈ N,

‖wt − ŵt‖2 ≤
t−1∑
s=1

ηsβ
(
‖ws − w∗‖2 +O(1)‖zs − z∗‖2 + Cβ,λF‖w∗‖2

) t−1∏
j=s+1

(1− ληj)

where the product
∏t−1
j=s+1(1− ληj) is defined to be 1 if s+ 1 > t− 1.

18

Proof. We proceed by induction on t. For t = 1, this trivially holds because wt = ŵt = 0. Now,
suppose that for some t ∈ N,

‖wt − ŵt‖2 ≤
t−1∑
s=1

ηsβ
(
‖ws − w∗‖2 +O(1)‖zs − z∗‖2 + Cβ,λF‖w∗‖2

) t−1∏
j=s+1

(1− ληj)

Then,

‖wt+1−ŵt+1‖2

≤ (1− ληt)‖wt − ŵt‖2 + ηtβ
(
‖wt − w∗‖2 +O(1)‖zt − z∗‖2 + Cβ,λF‖w∗‖2

)
≤ (1− ληt)

t−1∑
s=1

ηsβ
(
‖ws − w∗‖2 +O(1)‖zs − z∗‖2 + Cβ,λF‖w∗‖2

) t−1∏
j=s+1

(1− ληj)

+ ηtβ
(
‖wt − w∗‖2 +O(1)‖zt − z∗‖2 + Cβ,λF‖w∗‖2

)
=

t−1∑
s=1

ηsβ
(
‖ws − w∗‖2 +O(1)‖zs − z∗‖2 + Cβ,λF‖w∗‖2

) t∏
j=s+1

(1− ληj)

+ ηtβ
(
‖wt − w∗‖2 +O(1)‖zt − z∗‖2 + Cβ,λF‖w∗‖2

)
=

t∑
s=1

ηsβ
(
‖ws − w∗‖2 +O(1)‖zs − z∗‖2 + Cβ,λF‖w∗‖2

) t∏
j=s+1

(1− ληj)

(15)

Here, the first inequality is by Lemma B.7, and the second inequality is by the inductive hypothesis.
The last equality is because for s = t,

∏t
j=s+1(1 − ληj) is simply equal to 1. This completes the

induction.

We can use the above lemma to bound ‖wT − ŵT ‖2, as follows. In the following let Sa,b =∑b
r=a−ληr.

‖wT−ŵT ‖2

≤ 1

T

T∑
t=1

‖wt − ŵt‖2

≤ 1

T

T∑
t=1

t−1∑
s=1

ηsβ
(
‖ws − w∗‖2 +O(1)‖zs − z∗‖2 + Cβ,λF‖w∗‖2

) t−1∏
j=s+1

(1− ληj)

≤ 1

T

T∑
t=1

t−1∑
s=1

ηsβ
(
‖ws − w∗‖2 +O(1)‖zs − z∗‖2 + Cβ,λF‖w∗‖2

)
eSs+1,t−1

(16)

where the first inequality is by the triangle inequality and the second is by Lemma B.8. The third
inequality is by 1 + x ≤ ex.

Let us now break up the above sum, into the following three sums: define

S1 =
1

T

T∑
t=1

t−1∑
s=1

ηsβ‖ws − w∗‖2eSs+1,t−1

and

S2 =
1

T

T∑
t=1

t−1∑
s=1

ηsβ‖zs − z∗‖2eSs+1,t−1

and

S3 =
1

T

T∑
t=1

t−1∑
s=1

ηsβCβ,λF‖w∗‖2eSs+1,t−1

19

Then, clearly

‖wT − ŵT ‖2 ≤ O(1)(S1 + S2 + S3)

Let us first bound S1. Recall that ηj = D/(G
√
j). Observe that we can take the diameter D of

the constraint set to be O(Hλ), since by Lemma B.6, ‖z∗‖2, ‖w∗‖2 ≤ O(H/λ). Moreover, we do
not need to apply the projection step in online gradient descent to wt or zt, since by induction on
t, ‖wt‖2 ≤ H/λ and ‖zt‖2 ≤ O(H/λ) even without a projection step (by the gradient update, we
have the inequality ‖wt+1‖2 ≤ (1− ληt)‖wt‖2 + ηt|`′(ytwTt xt)|‖xt‖2 ≤ (1− ληt)‖wt‖2 + ηtH ,
and a similar inequality holds for zt). In addition, for any w ∈ Rn, since the loss function on the tth

iteration is ft(w) = `(ytw
Txt) + λ

2 ‖w‖
2
2,

∇ft(w) = `′(ytw
Txt) · (ytxt) + λw

meaning that

‖∇ft(w)‖2 ≤ H + λ‖w‖2 ≤ 2H

and thus, we can take G = 2H . Therefore, for s < t,

Ss+1,t−1 =

t−1∑
r=s+1

−ληr

=

t−1∑
r=s+1

−λ · D

G
√
r

≤
t−1∑

r=s+1

−λ · H

(2H) · λ
√
r

= −1

2

t−1∑
r=s+1

1√
r

≤
√
s−
√
t+ 1

(17)

Here, for the last inequality, note that
∑t−1
r=s+1

1√
r
≥
∫ t
s+1

1√
x
dx = 2(

√
t−
√
s+ 1). In summary,

eSs+1,t−1 ≤ Ce
√
s−
√
t

for some absolute constant C, meaning that

S1 ≤
Cβ

T

T∑
t=1

t−1∑
s=1

ηs‖ws − w∗‖2e
√
s−
√
t ≤ Cβ

λT

T∑
t=1

t−1∑
s=1

1√
s
‖ws − w∗‖2e

√
s−
√
t

Next, we switch the order of summation, to obtain

S1 ≤
Cβ

λT

T∑
t=1

t−1∑
s=1

1√
s
e
√
s−
√
t‖ws − w∗‖2

=
Cβ

λT

T∑
s=1

T∑
t=s+1

1√
s
e
√
s−
√
t‖ws − w∗‖2

=
Cβ

λT

T∑
s=1

1√
s
e
√
s‖ws − w∗‖2

T∑
t=s+1

e−
√
t

(18)

20

where in the first equality above, we switched the order of summation. We bound the innermost sum
above:

T∑
t=s+1

e−
√
t ≤

∫ ∞
s

e−
√
xdx

=

∫ ∞
√
s

2ye−ydy

=
(
− 2ye−y − 2e−y

)∣∣∣∞√
s

= 2
√
se−
√
s + 2e−

√
s

≤ O(
√
se−
√
s)

(19)

Here in the first equality, we used the change of variables x = y2. For the second equality, note that
the antiderivative of 2ye−y is −2ye−y − 2e−y . Thus,

S1 ≤
Cβ

λT

T∑
s=1

e
√
s

√
s
‖ws − w∗‖2 ·O(

√
se−
√
s) = O

(β

λT

) T∑
s=1

‖ws − w∗‖2

Finally, the right-hand side expression can be bounded as follows:

Lemma B.9.
1

T

T∑
s=1

‖ws − w∗‖2 ≤ O
(H

λT 1/4

)
Proof. Observe that by online gradient descent regret bounds (e.g. [22], Theorem 3.1),

3

2
GD
√
T ≥

T∑
s=1

(ft(ws)− ft(w∗)) ≥
T∑
s=1

λ

2
‖ws − w∗‖22

where the first inequality is Theorem 3.1 of [22], and the second is because the ft are λ-strongly
convex. (Note that we can apply the online gradient descent regret bounds since ‖w∗‖2 ≤ H/λ and
‖wt‖2 ≤ H/λ, meaning we can simply let D = H/λ as discussed above, and do not need to apply
the projection step to wt.) Thus, by the Cauchy-Schwarz inequality,(T∑

s=1

‖ws − w∗‖2
)2
≤ T

(T∑
s=1

‖ws − w∗‖22
)
≤ T · 2

λ
· 3

2
GD
√
T =

3GDT 3/2

λ

Taking square roots gives
T∑
s=1

‖ws − w∗‖2 ≤
√

3GD

λ
T 3/4

and dividing by T gives

1

T

T∑
s=1

‖ws − w∗‖2 ≤
√

3GD

λ
· 1

T 1/4
≤ O

(H

λT 1/4

)
where the last inequality is because D ≤ H

λ and G ≤ O(H). This proves the lemma.

Thus, in summary,

S1 ≤ O
(β

λT

) T∑
s=1

‖ws − w∗‖2 ≤ O
(βH

λ2T 1/4

)
By a similar argument, we can show that

S2 ≤ O
(βH

λ2T 1/4

)
21

with the only differences being that Lemma B.9 holds for 1
T

∑T
s=0 ‖zs − z∗‖2 as well, and we now

have D = O(H/λ) and G = O(H).

Finally, let us bound S3:

S3 =
1

T

T∑
t=1

t−1∑
s=1

ηsβCβ,λF‖w∗‖2eSs+1,t−1

=
βCβ,λF‖w∗‖2

T

T∑
t=1

t−1∑
s=1

ηse
Ss+1,t−1

= O
(βCβ,λF‖w∗‖2

T

) T∑
t=1

t−1∑
s=1

1

λ
√
s
e
√
s−
√
t

= O
(βCβ,λF‖w∗‖2

λT

) T∑
t=1

t−1∑
s=1

1√
s
e
√
s−
√
t

= O
(βCβ,λF‖w∗‖2

λT

) T∑
s=1

T∑
t=s+1

1√
s
e
√
s−
√
t

= O
(βCβ,λF‖w∗‖2

λT

) T∑
s=1

1√
s
e
√
s

T∑
t=s+1

e−
√
t

= O
(βCβ,λF‖w∗‖2

λT

) T∑
s=1

1√
s
e
√
sO(
√
se−
√
s)

= O
(βCβ,λF‖w∗‖2

λ

)

(20)

In summary,

‖wT − ŵT ‖2 ≤ O(βCβ,λF‖w∗‖2/λ) +O
(βH

λ2T 1/4

)
To complete the proof, we bound ‖wT − w∗‖2, again using regret bounds:

‖wT − w∗‖2 =
∥∥∥ 1

T

T∑
t=1

wt − w∗
∥∥∥
2
≤ 1

T

T∑
t=1

‖wt − w∗‖2 ≤ O
(H

λT 1/4

)
where the first inequality is by the triangle inequality, and the second is by Lemma B.9. Thus,

‖ŵT − w∗‖2 ≤ O(βCβ,λF‖w∗‖2/λ) +O
(βH

λ2T 1/4

)
+O

(H

λT 1/4

)
Now, we must determine what F and T must be for the right-hand side to be at most ε‖w∗‖2.
For the first term to be at most ε‖w∗‖2, we must have βCβ,λF/λ ≤ O(ε) — in other words,
F ≤ O(λεβ ·

1
Cβ,λ

) = Θ(λεβ ·min(1,
√
λ/β)). For the second term to be at most ε‖w∗‖2, we must

have βH
λ2T 1/4 ≤ ε‖w∗‖2, and for this to occur, it is sufficient to have T ≥ Ω((β4H4)/(λ8ε4τ4)).

Finally, for the third term to be at most ε‖w∗‖2, it suffices to have T ≥ Ω(H4/(λ4ε4τ4)). This
completes the proof.

B.4 Proof of Theorem 2.7

This is a corollary of Theorem 2.6. First, note that by Theorem 2.6, if R is a JL matrix with
O(λ−2ε−2β2 log(dT/δ) max(1, β/λ)) rows, then ‖ŵT − w∗‖2 ≤ ε‖w∗‖2 with probability 1 − δ.
In particular, this means that ‖ŵT −w∗‖∞ ≤ ε‖w∗‖2. Thus, first of all, if we have an `2 point query
algorithm that gives an estimate v ∈ Rd such that ‖v − ŵT ‖∞ ≤ O(ε‖ŵT ‖2) ≤ O(ε‖w∗‖2), then
‖v − w∗‖∞ ≤ O(ε‖w∗‖2). This also implies that i ∈ [d] is an `2 heavy hitter of ŵT if and only if it
is an `2 heavy hitter of w∗, since |ŵT i| ≥ Θ(ε‖ŵT ‖2) if and only if |w∗,i| ≥ Θ(ε‖w∗‖2) — this is

22

because, if ‖ŵT −w∗‖2 ≤ cε‖w∗‖2 for a sufficiently small constant c > 0 (with the number of rows
in R being increased by 1/c2), then |ŵT i − w∗,i| ≤ cε‖w∗‖2, and moreover, ‖ŵT ‖2 = Θ(‖w∗‖2).

Thus, the space complexities follow by adding the turnstile space complexities with the number of
rows in R, and the update times follows from adding the time required to compute zt with the time
required to update the point query/heavy hitters data structures (which is nnz(xt) multiplied by the
the turnstile update time of the point query/heavy hitters data structures). This is because, by the
discussion in the previous paragraph, we can simply apply the existing data structures mentioned in
Theorems 2.4 and 2.5, getting an additional failure probability of δ for point query and 1

poly(d) for
heavy hitters.

C Missing Details and Proofs from Section 3

C.1 Theorem 3.1 - Generating Columns of R on Demand

Let A be an ε-incoherent matrix — then A can be constructed efficiently. Moreover, R does
not have to be stored explicitly — instead, each column can be generated on demand. If m =
O(1

ε2 · (
logn

log logn+log 1/ε)2) is desired, then A can be constructed using codes, as described on page

6 of [6] 5. For m = O(logn
ε2), A is instead a derandomized JL matrix, for which the entries are in

{±1/
√
m} [37]. In both cases, the sketching matrices need not be stored, and any single column can

be accessed whenever desired. Indeed, in the case of Reed-Solomon codes, one can use fast multipoint
evaluation as described in [6] to generate individual entries of a column quickly, compute the product
with the input, update the accumulated matrix-vector product, and then reuse the memory for that
column. For the derandomized JL matrix given in [37], the argument in [37] gives a small number of
seeds to enumerate over. Once you have found the seed, which can be found in a preprocessing step
applied to the standard basis vectors e1, . . . , ed, one can generate each entry of any desired column
of the sketching matrix using Nisan’s pseudorandom generator in poly(log d) time, and then generate
the entire column, compute the product with the input, update the accumulated matrix-vector product,
and then re-use the memory for that column.

C.2 Proof of Theorem 3.2

We first show that a good estimate to each of the coordinates to w∗ can be obtained by applying the
recovery procedure in Algorithm 2 to z∗ (i.e. we analyze our algorithm in the batch setting as in [1]):

Lemma C.1. Suppose all of the assumptions in Definition 1.1 hold. In addition, assume that
‖xt‖1 ≤ γ for all t ∈ [T]. If R is defined as in Algorithm 2, with R being an incoherent matrix with
O(ε−2 log d ·max(1, 2γ2β/λ)) rows, then ‖RT z∗ − w∗‖∞ ≤ ε‖w∗‖1.

Proof. The proof is nearly the same as that of Theorem 2.2 — we let R be an F -incoherent matrix
with O(log d/F 2) rows where F is selected appropriately later. In the place of Lemma B.3, we use
the following key property of R:

Lemma C.2 (Lemma 2 of [6]). For v1, v2 ∈ Rd, |vT1 v2 − (Rv1)T (Rv2)| ≤ F‖v1‖1‖v2‖1.

This was previously observed in [6], and a similar property was used in Lemma 4 of [1], though there
this argument was applied when R was a Countsketch matrix, and therefore a JL matrix.

Lemma C.3. ‖∆‖∞ ≤ γF‖w∗‖1, where ∆ is defined as in the proof of Theorem 2.2.

Proof. This is essentially Lemma 5 of [1], and the proof is unchanged — we include it here for
completeness. First, note that

∆ =
1

λT
(K̂ −K)α∗ =

1

λT
(X̃TRTRX̃ − X̃T X̃)α∗ = −X̃T (RTR− I)w∗ (21)

5https://arxiv.org/pdf/1206.5725.pdf

23

https://arxiv.org/pdf/1206.5725.pdf

where the third equality is because w∗ = − 1
λT X̃α∗. Thus,

‖∆‖∞ = max
t∈[T]

|ytxTt (RTR− I)w∗|

= max
t∈[T]

|xTt RTRw∗ − xTt w∗|

= max
t∈[T]

|(Rxt)T (Rw∗)− xTt w∗|

≤ F‖xt‖1‖w∗‖1
≤ Fγ‖w∗‖1

(22)

where the first inequality above is by Lemma C.2, and the second is because γ = maxt∈[T] ‖xt‖1.

Now, arguing as in [1] and in the proof of Theorem 2.2 (with the argument being identical except for
the fact that we use ‖∆‖∞ ≤ γF‖w∗‖1 instead of ‖∆‖∞ ≤ F‖w∗‖2), we obtain

‖z∗ −Rw∗‖22 ≤
2β

λ
γ2F 2‖w∗‖21 (23)

To finish the proof, we now bound ‖RT z∗ − w∗‖∞ using Equation 23, together with properties of
ε-incoherent matrices. By the triangle inequality,

‖RT z∗ − w∗‖∞ ≤ ‖RT z∗ −RTRw∗‖∞ + ‖RTRw∗ − w∗‖∞ (24)

First we bound the first term:

‖RT z∗ −RTRw∗‖∞ = max
i∈[d]
|〈Ri, z∗ −Rw∗〉|

≤ max
i∈[d]
‖Ri‖2‖z∗ −Rw∗‖2

= ‖z∗ −Rw∗‖2

≤
√

2β

λ
γF‖w∗‖1

(25)

where the first inequality is by the Cauchy-Schwarz inequality, and the second inequality is by
Equation 23. In addition,

Lemma C.4. ‖RTRw∗ − w∗‖∞ ≤ F‖w∗‖1

Proof. For i ∈ [d],

|〈Ri, Rw∗〉 − w∗,i| = |〈Rei, Rw∗〉 − 〈ei, w∗〉|
≤ F‖ei‖1‖w∗‖1
= F‖w∗‖1

(26)

where the first inequality is due to Lemma C.2.

Combining Equations 24 and 25 and Lemma C.4, we find that

‖RT z∗ − w∗‖∞ ≤
(√2β

λ
γF + F

)
‖w∗‖1

For the right-hand side to be at most ε‖w∗‖1, it suffices to choose F = ε
2 ·min(1, 1γ ·

√
λ
2β). Thus,

by Theorem 2.2, it suffices for R to have O
(

log d
ε2 ·max

(
1, γ

2β
λ

))
rows.

We now complete the analysis of Algorithm 2, in the online setting. First, let us prove the following
bound on ‖z∗ − z‖2:

Lemma C.5. ‖z − z∗‖2 ≤ O
(
H(1+

√
εγ)

λT 1/4

)
.

24

Proof. The proof is similar to that of Lemma B.9. Observe that by online gradient descent regret
bounds (such as Theorem 3.1 of [22]),

3

2
GD
√
T ≥

T∑
t=1

(ft(zt)− ft(z∗)) ≥
T∑
t=1

λ

2
‖zt − z∗‖22

where the second inequality is because ft is λ-strongly convex. Thus, dividing by T gives

3GD

λ
√
T
≥ 1

T

T∑
t=1

‖zt − z∗‖22 ≥ ‖z − z∗‖22

where the last inequality is because the function g(x) = ‖x− z∗‖22 is convex. Thus, taking square
roots gives

‖z − z∗‖2 ≤
√

3GD

λ
· 1

T 1/4

Let us next bound D and G — our proof of these bounds is similar to that in [1], though we do not
assume any bounds on ‖w∗‖2 and ‖w∗‖1. First, by Equation 23,

‖z∗‖2 ≤ ‖z∗ −Rw∗‖2 + ‖Rw∗‖2 ≤
2β

λ
γF‖w∗‖1 + ‖Rw∗‖2 (27)

In addition, by Lemma C.2

|‖Rw∗‖22 − ‖w∗‖22| ≤ F‖w∗‖21 (28)

that is,

‖Rw∗‖2 ≤
√
‖w∗‖22 + F‖w∗‖21 ≤ ‖w∗‖2 +

√
F‖w∗‖1

Thus,
‖z∗‖2 ≤ ‖w∗‖2 +

√
ε‖w∗‖1

We can bound ‖w∗‖1 as follows:

Lemma C.6. ‖w∗‖1 ≤ Hγ/λ.

Proof. The proof is similar to Lemma B.6. Recall that

w∗ = argminw∈Rd
1

T

T∑
t=1

`(ytw
Txt) +

λ

2
‖w‖22 = argminw∈Rd L(w)

and if we let w′k be the kth iterate of gradient descent on L (from any initialization, e.g. 0), then
w′k → w∗. However,

w′k+1 = (1− ληt)w′k − ηt
1

T

T∑
t=1

yt`
′(ytw

Txt)xt

meaning that

‖w′k+1‖1 ≤ (1− ληt)‖w′k‖1 + ηt ·
∥∥∥ 1

T

T∑
t=1

yt`
′(ytw

Txt)xt

∥∥∥
1

≤ (1− ληt)‖w′k‖1 + ληt ·
1

λT

T∑
t=1

Hγ

≤ (1− ληt)‖w′k‖1 + ληt ·
Hγ

λ

(29)

where the second equality is because |`′(ytwTxt| ≤ H and ‖xt‖1 ≤ γ. Thus, we can show by
induction on k that ‖w′k‖1 ≤

Hγ
λ , and taking the limit as k →∞ gives ‖w∗‖1 ≤ Hγ

λ .

25

Therefore, since ‖w∗‖1 ≤ Hγ/λ and ‖w∗‖2 ≤ H/λ by Lemma B.6,

‖z∗‖2 ≤
H(1 +

√
εγ)

λ

and therefore we can define D = H(1+
√
εγ)

λ .

Remark C.7. The projection step in online gradient descent is unnecessary here, i.e. it is not
necessary to project zt onto the `2 ball of radius D. To see this, if we use the following online
gradient descent step:

zt+1 ← (1− ληt)zt − ηt`′(ytzTt Rxt)Rxt
then

‖zt+1‖2 ≤ (1− ληt)‖zt‖2 + (ληt) ·
H

λ
‖Rxt‖2

Since R is an ε-incoherent matrix, by Lemma C.2,

|〈Rxt, Rxt〉 − 〈xt, xt〉| ≤ ε‖xt‖21 ≤ εγ2

and therefore,

‖Rxt‖2 ≤
√
‖xt‖22 + εγ2 ≤

√
1 + εγ2 ≤ 1 +

√
εγ

Thus,

‖zt+1‖2 ≤ (1− ληt)‖zt‖2 + (ληt) ·
H(1 +

√
εγ)

λ

and by induction on t, we can show that ‖zt‖2 ≤ H(1+
√
εγ)

λ even without the projection step.

Finally, let us bound G. For all t ∈ [T] and ‖z‖2 ≤ D,

‖∇ft(z)‖2 = ‖yt`′(ytzTRxt)Rxt + λz‖2
≤ |`′(ytzTRxt)|‖Rxt‖2 + λ‖z‖2
≤ H · (1 +

√
εγ) + λD

≤ H · (1 +
√
εγ) + λ · H(1 +

√
εγ)

λ
= O(H(1 +

√
εγ))

(30)

Therefore,

‖z − z∗‖2 ≤
√

3GD

λ
· 1

T 1/4
≤ O

(H(1 +
√
εγ)

λT 1/4

)
where the second inequality is because G = O(H(1+

√
εγ)/λ) and D = O(H(1+

√
εγ)), meaning√

GD/λ = H(1 +
√
εγ)/λ. This proves Lemma C.5.

Therefore,

‖RT z − w∗‖∞ ≤ ‖RT z −RT z∗‖∞ + ‖RT z∗ − w∗‖∞
≤ ‖RT z −RT z∗‖∞ +O(ε‖w∗‖1)

≤ sup
i∈[d]
|〈Ri, z − z∗〉|+O(ε‖w∗‖1)

≤ ‖Ri‖2‖z − z∗‖2 +O(ε‖w∗‖1)

= ‖z − z∗‖2 +O(ε‖w∗‖1)

≤ O
(H(1 +

√
εγ)

λT 1/4

)
+O(ε‖w∗‖1)

(31)

Here the second inequality is by Lemma C.1. The fourth inequality is by the Cauchy-Schwarz
inequality. The first equality is because R is an incoherent matrix. The fifth inequality is by Lemma
C.5. Thus, for the right-hand side above to be most O(ε‖w∗‖1), it suffices to have

O
(H(1 +

√
εγ)

λT 1/4

)
≤ εθ ≤ ε‖w∗‖1

26

Rearranging gives

T 1/4 ≥ O
(H(1 +

√
εγ)

λεθ

)
or

T ≥ O
(H4(1 +

√
εγ)4

λ4ε4θ4

)
This completes the proof.

C.3 Proof of Theorem 3.3

By Theorem 2.2, we know that ‖z∗ −Rw∗‖2 ≤
√

2β
λ F‖w∗‖2 (where R has O(log(dT/δ)

F 2) rows and
we will select F appropriately). Now, we bound ‖RT z∗ − w∗‖∞. First, note that by the triangle
inequality,

‖RT z∗ − w∗‖∞ ≤ ‖RT z∗ −RTRw∗‖∞ + ‖RTRw∗ − w∗‖∞ (32)

The first term in Equation 32 can be bounded using Theorem 2.2:

‖RT z∗ −RTRw∗‖∞ = max
i∈[d]
|〈Ri, z∗〉 − 〈Ri, Rw∗〉|

≤ max
i∈[d]
‖Ri‖2‖z∗ −Rw∗‖2

≤ O(‖z∗ −Rw∗‖2)

≤ O
(F√β√

λ
‖w∗‖2

)
(33)

where the first inequality is by the Cauchy-Schwarz inequality. In addition, the second term in
Equation 32 can be bounded using Property (1) of Lemma B.3:

‖RTRw∗ − w∗‖∞ = max
i∈[d]
|〈Ri, Rw∗〉 − 〈ei, w∗〉| ≤ F‖w∗‖2 (34)

In summary, by Equations 32, 33 and 34, ‖RT z∗ − w∗‖∞ ≤ F‖w∗‖2 · O
(

1 +
√

β
λ

)
and to have

‖RT z∗ − w∗‖∞ be at most ε‖w∗‖2, it suffices to let F = O(ε ·min(1,
√

λ
β)).

Finally, to extend to the online setting (i.e., to show that ‖RT z − w∗‖∞ ≤ ε‖w∗‖2 for sufficiently
large T), we note that we can show that 1

T

∑T
s=1 ‖zs − z∗‖2 ≤ O(H

λT 1/4) using the same argument
as in Lemma B.9, and thus, by convexity of ‖ · ‖2, ‖z − z∗‖2 ≤ O(H

λT 1/4). Therefore,

‖RT z − w∗‖∞ ≤ ‖RT z −RT z∗‖∞ + ‖RT z∗ − w∗‖∞
≤ ‖RT z −RT z∗‖∞ + ε‖w∗‖2
≤ max

i∈[d]
|〈Ri, z − z∗〉|+ ε‖w∗‖2

≤ O(‖z − z∗‖2) + ε‖w∗‖2

≤ O
(H

λT 1/4

)
+ ε‖w∗‖2

(35)

Here the second inequality holds as long as F = O(ε ·min(1,
√
λ/β)). The fourth inequality is by

Cauchy-Schwarz. Finally, the sixth inequality holds as long as T ≥ Ω(H4

λ4ε4τ4).

D Missing Pseudocode, Proofs, and Kernel Logistic Regression Results from
Section 4

D.1 Pseudocode for Tensor Classification Point Query

Our algorithm for `2 point query on w∗ ∈ Rdp is shown in Algorithm 4.

27

Algorithm 4 Algorithm for `2 point query on w∗ with low-rank tensor inputs. Note that Rxt can be
computed in time poly(ε−1p log(dT/δ) max(1, β/λ))

∑p
i=1 nnz(x

(i)
t). It can also be computed in

one pass over the nonzero entries of x(1)t , . . . , x
(p)
t . Note that computing Ri for i = (i1, i2, . . . , ip)

can also be done in poly(ε−1p log(dT/δ) max(1, β/λ)) time, since Ri = R(ei1 ⊗ . . .⊗ eip).

1: function INITIALIZATION()
2: R ∈ Rk×dp is the sketch described in Theorem 5.1, with poly(ε−1p log(dT/δ) max(1, β/λ))

rows.
3: z1 ∈ Rk is initially set to 0.
4: end function

5: // Here xt is a rank-k tensor, andR is the sketching matrix of Theorem 4.1, meaning the procedure
6: // for computing Rxt is different from Algorithm 2. The algorithm is the same otherwise.
7: function UPDATE(xt =

∑k
i=1 x

(i,1)
t ⊗ . . .⊗ x(i,p)t , yt)

8: zt+1 ← (1− ληt)zt − ηt`′(ytzTt Rxt)Rxt
9: end function

10: function ESTIMATE-WEIGHTS(i = (i1, i2, . . . , ip))

11: zT ← 1
T

∑T
t=1 zt

12: Ri ← R(ei1 ⊗ . . .⊗ eip)

13: return RTi zT
14: end function

D.2 Proof of Theorem 4.2

This follows from Theorem 4.1, using the same arguments as in the proof of Theorem 2.2 and
Theorem 3.3. This is because if R is the sketching matrix described in Theorem 4.1, then it has all of
the properties of the sparse JL matrix described in Theorem 2.1 — thus, as argued in the proof of
Theorem 3.3, if F is the accuracy parameter in Theorem 4.1 and ε is our desired accuracy parameter
for point query, it suffices to let F = O(ε·min(1,

√
λ/β)). Furthermore, if δ′ is the failure probability

with which we apply Theorem 4.1, then it suffices to let δ′ = δ
poly(dT) as in the proof of Lemma

B.3. Thus, if R is the sketching matrix of Theorem 4.1 used in Algorithm 4, then it suffices for R to
have poly(p log(dT/δ)ε ·max(1,

√
β/λ)) rows. By Theorem 4.1, for any rank-1 tensor x1 ⊗ . . .⊗ xp,

R(x1⊗. . .⊗xp) can be computed in poly(ε−1p log(dT/δ) max(1, β/λ))·
∑p
i=1 nnz(xi) time, giving

the desired update time. Finally, the desired query time follows from the fact that for i = (i1, . . . , ip),
Ri = R(ei1 ⊗ . . . ⊗ eip) can be computed in poly(ε−1p log(dT/δ) ·max(1, β/λ)) time, together
with the fact that Ri and z have poly(ε−1p log(dT/δ) ·max(1, β/λ)) entries. The minimum required
value of T is also unchanged — note that it follows from the same argument as the one used in
Lemma B.9 (only needing the additional properties that ‖Rxt‖2 ≤ O(1), which follows from the
same argument as in Lemma B.3, and ‖z∗‖2 ≤ O(H/λ), which follows from ‖Rxt‖2 ≤ O(1)
together with an argument based on gradient descent as in Lemma B.6). This completes the proof.

D.3 Proof of Theorem 4.3

For convenience, we denote the tth update to v by xt = x
(1)
t ⊗ . . . ⊗ x

(p)
t ∈ Rdp , meaning that

v =
∑
t∈[T] x

(1)
t ⊗ . . . ⊗ x

(p)
t . We show that Algorithm 3 returns a list L containing all indices

(i1, . . . , ip) which are heavy hitters. Note that if (i1, . . . , ip) is an ε `2 heavy hitter, meaning that
|v(i1, . . . , ip)| ≥ ε‖v‖2, then in particular, for each j ∈ [p],∑

(k1,...,kp)∈[d]p|kj=ij

|v(k1, . . . , kp)|2 ≥ ε2‖v‖22

Thus, for each mode j ∈ [p], we first wish to find the indices ij ∈ [d] for which the above
holds. This is what is achieved by the first two steps of the QUERY function. To see why, let us
consider the case j = p — the other cases are similar. The first step of the QUERY function finds
all ε

poly(p log(d/δ)) -heavy hitters of v̂ =
∑
t x

(p)
t ⊗ COMPRESSOTHERMODES(p), by applying the

28

standard heavy hitters data structure ONEMODESKETCH(p) to v̂. This is what is achieved by the
first step of the QUERY function. To see why, let us consider the case j = p — the other cases are
similar. This step finds all ε

poly(p log(d/δ)) -heavy hitters of
∑
t x

(p)
t ⊗ COMPRESSOTHERMODES(j),

by applying the standard heavy hitters data structure ONEMODESKETCH(p) to the vector v̂ =∑
t x

(p)
t ⊗ COMPRESSOTHERMODES(p). Note that for each i ∈ [d],

v̂(i, ·) =
∑
t

x
(p)
t (i)COMPRESSOTHERMODES(p)

where v̂(i, ·) is the slice of v̂ whose index in the first mode is i, and x(p)t (i) is the ith coordinate of
x
(p)
t . Since COMPRESSOTHERMODES(p) is itself given by a JL matrix according to Theorem 5.1,

this means that

‖v̂(i, ·)‖2 = Θ(1)
∥∥∥∑

t

x
(p)
t (i) · x(1)t ⊗ . . .⊗ x

(p−1)
t

∥∥∥
2

= Θ(1)‖v(·, . . . , ·, i)‖2

In summary, if i is a heavy coordinate of v on the pth mode, then i is also a heavy coordinate of
v̂ =

∑
t x

(p)
t ⊗ COMPRESSOTHERMODES(j) in the first mode. We can find all heavy coordinates

of
∑
t x

(p)
t ⊗ COMPRESSOTHERMODES(j) in the first mode using a standard heavy hitters data

structure with accuracy ε
poly(p log(d/δ)) instead of ε (to account for the weight of i being evenly spread

across all poly(p log(d/δ)ε) coordinates in the second mode). The same is true for all modes i ∈ [p].

Now, using ONEMODESKETCH(i) we obtain a list Li of heavy coordinates on the ith mode, for
all modes i ∈ [p]. We next iterate over all the modes i ∈ [p], iteratively building a list of all the
heavy prefixes of length i. Suppose at the (i+ 1)th iteration, we have a list L of prefixes of length i,
with |L| ≤ C

ε2 and containing all prefixes (j1, . . . , ji) such that |v(j1, . . . , ji, ·)| ≥ cε‖v‖2 for some
constant C, c > 0. Then, clearly all ε-heavy prefixes of length (i+ 1) must be among the prefixes
of length (i+ 1) in L× Li. Now, to update L, we take the top C

ε2 elements of L× Li according to
PREFIXPOINTQUERY(i+1). It suffices to argue that PREFIXPOINTQUERY(i+1) can estimate the `2
norm of all prefixes (j1, . . . , ji, ji+1) up to an ε‖v‖2 additive error. Since PREFIXPOINTQUERY(i+1)

is a JL matrix, it gives an estimate N(j1, . . . , ji, ji+1) of the weight of the prefix (j1, . . . , ji, ji+1)
that satisfies

N(j1, . . . , ji, ji+1) =
∥∥∥∑

t

x
(1)
t (j1) . . . x

(i+1)
t (ji+1)COMPRESSSUFFIX(x

(i+1)
t ⊗ . . .⊗ x(p)t)

∥∥∥
2

±O(ε)
∥∥∥∑

t

x
(1)
t ⊗ . . .⊗ x

(i+1)
t ⊗ COMPRESSSUFFIX(x

(i+1)
t ⊗ . . .⊗ x(p)t)

∥∥∥
2

(36)

This is because it can give an estimate of an individual coordinate of
∑
t x

(1)
t ⊗ . . . ⊗ x

(i+1)
t ⊗

COMPRESSSUFFIX(x
(i+1)
t ⊗ . . . ⊗ x(p)t), up to additive error O(ε

poly(p log(d/δ)
ε)

)
∥∥∥∑t x

(1)
t ⊗ . . . ⊗

x
(i+1)
t ⊗COMPRESSSUFFIX(x

(i+1)
t ⊗ . . .⊗x(p)t)

∥∥∥
2

— this simply follows from the arguments in Sec-

tion 3 on using JL matrices for point query, as well as Theorem 4.1. Since COMPRESSSUFFIX(i+1)

is itself a JL matrix,
∥∥∥∑t x

(1)
t (j1) . . . x

(i+1)
t (ji+1)COMPRESSSUFFIX(x

(i+1)
t ⊗ . . . ⊗ x

(p)
t)
∥∥∥
2

is

equal to the weight of the prefix (j1, . . . , ji+1) up to a constant factor. By Lemma 14 of
[11] 6, since COMPRESSSUFFIX(i) has the JL property, it is also true that

∥∥∥∑t x
(1)
t ⊗ . . . ⊗

x
(i+1)
t ⊗ COMPRESSSUFFIX(x

(i+1)
t ⊗ . . . ⊗ x

(p)
t)
∥∥∥
2

is equal to ‖v‖2 up to a constant factor.

Thus, N(j1, . . . , ji, ji+1) is equal to ‖v(j1, . . . , ji, ji+1, ·, . . . , ·)‖2 up to a constant factor and ad-
ditive error O(ε‖v‖2) — this shows the correctness of selecting the top C

ε2 prefixes according to
PREFIXPOINTQUERY and COMPRESSSUFFIX as done in our algorithm, and thus completes the
proof of correctness. The bounds on the space complexity follow from Theorem 4.1.

6See page 23 of the arxiv version.

29

D.4 Proof of Theorem 4.4

This is a corollary of Theorem 4.3 and Theorem 2.6 — the only change we make to Theorem 2.6
is that R is now the sketching matrix of Theorem 4.1. If F is the accuracy parameter of R, then
as argued in the proof of Theorem 2.6, it suffices to let F ≤ O(λεβ ·min(1,

√
λ/β)), and therefore

it suffices to let R have poly(F−1p log(dT/δ)) = poly(βλ−1ε−1p log(dT/δ) max(1, β/λ)) rows.
Therefore, we can obtain the space complexity, update time, and query time as follows:

• Since R has poly(βλ−1ε−1p log(dT/δ) max(1, β/λ)) rows and the space complexity of
Algorithm 3 is poly(ε−1p log(d/δ)), the overall space complexity for classification is also
poly(ε−1p log(dT/δ) max(1, β/λ)).

• poly(ε−1p log(dT/δ) max(1, β/λ))
∑k
i=1

∑p
j=1 nnz(x

(i,j)
t) time is needed to compute

Rxt where xt =
∑k
i=1 x

(i,1)
t ⊗ . . .⊗ x(i,p)t , and the update time of Algorithm 3 in this case

is poly(ε−1p log(d/δ))
∑k
i=1

∑p
j=1 nnz(x

(i,j)
t). Thus, the overall update time is as desired.

• The query time is that of Algorithm 3, which is poly(ε−1p log(d/δ)).

Finally, the required minimum values of T are exactly as in Theorem 2.6. This completes the proof.

D.5 Polynomial Kernel and Gaussian Kernel — Corollaries of Theorems 4.2, 4.3, and 4.4

We note that the polynomial kernel of degree q, given a point xt ∈ Rd, corresponds to the explicit
feature mapping into Rdq given by the self tensoring x⊗

q

t . Thus, given a stream of points xt in Rd,
we can apply the above theorems to x⊗

q

t without having to explicitly perform this self-tensoring. The
polynomial kernel is not only useful by itself, with q = 2 and q = 3 common in natural language
processing applications, but it is also used for approximating other kernels via Taylor series, e.g., the
Gaussian or RBF kernel, where typically q is logarithmic and q also depends on the radius of the
input point set. We refer the reader to Theorem 5 of [11] for more background, but just as in the case
of the polynomial kernel, given a stream of points xt, we can implicitly form a polynomial kernel of
the appropriate degree, and use this to approximate the Gaussian kernel. Thus, we obtain `2 heavy
hitter and point query algorithms for classification for this important class of kernels as well.

We now formally define the problem of heavy hitters for polynomial kernel classification.
Definition D.1 (`2 Heavy Hitters for Kernel Classification). Let T ∈ N, and let xt ∈ Rd, yt ∈
{−1, 1} for t ∈ [T]. In addition, define

L(w) =
1

T

T∑
t=1

`(ytw
Tx⊗pt) +

λ

2
‖w‖22

and w∗ = argminw∈Rd L(w). For ε > 0, we say i = (i1, . . . , ip) ∈ [d]p is an ε polynomial kernel
`2 heavy hitter for w∗ if ∑

(j1,...,jp)∈[d]p
M(j1,...,jp)=M(i1,...,ip)

|w(j1, . . . , jp)|2 ≥ ε2‖w∗‖22

where M(j1, . . . , jp) denotes the multiset which is formed by j1, . . . , jp.

Note that M(j1, . . . , jp) = M(i1, . . . , ip) if and only if there is a permutation σ on [d] such that
σ(ik) = σ(jk). In other words, we wish to consider (i1, . . . , ip) as a polynomial kernel `2 heavy
hitter if all permutations of (i1, . . . , ip) contribute an ε fraction of the `2 norm of w∗. In this setting,
we obtain the following result:
Theorem D.2 (Algorithm for Polynomial Kernel `2 Heavy Hitters). Let ε, δ ∈ (0, 1), and suppose all
the assumptions in Definition 1.1 hold (in particular, ‖xt‖2 ≤ 1 for all t ∈ [T], meaning ‖x⊗pt ‖2 ≤ 1).
In addition, let c ∈ [p]. Then, there is an algorithm to find all ε polynomial kernel `2 heavy hitters
(i1, . . . , ip) ∈ [d]p such that the Hamming distance of (i1, . . . , ip) from {(i, . . . , i) | i ∈ [p]} is at
most c. The space complexity of this algorithm is pO(C)poly(ε−1 log(dT/δ)(1+β/λ)), the query time
of this algorithm is pO(c)poly(ε−1 log(d/δ)), and the update time is pO(c)poly(ε−1 log(dT/δ)(1 +
β/λ))nnz(xt).

30

Proof. This follows from applying the algorithm described in Theorem 4.4, with ε
pC

in place of ε.
To see this, first note that w∗ is a symmetric tensor, since if gradient descent is performed on

L(w) =
1

T

T∑
t=1

`(ytw
Tx⊗pt) +

λ

2
‖w‖22

then each gradient update is a symmetric tensor, and the iterates of gradient descent on L converge to
w∗ (see the proof of Lemma B.6). Now, suppose (i1, . . . , ip) is an ε polynomial kernel `2 heavy hitter
of w∗, such that (i1, . . . , ip) has Hamming distance c from {(i, . . . , i) | i ∈ [p]}. This means that
(i1, . . . , ip) has at most c+ 1 distinct coordinates, and one of those coordinates occurs p− c times.
Thus, if we let p− c, f1, . . . , fc be the number of times these coordinates occur (with some of the fj
being 0 if there are less than c+ 1 distinct coordinates) then the number of distinct permutations of
(i1, . . . , ip) is

K :=

(
p

p− c, f1, . . . , fc

)
=

p!

(p− c)!f1! . . . fc!
≤ p!

(p− c)!
= p · (p− 1) · . . . · (p− c+ 1) ≤ pc

Since (i1, . . . , ip) is a polynomial kernel `2 heavy hitter, this means that

K|w(i1, . . . , ip)|2 ≥ ε2‖w∗‖22
and therefore, (i1, . . . , ip) is an ε√

K
`2 heavy hitter in the usual sense. In particular, since K ≤ pc,

(i1, . . . , ip) is an ε
pC/2

`2 heavy hitter in the usual sense. Thus, we could do the following:

• Apply the algorithm described in Theorem 4.4 to obtain a list L of ε
pC/2

`2 heavy hitters,
with |L| ≤ O(pC/ε2).

• Then, we could incur an additional running time of pO(c)/εO(1) to iterate through the
elements of L and perform point query for each element (i1, . . . , ip) to determine if it is
an ε√

K
heavy hitter in the usual sense, where K is the number of distinct permutations of

(i1, . . . , ip). We would also use this step to remove duplicates in L (treating indices which
are permutations of each other as the same).

Thus, the time and space complexities are as follows:

• The space complexity is pO(c)poly(ε−1 log(dT/δ)(1 + β/λ)).

• The update time is pO(c)poly(ε−1 log(dT/δ)(1 + β/λ))nnz(xt).

• The query time is pO(c)poly(ε−1 log(d/δ)) (note that the additional processing on the list
of heavy hitters output by Algorithm 3 is also pO(c)/εO(1)).

31

E Training Loss Using z

Here, we show that when using z rather than w∗, the loss function does not significantly increase:
Theorem E.1. Suppose all of the assumptions in Definition 1.1 hold. Let R be a sparse JL matrix
and suppose zt is updated according to

zt+1 ← (1− ληt)zt − ηtyt`′(ytzTt Rxt)Rxt

In addition, define z = 1
T

∑T
t=1 zt, and define w∗ as before. Finally, define

L∗ =
1

T

T∑
t=1

`(ytw
T
∗ xt) +

λ

2
‖w∗‖22

and

L̂ =
1

T

T∑
t=1

`(ytz
TRxt) +

λ

2
‖z‖22

Then, |L∗ − L̂| ≤ ε‖w∗‖2 with probability 1 − δ as long as R has at least O(H
2 log(dT/δ)

ε2 ·
max(1, 1/λ) max(1, O(

√
2β/λ))) rows, and T ≥ max(H8/(λ4ε4τ4), H8/(λ8ε4τ4)). In addition,∣∣∣ 1

T

T∑
t=1

`(ytw
T
∗ xt)−

1

T

T∑
t=1

`(ytz
TRxt)

∣∣∣ ≤ ε‖w∗‖2
with probability 1 − δ as long as R has at least O(H

2 log(dT/δ)
ε2 · max(1,

√
2β
λ)) rows and T ≥

Ω(H8/(λ4ε4τ4)).

Proof. Let R be a sparse JL matrix with Θ(log(dT/δ)
F 2) rows, where F will be determined later. Let

L∗ =
1

T

T∑
t=1

`(ytw
T
∗ xt) +

λ

2
‖w∗‖22

and

L̂ =
1

T

T∑
t=1

`(ytz
TRxt) +

λ

2
‖z‖22

Then,

|L̂− L∗| ≤
1

T

T∑
t=1

|`(ytwT∗ xt)− `(ytzTRxt)|+
λ

2
|‖w∗‖22 − ‖z‖22|

≤ H

T

T∑
t=1

|〈w∗, xt〉 − 〈z,Rxt〉|

+
λ

2

(∣∣∣‖w∗‖22 − ‖Rw∗‖22∣∣∣+
∣∣∣‖Rw∗‖22 − ‖z∗‖22∣∣∣+

∣∣∣‖z∗‖22 − ‖z‖22∣∣∣)
(37)

Here, the second inequality is because ` is H-Lipschitz, and by the triangle inequality.

Now, for t ∈ [T], observe that

|〈w∗, xt〉 − 〈z,Rxt〉| ≤ |〈w∗, xt〉 − 〈Rw∗, Rxt〉|+ |〈Rw∗, Rxt〉 − 〈z∗, Rxt〉|
+ |〈z∗, Rxt〉 − 〈z,Rxt〉|

≤ F‖w∗‖2 + ‖z∗ −Rw∗‖2‖Rxt‖2 + ‖z∗ − z‖2‖Rxt‖2
≤ F‖w∗‖2 +O(1)‖z∗ −Rw∗‖2 +O(1)‖z∗ − z‖2

≤ F‖w∗‖2 +O(1) ·
√

2β

λ
F‖w∗‖2 +O(1)‖z∗ − z‖2

≤ F‖w∗‖2 +O(1) ·
√

2β

λ
F‖w∗‖2 +O

(H

λT 1/4

)
(38)

32

Here, the second inequality holds by Lemma B.3, and the Cauchy-Schwarz inequality, and the
third inequality also holds by Lemma B.3 as long as F ≤ ε. The fourth inequality is due to
Equation 8. Finally, for the fifth inequality, observe that as in Lemma B.9, we can show that
1
T

∑T
s=1 ‖zs − z∗‖2 ≤ O(H

λT 1/4) (since D is still O(Hλ) since ‖Rxt‖2 ≤ 1 + F ≤ O(1), and
G is at most O(H) for the same reason) — by the convexity of the `2 norm, this implies that
‖z − z∗‖2 ≤ O(H

λT 1/4). In summary,

1

T

T∑
t=1

|`(ytwT∗ xt)− `(ytzTRxt)| ≤ HF‖w∗‖2 +O(1) ·
√

2β

λ
HF‖w∗‖2 +O

(H2

λT 1/4

)
Therefore, as long as F ≤ O(ε/H ·min(1,

√
λ
2β)) (i.e. R has at leastO(H

2 log(dT/δ)
ε2 ·max(1,

√
2β
λ))

rows) and T ≥ Ω(H8/(λ4ε4τ4)), the second statement of the theorem holds.

Now, we bound the remaining terms in the last expression in Equation 37. By Lemma B.6, the
function ‖ · ‖22 is O(Hλ)-Lipschitz on a region containing Rw∗, z∗ and z, since these vectors all have
`2 norm at most O(Hλ). We can thus bound the remaining terms as follows:

∣∣∣‖w∗‖22 − ‖Rw∗‖22∣∣∣+
∣∣∣‖Rw∗‖22 − ‖z∗‖22∣∣∣+

∣∣∣‖z∗‖22 − ‖z‖22∣∣∣
≤ O(F) · H

λ
‖w∗‖2 +

∣∣∣‖Rw∗‖22 − ‖z∗‖22∣∣∣+
∣∣∣‖z∗‖22 − ‖z‖22∣∣∣

≤ FH

λ
‖w∗‖2 +O

(H
λ

)
‖z∗ −Rw∗‖2 +O

(H
λ

)
‖z∗ − z‖2

≤ FH

λ
‖w∗‖2 +O

(H
λ

)
·
√

2β

λ
F‖w∗‖2 +O

(H2

λ2T 1/4

)
(39)

The first inequality is by Lemma B.3 and because ‖w∗‖2 ≤ H
λ . The second inequality is because

‖ · ‖22 is O(Hλ)-Lipschitz on a region containing Rw∗, z∗ and z. Finally, the third inequality is by
applying the bounds from above on ‖z∗ −Rw∗‖2 and ‖z∗ − z‖2.

In summary,

|L̂− L∗| ≤ HF‖w∗‖2 +O(1) ·
√

2β

λ
HF‖w∗‖2 +O

(H2

λT 1/4

)
+
FH

λ
‖w∗‖2 +O

(H
λ

)
·
√

2β

λ
· F‖w∗‖2 +O

(H2

λ2T 1/4

)
≤ HF‖w∗‖2 ·

(
1 +O(1) ·

√
2β

λ
+

1

λ
+

1

λ
·O(1) ·

√
2β

λ

)
+O

(H2

λT 1/4
+

H2

λ2T 1/4

)
≤ HF‖w∗‖2 · (1 + 1/λ) · (1 +O(

√
2β/λ)) +O

(H2

λT 1/4
+

H2

λ2T 1/4

)
≤ HF‖w∗‖2 ·max(1, 1/λ) ·max(1, O(

√
2β/λ)) +O

(H2

λT 1/4
+

H2

λ2T 1/4

)

(40)

Thus, as long as T ≥ max(H8/(λ4ε4τ4), H8/(λ8ε4τ4)), and F ≤
O(ε/H) · min(1, λ),min(1, O(

√
λ/2β)) (i.e. R has at least O(H

2 log(dT/δ)
ε2 ·

max(1, 1/λ) max(1, O(
√

2β/λ))) rows), |L̂− L∗| ≤ ε‖w∗‖2.

33

F Classification Error using Top K Weights

Number of Weights Used (K) Test Error
Full weights 0.9573693534100974

50 0.8555949217596693
60 0.8679362267493357
70 0.8767581930912312
80 0.8782285208148805
90 0.8811662237968704
100 0.8952583407144966
200 0.9232122822556835
300 0.9370711544139356
400 0.9396220844405079
500 0.942849129022734
600 0.9442810746973723
700 0.9470386772955418
800 0.9481842338352524
900 0.9491378801299085

1000 0.9501505757307351
10000 0.957472689695896
20000 0.9573516386182462
40000 0.9573693534100974

Table 1: The number of weights K that we use, together with the test error achieved when the top K
weights are used. Note that the number of nonzero weights in the original trained linear classifier
is 41130. With only 400 weights, the test accuracy is 93.9%, while the test accuracy with all 41130
weights is 95.7%.

We performed experiments with the RCV1 dataset [13] to determine the effect of using only the
top K weights on classification performance, for K much smaller than the total number of nonzero
weights. First, we split the RCV1 dataset into two halves, one for training and one for testing. We
obtain a vector w ∈ Rd (where d = 41130 is the number of nonzero features) using online logistic
regression on the training half. Then, we calculate the test accuracy on the testing half when using
w, as well as when using wK , for K � d — here, given a data point (xt, yt) where xt ∈ Rd and
yt ∈ {±1}, a vector v classifies xt properly if vTxt has the same sign as yt. The results are shown in
Table 1 — note that good test accuracy is obtained even with wK for K � d.

Our code used to obtain these results is available in the supplementary material, in the folder
"Appendix F Experiments." Some of the files in this folder are also based on files due to the authors
of [1] at https://github.com/stanford-futuredata/wmsketch.

34

https://github.com/stanford-futuredata/wmsketch

Figure 2: Results on KDD CUP 2010 dataset with λ = 10−3. Blue denotes the performance of our
algorithm from Section 4. Green denotes the performance of our black-box reduction based algorithm
from Section 2, and red is the algorithm of [1].

G All Plots for Experiments

Complete results for our experiments are shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10.

35

Figure 3: Results on KDD CUP 2010 dataset with λ = 10−4. Blue denotes the performance of our
algorithm from Section 4. Green denotes the performance of our black-box reduction based algorithm
from Section 2, and red is the algorithm of [1].

36

Figure 4: Results on KDD CUP 2010 dataset with λ = 10−5. Blue denotes the performance of our
algorithm from Section 4. Green denotes the performance of our black-box reduction based algorithm
from Section 2, and red is the algorithm of [1].

37

Figure 5: Results on RCV1 dataset with λ = 10−3. Blue denotes the performance of our algorithm
from Section 4. Green denotes the performance of our black-box reduction based algorithm from
Section 2, and red is the algorithm of [1].

38

Figure 6: Results on RCV1 dataset with λ = 10−4. Blue denotes the performance of our algorithm
from Section 4. Green denotes the performance of our black-box reduction based algorithm from
Section 2, and red is the algorithm of [1].

39

Figure 7: Results on RCV1 dataset with λ = 10−5. Blue denotes the performance of our algorithm
from Section 4. Green denotes the performance of our black-box reduction based algorithm from
Section 2, and red is the algorithm of [1].

40

Figure 8: Results on URL dataset with λ = 10−3. Blue denotes the performance of our algorithm
from Section 4. Green denotes the performance of our black-box reduction based algorithm from
Section 2, and red is the algorithm of [1].

41

Figure 9: Results on URL dataset with λ = 10−4. Blue denotes the performance of our algorithm
from Section 4. Green denotes the performance of our black-box reduction based algorithm from
Section 2, and red is the algorithm of [1].

42

Figure 10: Results on URL dataset with λ = 10−5. Blue denotes the performance of our algorithm
from Section 4. Green denotes the performance of our black-box reduction based algorithm from
Section 2, and red is the algorithm of [1].

43

