
Under review as a conference paper at ICLR 2021

Supplementary Material for:
Data-Aware Low-Rank Compression for Large NLP Models

A PROOF OF THEOREM 1

Theorem 1. Assume rank(W) = r and rank(X) = t. The closed form solution M∗ of the optimiza-
tion problem in equation 2 is

M∗ = VW,rS
−1
W,rZkS

−1
X,tV

T
X,t, (7)

where Zk is the rank-k truncated SVD of Z = SW,rV
T
W,rVX,tSX,t.

Proof. We firstly consider the unconstrained problem:

M∗ = argmin
M

‖WX −WMX‖2F

= argmin
M

‖UT
WWXUX − UT

WWMUX‖2F

= argmin
M

‖SWV T
WVXSX − SWV T

WMVXSX‖2F ,

where the second equality holds due to the fact that UW and UX are orthonormal matrices. Note that
we could expand the term SWV T

WVXSX as:

SWV T
WVXSX =

[
SW,r 0

0 0

] [
V T
W,r

V̄ T
W,r

] [
VX,t V̄X,t

] [SX,t 0
0 0

]
=

[
SW,rV

T
W,r 0

0 0

] [
VX,tSX,t 0

0 0

]
=

[
SW,rV

T
W,rVX,tSX,t 0

0 0

]
.

Similarly, we will have

SWV T
WMVXSX =

[
SW,rV

T
W,rMVX,tSX,t 0

0 0

]
.

Therefore, we could continue above unconstrained problem as:

M∗ = argmin
M

‖SWV T
WVXSX − SWV T

WMVXSX‖2F

= argmin
M

‖
[
SW,rV

T
W,rVX,tSX,t − SW,rV

T
W,rMVX,tSX,t 0

0 0

]
‖2F

= argmin
M

‖SW,rV
T
W,rVX,tSX,t − SW,rV

T
W,rMVX,tSX,t‖2F .

= argmin
M

‖Z − SW,rV
T
W,rMVX,tSX,t‖2F .

The above minimization problem obtains the optimal value if SW,rV
T
W,rMVX,tSX,t equals the rank-k

truncated SVD of Z by the fundamental property of SVD decomposition. Thus, we will have:

Zk = SW,rV
T
W,rM

∗VX,tSX,t =⇒ M∗ = VW,rS
−1
W,rZkS

−1
X,tV

T
X,t.

11

Under review as a conference paper at ICLR 2021

B AN ALGORITHM TO SEARCH OF RANKS UNDER DRONE

In Algorithm 2, we illustrate how to select the rank of each module by applying DRONE illustrated
in Algorithm 1. The input to Algorithm 2 consists of training data, the model with all parameters of
weight matrices and original training loss. In addition, a pre-defined search grid is also necessary.
Taking W ∈ R768×768 as an example, we can perform a grid search for a proper low rank k over
[1, 768] such as {96, 192, 288, 384, . . . , 768}. The finer the grid, the more compressed model we

could get at the cost of longer running time of the DRONE method. With these input parameters, we
firstly distribute the total allowed loss into each individual module. We then iteratively apply

Algorithm 1 following the computational sequence illustrated in Figure 1. For the compression of
each module, we search the rank k by going through the grid. If the approximated result will not

increase the allowed loss increase ratio of the component, we will end the search and tie the found
rank to the component and move on. The procedure will continue until all components are

compressed. The whole process could guarantee us that the final loss L′ of the compressed model M̂
would not be greater than (1 + r)L, where L is the original loss before approximation.

Algorithm 2: Overall Algorithm of Grid Search of Low-rank Model Approximation
Input: training data Dtrain; Original weight matrix W ; Prediction Model M , total allowed loss

increase ratio r, Search grids of ranks for each module G, original Training loss L,
Output: Low-rank Model M̂

1 R← Distribute allowed ratio r into each module.
2 for l = 1, · · · , total layers do
3 foreach module mi ∈Ml do
4 Wl,i ← l-th layer parameter of module mi (e.g., 2nd feed-forward matrix in first layer.)
5 for i = 1, · · · , |Gl,i| do
6 k ← Gl,i

7 U, V ← Algorithm 1 (k,Dtrain,Wl,i,M)
8 M̂ ←M with Wl,i replaced by U, V .
9 Evaluate new loss Lnew = M̂(Dtrain)

10 if Lnew/L < 1 +Rl,i then
11 M ← M̂
12 break

12

Under review as a conference paper at ICLR 2021

C LSTM RESULT

Models LSTM-1 LSTM-2 Softmax Others Total Time Perplexity
PTB-Large 1.27ms 1.30ms 1.09ms 0.13ms 3.79ms 78.32

PTB-Large-SVD - - - - - 81.09
PTB-Large-DRONE - - - - - 80.87

PTB-Large-DRONE-Retrain 0.24ms 0.34ms 0.42ms 0.11ms 1.11ms(3.4x) 79.01

Table 4: The average inference time of each component in the model of 2-layer LSTM model. Both
proposed methods and SVD use same ranks so the inference time is approximately the same. The
unit is in millisecond and the number in parenthesis shows the ratio respective to the overall inference
time.

D RESULTS OF SVD-BASED RETRAINING

Models Accuracy (%)
BERT-MRPC 89.5

BERT-MRPC-DRONE 86.8
BERT-MRPC-SVD 63.8

BERT-MRPC-SVD-Retrain 85.8

Table 5: Illustration of SVD fine-tuning. Using the same rank as the proposed method, SVD accuracy
will drop significantly. After fine-tuning on the SVD-based approximation, the accuracy could be
recovered. But it’s still less competitive than the proposed method.

E PYTHON PSEUDO CODE OF SOLVING EQUATION 2

1 import numpy as np
2

3 def OPTsolver(x,y,k):
4 ’’’
5 compute the best rank k projection M such that \| x*y’ - x*M*y’\|_{F

} is minimized
6 x \in shape n x d
7 y \in shape m x d
8

9 ’’’
10 xSS = np.matmul(x.transpose(),x)
11 kSS = np.matmul(y.transpose(),y)
12 U1,S1,V1 = np.linalg.svd(xSS,False)
13 S1 = S1 ** 0.5
14 I1 = np.eye(S1.shape[0])
15 U2,S2,V2 = np.linalg.svd(kSS,False)
16 S2 = S2 **0.5
17 I2 = np.eye(S2.shape[0])
18 YK = np.dot(np.dot(I1*S1,V1),np.dot(V2.transpose(),I2*S2))
19 U,S,V = np.linalg.svd(YK,False)
20 L = np.dot(V1.transpose(),I1*(1/S1))
21 R = np.dot(I2*(1/S2),V2)
22 M = np.dot(U[:,:k]*S[:k],V[:k,:])
23 return L,R,U,S,V

Listing 1: The python function to solve the equation 2.

F PYTHON PSEUDO CODE OF RANK SEARCHING

1

2 import os

13

Under review as a conference paper at ICLR 2021

3 import numpy as np
4 import torch
5 import subprocess as sp
6

7 cuda_num = 7
8 n_heads = 12
9 total_layer = 12

10

11 prev_loss = .11159391902588509 # Initial Loss
12 the_model_name = ’bertSST2’
13

14 time_attn = 117.5 # Empirical Inference Time on Attention Module
15 time_0 = 34.27 # Empirical Inference Time on Attention FFL Module
16 time_1 = 133.11 # Empirical Inference Time on Feedforward 1 layer
17 time_2 = 128.84 # Empirical Inference Time on Feedforward 2 layer
18 minimal_time = min(time_attn,time_0,time_1,time_2)
19 multiplier = (time_attn+time_0+time_1+time_2)/(minimal_time)
20 tolerant = 2. # allowed loss increase ratio. r in Algorithm 2.
21

22 # Code to Distribute the r into individual Modules.
23 # The distribution depends on empirical inference time of each module and

number of layers.
24 basic_tolerance = np.exp(np.log(tolerant)/multiplier)
25 tol_attn = np.exp(np.log(basic_tolerance**(time_attn/minimal_time))/

n_layer)
26 tol_0 = np.exp(np.log(basic_tolerance**(time_0/minimal_time))/n_layer)
27 tol_1 = np.exp(np.log(basic_tolerance**(time_1/minimal_time))/n_layer)
28 tol_2 = np.exp(np.log(basic_tolerance**(time_2/minimal_time))/n_layer)
29

30

31 #### Omitted Code ###
32 # This part of the code is to change some parameters of the underlying

hugginface framework in order to extract the training distribution X
of each module from the model.

33 ### Omitted Code ###
34

35

36

37 for i in range(total_layer):
38 for each module in the layer: # This line is pseudo code for clarity

reason.
39 # This part of the code extracts $R_{l,i}$(named the_tol here) in

Algorithm 2.
40 if save_symbol == "E":
41 the_tol = tol_attn
42 elif save_symbol == "F0":
43 the_tol = tol_0
44 elif save_symbol == "F1":
45 the_tol = tol_1
46 else:
47 the_tol = tol_2
48 # Update the allowed increase of loss
49 prev_loss = prev_loss * the_tol
50

51 rank = 16 if save_symbol == "E" else 96 # initial search rank for
Attention(16) and FFL layers(96)

52 tps = 64 if save_symbol == "E" else 768 # Maximal rank specified
in the original models.

53 while rank <= tps:
54 ### Omitted Code ###
55 ## Write the tried rank into hugginface framework##
56 ### Omitted Code ###
57

58 # This line run the inference in the command line
59 os.system(’CUDA_VISIBLE_DEVICES="’+str(cuda_num)+’" python

run_glue.py --model_type bert --model_name_or_path /data/TinySeries/

14

Under review as a conference paper at ICLR 2021

SST2/OriginalSST2/ --task_name SST-2 --do_eval --data_dir /data/
glue_data/SST-2/ --output_dir /tmp/sst-2 --per_gpu_eval_batch_size
100 --per_gpu_train_batch_size 100 --max_seq_length 128 > /tmp/tmp0’)

60

61

62 with open(’/tmp/tmp0’,’r’) as file:
63 data = file.readlines()
64 new_r = float(data[-1])
65 if new_r < prev_loss:
66 break
67 if save_symbol == "E": # Attention module, we increase search

rank 16 at a time.
68 rank += 16
69 else:
70 #rank += 96 # For FFL layer, we increase search rank 96 a

time.
71 if rank == 384:
72 rank = 768
73 break
74 else:
75 rank += 96
76

77 ### Omitted Code ###
78 # This part of code update the model #

Listing 2: A mixed of real code and pseudo code to illustrate the search algorithm.

15

