Supplementary Material for “Refined Learning
Bounds for Kernel and Approximate £-Means”

Yong Liu'-?
1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China
liuyonggsai@ruc.edu.cn

Appendix: Upper Bound for the Clustering Rademacher Complexity

Let F¢ be a family of k-valued functions with

Fo={fo = fers- s o) : C € HEY, (1)
Let ¢ : R¥ — R be a minimum function:
Va € R* p(a) = _71{1inkai (2)

and G¢ be a “minimum"” family of the functions Fg,

Gc 1={90=<P0fc ‘fcéfc,gc(x)zw(fc(x))}- (3)

Definition 1 (Clustering Rademacher Complexity). Let G be a family of functions defined in (3)),
S = (x1,...,%y,) be a fixed sample of size n with elements in X, and D = {®; = ¢(x;)};_,. Then,
the clustering empirical Rademacher complexity of G with respect to D is defined by

Z UigC(Xi) ] 5

i=1
where o1, ..., 0, are independent random variables with equal probability of taking values +1 or
—1. Its expectation is R(Gc) = E[R,,(Gc)] -

Rn(Gc) =E, l sup

gc€Gc

Based on the recently improvement of the upper bound of Rademacher complexity of L-Lipschitz
with respect to the L., norm [3]], we provide a refined bound of clustering Rademacher complexity:
Lemma 1. IfVx € X, ||D«|| < 1, then, for any S = {x1,...,%x,} € X", there exists a constant
¢ > 0 such that

Rn(Ge) < eV max R (Fe,) log?(v/n),

where Ge is a family of clustering functions defined in (B), F¢ is a family of k-valued functions
associate with the clustering center C = [cy, ..., ci| defined in (1), F¢, is a family of the output
coordinate i of Fc, and Ry (Fc,) = supsexn Rn(Fc,)-

The above result shows that the upper bound of the clustering Rademacher complexity is linearly
dependent on vk, which substantially improves the existing bounds linearly dependent on k.

Remark. The upper bound of the clustering Rademacher complexity involves a constant ¢ and a
logarithmic term log(n). Thus, if one requires its absolute value to be smaller than the existing
bounds defined, there may exist some cases which acquire a large k. However, from a statistical
perspective, our bound with linear dependence on v/k substantially improves the existing ones with
linear dependence on k.

In the following, we will show that Lemma [I] cannot be improved from a statistical view when
ignoring the logarithmic terms.
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Lemma 2. There exists a set C € H* and data sequence D = {®,...,®,} such that

Rn(Gc) i - max 7~2n(]—'ci).

. vk

3v2
Lemma shows that the lower bound of R,,(Gc) is (v max; Rn(Fe, )), which implies that the
upper bound of order (5(\/E max; ﬁn(]‘—ci )) in Lemmais (nearly) optimal when ignoring the
logarithmic terms

Remark. A lower bound linearly dependent on k for a k-valued function class F C {f : X — RF}
has been given in [5]],

Rn(¢of) > 'maXﬁn(sﬁofi),

F
2V2

which does not match the upper bound of v/k. However our bound in Lemma does match.

Appendix: Proof of Lemmall]

To prove Lemmal[I] we first give the following two lemmas:

Lemma 3 (L., Contraction Inequality, Theorem 1 in [S]). Let F C {f : X — R*}, and let
¢ : R¥ — R be L-Lipschitz with respect to the Lo, norm, that is | ¢(v) — ¢(v')|leo < L[|V = V|| oe»
Vv, v’ € R¥. Forany a > 0, there exists a constant C' > 0 such that if max{|p(f(x))|, || f(%)]|oo } <
p, then

Ro(¢oF) < C-LVkmax R, (F;)1 3*“(@),
(00F) < C- IV kmpxRo(F) logh (B

where R, (¢ o F) = Eo [supfef- 1> oo (f(xi))], R (Fi) = supgern R (Fi).
Lemma 4 (Lemma 24(a) in [7]] with p = 2). Let n1,...,n, € H, where H is a Hilbert space with

|| - || being the associated norm. Let o1, . . . , oy, be a sequence of independent Rademacher variables.
Then, we have

2 n
E. <D lmill? (4)
=1

n
E a;in;
i=1

and

E > - ®)

n
g 07
i=1

Proof of LemmalI] We first show that the minimum function
p(v) =min(vy,...,v)
defined in (@) is 1-Lipschitz continuous with respect to the L-norm, that is
W, € RN, Jp(v) — o(1)] < 1 — /|- ®)
Without loss of generality, we assume that p(v) > ¢(v'). Let

j =argminv},
i=1,...k

then from the definition of , we know that p(¢') = v;. Thus, we can obtain that

lp(v) — ()| = p(v) —v;
<vj—1 (by the fact that p(v) < v;)



We then show that max{|¢(fc(x))|, || fc(x)||eo} is bounded by a constant. From the definition of
fc (see Eq.(T)), we know that

fo(x) = (fe, (%) ., fe, (%)) and fo,(x) = [|®x — c;]*.
Note that || ®«|| < 1 and ¢; € H, so we have
lejll < Tand fe,(x) < 2| x| + 2[/c;|| < 4,Vx € X. 7
Thus, one can see that

Ife()llee = max|fe, (x)] < 4 and [¢(fc(x)) min fe; (x)| < 4.

=1 1

Jj=1,...,
From the above analysis, we know that ¢ (v) is 1-continuous with respect to the L,-norm, and
max{|¢(fc(x))|, || fe(x)||e} < 4. Thus, using Lemmaf3|with L = 1, p = 4 and a = 1/2, we have

~ 4n
R (Gc) < CVEkmax R, (Fc,) log? <> 8
(Gc) : (Fc,)log i R (o) ()
Let
ci:=sup sup |fc(x)|andc=max{c;,i=1,...,k}. 9)
XEX fo€Fe,

From , we know that c is a constant and ¢ < 4. By definition of 7i’,n (Fc,), we can obtain that

n

Vj, Ifén(fC;) = Ssup Eo‘ sup Zaifc(xi)
- Sear fe€Fc; i1
n
>supE sup 0 fe(X)
xeX 7 fcefcj 122; ¢
> sup E, Zai fe(x)| (by Jensen’s inequality) (10)
XGX,fCGJ:c]. =1
V2
> Y= sup |fe(x)| (by Eq.() of Lemmaf])
2 xeX,fce}—Cj
\/2nc;
=¥~ (byEq.Q)).
Thus, one can see that max; R,,(Fc,) > VI where ¢ = max{c;,i = 1,...,k}. So, we have
n 2n . . .
R Fo) SV e Plugging this into (8] proves the result. O

Appendix: Proof of Theorem 1

To prove Theorem 1, we first give the following two lemmas:

Lemma 5. IfVx € X, ||®y|| < 1, then forall S € X™ and C € H¥, we have

max R, (Fc,) < 3vn.



Proof. ¥S € X", C € H* andi € {1,...,k}, we have

Rn(Fe,;) =E& sup Za]fc (x5)

fce}—CL J 1

n
=Eo sup | Y _ o[ ®; — c?
cEH =1

—E, sup Zo—j ~2(®;,¢) + [lelf? + [|9,] (n
ceH

=E4 sup ZO'] — Y+ lc]| ]

ceH

<2Eq sup | ¥ 0;(®;,c)| +Eq sup ZUJ”CH
)

H |2
ce j ceH j=1

One can see that

n
Eo sup Za] lcll?| < Eo Zaj (since ||c|| < 1)

ccH j=1
- (12)
< |Eq Zoj < +v/n (by Eq.@) of Lemma[),
j=1
and
n
Eqs sup 0 =E, sup o;®;,c
n
<Eo Y 0;®;| by [lc] < 1)
j=1 (13)
< |Eo ZajCI)j < Z [|®:]|? (by Eq.(@) of Lemma )
j=1 i=1
<v/n (since | ®;]| < 1).
Substituting (12) and (I3) into (TT), we can prove the result. O
To prove Theorem 1, we first propose the following lemma:
Lemma 6. For any § € (0, 1), with probability 1 — ¢, there exists a constant ¢ > 0, such that
1
R(Gc) < eVknlog® (vn) + 4 [2nlog <5)
Proof. From [8] or [1]], with probability 1 — §, we have
1
R(Gc) < RalGc) +  [2nl0g (5) (14)



Thus, we have

R(Gc)

R (Gc) + 4/2nlog (;)

<C\fmax7€ (Fe,) log Uinog (by Lemmal[T)

1
<3cVknlog? (v/n) + 1 /2nlog <§ (by Lemmal[5)

O

Proof of Theorem 1. The starting point of our analysis is the following elementary inequality (see
Ch.8 in [4] or page 2 in [3]):

EW(Cn, P)] - W*(P)

=EW(Cy, P) = W(Cy, Pp)] + EW(Cyi, Pr)] — W*(]P’)
<SEWV(Cn, P) = W(Cp, Pp)] + EV(C, Py )] — W (P)
w(c,,P,) < W(C*,P,) as C, is optimal w.r.t. W(-,P,)) (15)
<E sup (W(C,P) —W(C,P,))+ sup EW(C,P,)— W(C,P)]
CeH* CeH*
<2E sup |[W(C,P,)—W(C,P)|.
Ce#Hk
Letx},...,x, beacopy of X1, ..., X, independent of the ;’s. Then, by a standard symmetrization

argument [1] (can also be seen in the proof of Lemma 4.3 of [3]]), we can write

Zaz gc(x go(x )]‘

i=1

E sup |W(C,P,) — W(C,P)| <E sup
CeHk gc€fGc

N (16)
<2E Sup % ; oigc(x)| = %R(Qc)
Thus, we can obtain that
EW(C,, B)] ~ W* (B) < - R(Gc) (by Eq.(T3) and Eq.(I8)
§4C\/Elog2 (Vn) + 44 % (by Lemma 6).
This proves the result. ]

Appendix: Proof of Theorem 2
Proof. Note that
EWV(Cy, P)] - W*(P)
—E [W(Cn, P) — W(Cn,Pn)} +E[W(Cn, P,) — W(C,, Pn)]

A Az

+E [W(Cn, P,) — W(C,, P)} +IE[W(C,L,P)] —WH(P).

Ag A4



Also note that A, is bounded by ¢, and A4 can be obtained from Theorem 1. From Eq.@[), we know
that A; and A3 can be bounded by the Rademacher complexity:

2
Ay <E sup [W(C,P,) — W(C,P)| < =R(Gc),
CeHF n

2
CeH* n

Thus, we can obtain that

EW(C,,P)] — W*(P) S%R(gc) + c\/flog2 (V) +cy/ % +¢. a7

Substituting Lemma [6]into Eq.(I7), we can proves the result. O

Appendix: Proof of Theorem 3
Proof. Note that

E [EAV(CL, P)]] = E[EADV(C;, P)] - EADV(CA, P)] | + E[EAW(C;, P

From Lemma 2, we can obtain that
E[EA[W(cﬁ,Pn)ﬂ < B-E[W(Cp,Py)]
_3. ]E[W(C",Pn) - W(C",IP’)} +8- E[W(CH,IP’)]
Thus, we can obtain that

E[EAIW(C;\P)| <E[E4W(C;P)] - EaW(C; B

Ay

(18)
+ 8 E[W(Cu,P) = W(Cy, P)| +8-E[W(C,, P)]
A, As
Note that
A1, Ay <E sup |W(C,P,) — W(C,P)|
CeHk
2
SER(QC) (by Eq.(I6)) (19)
~ k
<0 <\/;> . (by Lemmal6)
By Theorem 1, we can obtain that
* k 2 log%
EW(C,,P)] < W*(P) +¢ - log” (V/n) + ¢ -
Substituting the above inequality and Eq.(T9) into Eq.(I8), we have
A 2 k *
E[EAV(CL P <O /= + W (@) ).
O



Appendix: Proof of Theorem 4

To prove Theorem 4, we first propose the following lemma:

Lemma 7. With probability at least 1 — 0, we have

E [W(Cnm,Pn> - W(Cn,m7P)] < @ ( k) .

Proof. Note that

E [W(Cn,mapn) - W(Cn,m7p)] <E sup |[W(C,P,) - W(C,P)|

CeHk
2
SER(QC) (by Eq.(I6))
~ k
=0 < ) (by Lemmal6).
n
This proves the result. O

Lemma 8. If constructing I by uniformly sampling
m > Cv/nlog(1/6) min(k, Z)/Vk,

then for all S € X™, with probability at least 1 — 0, we have

W(Cn,mypn> - W(Cnapn) S C\/Ea

where Z = Tr(K,,(K,, + 1,)7!) is the effective dimension of K,,, and C is a constant.

Proof. This can be directly proved by combining Lemma 1 and Lemma 2 of [2] by setting ¢ =
1/2. O
Proof of Theorem 4. Note that

EV(Com, P)] = W*(P)
= E[W(Cn,my HD) - W(Cn,ma ]Pn)] + E[W(Cn,my Pn) - W(Cn,7 Pn)}

A1 A2
+EW(C,,P,) —=W(C,,P)| + EDV(C,,P)] — W*(P).
Az Ay
Note that
A3 <E sup [W(C,P,) - W(C,P)|
CeHk
2
SER(QC) (by EQ-@) (20)
<0 ( :) . (by Lemmal6)

One can see that A4 can be bounded by O (v/k/n) using Theorem 1. A; and A can both be bounded
as O(y/k/n) using Lemmaand Lemma @ respectively. O



Appendix: Proof of Theorem 5

Proof. From the definition of effective dimension, we have

E=Tr(KT(K+1I)~

/\
LVE] A\, n A\ LVE] n
— 4 L < 1 Ai
‘ A+ 1 + Z P + Z
i=1 i=|VEk]|+1 i=1 i=[Vk|+1
<VE+ > N<vVE+ Y a
i=|Vk]+1 i=|Vk]+1
<Vk+ c/ % x = kl_a
VE a—1
< (1 +— 1) vk
Thus, we can obtain that
min(k, E) = c
—F— < —=<1+ .
vk vk a—1
Substituting the above inequality into Theorem 4, we can prove this result. O

Appendix: Proof of Theorem 6

Proof. Note that
EW(Cpnn, P)] = W (P)
:E[W(Cm,nv ]P)) - W(Cm,nypn)} +E[W(c7n,nv ]Pn) - W(Cm,na ]Pn):|

A As

+E [W(Cmm, P,.) — W(Corn, P)] +E [W(C,,m, P)} W (P).

A3 A4

Also note that A, is bounded by {, A4 can be obtained from Theorem 5, and A; and A3 can be
bounded by the Rademacher complexity:

2
AlaAS <E sup ‘W<Cvpn) - W(Ca]P))| < 7R(gc)
Ce* n

Thus, we can obtain that

EIW(C,, B - W' (P) = 0( Go) , [k +<> e
Substituting Lemma|6]into Eq. (1)), we can proves the result. O

Appendix: Proof of Theorem 7

Proof. Note that
E [EADV(C, P)]] = E[EAIV(Ci, )] = EAIW(C;A,, Pa)]| + E[EADV(CiA, P
By Lemma 2, we can obtain that
E[EADV(Crl s Pa)]| < 8B V(Cpm, Pr)]
=8-EW(Chm,Pn) = W(Cy i, P)] + 8- EWV(Com, P)] -



Thus, we can obtain that

n,m?

E {E Aw(cA IE”)]}

<E [EA[W(C;:jm, P)] — E4[W(C2A,., pmmﬂ

Ay

+8- E[W(Cmm,}}”n,m) —W(Chm, P)] +8- E[W(CW, JP)} .

A2 A’S
Note that

Ay, A3 <E sup |W(C,P,) — W(C,P)|

CeH*
2
SER(QC) (by Eq. (16))
=0 ( fa) (by Lemma ).

By Corollary 5, A3 can be bounded:

A3 = EW(C,, ., P)] < WH(P) + c\/§10g2 (V).

This proves the result. O

Appendix: Proof of Lemma

WEe first prove that the maximum Rademacher complexity can be bounded by 3+/n. Then, following
the same idea as [5] and using the Khintchine inequality [6], we show that there exists a hypothesis

function F¢ such that R,,(Gc) > 1/ %”

Lemma 9 (Khintchine inequality with p = 1 in [6]). Lef 01, ..., 0, be Rademacher variables with
equal probability of taking values +1 or —1. Then, we have E5 |y, 0i| > /5.

Proof of Lemma|2] Letey,...,¢€; be independent random variables with equal probability of taking
values +1 or —1. Let C = (e1vy, . . ., €xV%), Where v; is the ith standard basis function in H, that is

(vi,v;) = 1if i = j, otherwise 0. We choose the hypothesis space

Fo={fo = famr s Jam)| far®) = [0x — el e e (=1} ). @)

Assume that . is divisible by k. We set @1,..., @, ) = v1, Py ke, - -+, Ponyr = V2, ..., and so
on, and let i; be the index such that ®; = v;,. Let ¢’ € {£1}" be Rademacher variables. From the



definition of clustering Rademacher complexity, we can obtain that

Rn(Gc) = Ru(p o Fc)

th mln ||<I>t — ;|2 ’

=Egrefr1yn eii?}’*

=Epiciar}n SUD
ec{®1}* |4

th mlg (2 = 2(Py, €14))

(since ®; = v;, and v; is the ¢th standard basis function in H)
n

=2E,/cqt1}n Sup at max <<I>t,elul>

ec{+1}* |} 1<i<
=2F,/c(+1}n SUD oy max{e;,,0} )
e{=1} ce iy ; t (23)

n

>2E5rcqt1}n  SUP Zatmax{elt,O}
ec{x1}*

n/k

=2k -Eq/c{t1yn/k sUp Zatmax{e 0}
ee{+1} ;7

n/k

1
=2k - SEqre sy Zot >k,/ - (by Lemmafy)

nk

5

From Lemma 5] we know that
max R, (Fc,) < 3v/n.

Thus, by the above upper bounds the lower bound (Eq.(23)), we can prove that there exists a
hypothesis space F¢ defined in (22)), such that

max R, (Fc,)-

E

>

3
This proves the result. O
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