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1 The one-dimensional translation Lie group

We consider a 1D translation Lie group T which translates the 1D stimulus s. A group element
T (a) ∈ T translates the stimulus s to s+ a, and mathematically it can be denoted as T (a) · s = s+ a
where · denotes a group action. Based on the requirement of equivariant representation (Eq. 1), a
neural representation ū(s) (a continuous function over s and is defined on the L2 Hilbert space)
which is equivariant to the 1D translation group should satisfy (Fig. 1C),

ū
[
T (a) · s

]
= ū(s+ a) = T̂ (a) · ū(s), (S1)

where T̂ (a) is the 1D translation operator inducing the translation of neural representation (Fig. 1C).
It is worthy to distinguish that T̂ (a) and T (a) act on different spaces: T (a) induces translation on
the original stimulus s space, while T̂ (a) is the translation operator acting on the space of neural
representation ū(s). From the definition (Eq. 2) we could directly derive the properties of 1D
translation operators T̂ (a) [1],

T̂ (0) = 1, (S2a)

T̂ (a)T̂ (b) = T̂ (a+ b) = T̂ (b)T̂ (a), (S2b)

T̂ (a)−1 = T̂ (−a), (S2c)
whose intuitive explanations can be found at the text right below Eq. (3c) in the main text.

Since the translation is continuous, the amount of translation can be made infinitesimally small.
Consider an infinitesimal translation δa → 0 on the stimulus s, then the corresponding change of
neural representation is,

T̂ (δa) · ū(s) = ū(s+ δa),

Taking a first order Taylor expansion of above equation,

T̂ (δa) · ū(s) ≈ ū(s) + δa∂sū(s),

= (1 + δa∂s) · ū(s),

= (1 + δap̂) · ū(s),

(S3)

where ∂s = ∂/∂s denotes the derivative over s. Also in Eq. (S3) we define
p̂ ≡ ∂s, (S4)

as the translation generator. The generator and characterizes the tangential direction of translation
in the group space, and forms a basis of the Lie algebra. p̂ is usually regarded as the momentum
operator in physics [1].

Eq. (S2b) suggests a large translation can be decomposed as a composition of many infinitesimal
translations,

T̂ (a) = T̂
( a
N

)
· · · T̂

( a
N

)
︸ ︷︷ ︸

N

≡
[
T̂
( a
N

)]N
. (S5)

Considering the large limit of N and utilizing Eq. (S3), the above equation can be converted into

T̂ (a) = lim
N→∞

[
T̂
( a
N

)]N
,

≈ lim
N→∞

(
1 +

a

N
p̂
)N

,

= exp(ap̂).

(S6)

It is clear to see the translation operator T̂ is an exponential map of the translation generator p̂.
Differentiating the above equation we can derive a differential form of a translation operator,

dT̂ (a)

da
= p̂ · exp(ap̂) = p̂ · T̂ (a). (S7)

The exponential map from the translation generator p̂ to the translation operator T̂ (a) implies that
computing a translation operator can be well implemented by a recurrent neural dynamics, because
the differential form (Eq. S2b) is well consistent with a differential neural dynamics. This motivates
us to propose a recurrent neural dynamics to compute translation group operators.
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2 Stationary population responses of the CAN

We present the math of verifying the Gaussian ansatz of the stationary population responses in the
CAN (Eq. 10). If the Gaussian ansatz was correct, based on Eq. (8a) they should satisfy that

ū(x− s) = ρ

∫
Wr(x− x′) · r̄(x′ − s)dx′, (S8)

Substituting the Gaussian ansatz ū(x− s) and r̄(x− s) respectively into the left and right hand sides
of above equation,

Ue−(x−s)2/4σ2

= ρ

∫
Wr(x− x′) · r̄(x′ − s)dx′,

=
ρwrR√

2πa

∫
e−(x−x′)2/2σ2−(x′−s)2/2σ2

dx′,

=
ρwrR√

2
e−(x−s)2/4σ2

.

We see the left and right hand sides in above equations contain the same Gaussian terms with the
same position s and width σ. Equating the magnitude on the two sides in above equation we have,

U =
ρwrR√

2
. (S9)

Meanwhile, substituting the Gaussian ansatz (Eq. 10) into the activation function of the network
dynamics (Eq. 8b), it reads as

R =
U2

1 +
√

2πkρσU2
. (S10)

Combining Eqs. (S9 and S10), we get a quadratic equation of U,

2
√
πkρσU2 − ρwrU +

√
2 = 0.

It can be computed that when the recurrent weight wr is larger than a critical value

wc = 2
√

2(2π)1/4
√
kσ/ρ, (S11)

the CAN exists a stable non-zero population response whose magnitude is

U =
wr(1 +

√
1− w2

c/wr
2)

4
√
πkσ

,R =
1 +

√
1− w2

c/wr
2

2
√

2πρkσ
. (S12)

3 The perturbative dynamics of the CAN

We performed perturbative analysis to analyze the stability of the CAN dynamics. We add a small
perturbation δu(x, t) on the stationary state ū(x − s), i.e., u(x, t) = ū(x − s) + δu(x, t), and
substitute u(x, t) into the CAN dynamics (Eq. 8a). And then the dynamics of perturbation δu(x, t)
can be derived as [2],

τ
∂

∂t
δu(x, t) = −δu(x, t) +

∫
K(x, x′|s)δu(x′, t)dx′, (S13)

where the interaction kernel is

K(x, x′|s) = ρ

∫
Wr(x− x′′)

∂r̄(x′′ − s)
∂ū(x′ − s)

dx′′,

=
2ρū(x′ − s)

D

[
Wr(x, x

′)− kρ
∫

Wr(x, x
′′)r̄(x′′ − s)dx′′

]
,

=
2

σ
√
π

exp

[
− (x− x′)2

2σ2
− (x′ − s)2

4σ2

]
,

−
1 +

√
1− wc

2/wr
2

√
2πσ

exp

[
− (x− s)2

4σ2
− (x′ − s)2

4σ2

]
.

(S14)
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The D in above equation denotes the magnitude in the divisive normalization pool (the denominator
of divisive normalization in Eq. 8b)

D = 1 + kρ

∫
ū(x′)2dx′ = ρwrU/

√
2,

where U denotes the magnitude of population synaptic inputs (Eq. 10).

3.1 Eigenspetrum of the interaction kernel

A previous theoretical study of the continuous attractor dynamics [2] suggested that the wave functions
of quantum harmonic oscillators can be used as basis functions of the perturbed CAN dynamics, and
then eigenfunctions of the interaction kernel can be expressed as linear combinations of at most two
of these basis functions. The wave functions of quantum harmonic oscillators is,

vn(x|s) =
(−1)n(

√
2σ)n−1/2

√
π1/2n!2n

exp

[
(x− s)2

4σ2

](
d

dx

)n
exp

[
− (x− s)2

2σ2

]
.

For illustration, we write the explicit expression of wave functions with first and second orders,

v0(x|s) =
ū(x− s)

U
√

(2π)1/2σ
∝ ū(x− s),

v1(x|s) =
2σ

U
√

(2π)1/2σ

∂ū(x− s)
∂s

∝ ∂sū(x− s).

We see v0(x|s) and v1(x|s) corresponds to respectively the change of the magnitude of population
responses, and the translation of population responses along the stimulus manifold. In particular,
v1(x|s) is proportional to the translation generator (Eq. S4).

Treating the interaction kernel K(x, x′|s) as an operator, we next compute its eigenvalues and eigen-
functions. Since K(x, x′|s) is not symmetric, we need to distinguish its left and right eigenfunctions.
In the perturbed network dynamics, K(x, x′|s) acts on the perturbation δu(x, t) from the left side
(Eq. S13), hence we compute the right eigenfunctions of K(x, x′|s) [2]. Below we list few dominant
eigenfunctions and their corresponding eigenvalues,
λ1 = 1, f1(x|s) = v1(x|s), (S15a)

λ2 = 1−
√

1− wc
2/wr

2, f2(x|s) = v0(x|s), (S15b)

λ3 = 1/2, f3(x|s) ∝ 2−1/2v0(x|s) + (1− 2
√

1− wc
2/wr

2)v2(x|s). (S15c)

λ4 = 2−2, f4(x|s) = v1(x|s) +
√

6v3(x|s), (S15d)

λn = 22−n (n ≥ 3), f5(x|s) = · · · . (S15e)
To keep notations concise, some eigenfunctions in above equations are not normalized to have a unit
L2 norm.

4 Translation operator in the derivative of recurrent connections

We performed theoretical analysis to verify whether the modified CAN dynamics with a derivative
of recurrent connection component (Eq. 15) could translate neural responses along the stimulus
manifold in a way consistent with the action of translation operator as shown in Eq. (13). In theory,
we consider the instantaneous state u(x, t) is perturbed around the attractor state ū(x − s) in the
original CAN dynamics (Eqs. 8a- 8b),

u(x, t) = ū(x− s) + δu(x, t).

Substituting above equation into the modified CAN dynamics (Eq. 15) and utilizing the interaction
kernel (Eq. S14),

τ
∂

∂t
[ū(x− s) + δu(x, t)] =− [ū(x− s) + δu(x, t)],

+ ρWr ∗ r̄(x− s) +

∫
K(x, x′|s)δu(x′, t)dx′,

− τv∂xū(x− s)− τv∂x
[ ∫

K(x, x′|s)δu(x′, t)dx′
]
.

(S16)
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Using the condition that ū(x− s) = ρWr ∗ r̄(x− s), the Eq. (S16) can be simplified into

τ
∂

∂t
[ū(x− s) + δu(x, t)] =− δu(x, t) +

∫
K(x, x′|s)δu(x′, t)dx′,

− τv∂xū(x− s)− τv∂x
[ ∫

K(x, x′|s)δu(x′, t)dx′
]
,

To simplify above equation further, we express the perturbation δu(x, t) as a linear combination of
eigenfunctions of K(x, x′|s),

δu(x, t) =
∑
n

anfn(x|s),

and therefore the action of kernel K(x, x′|s) on δu(x, t) becomes∫
K(x, x′|s)δu(x′, t)dx′ =

∑
n

λnanfn(x|s).

Therefore, Eq. (S16) can be simplified as,

τ
∂

∂t
ū(x− s) + τ

∑
n

dan
dt

fn(x|s) =− τv∂xū(x− s) +
∑
n

(λn − 1)anfn(x|s),

− τv∂x
[∑

n

λnanfn(x|s)
]
.

(S17)

Comparing Eq. (S17) with the required dynamics derived from translation group (Eq. 13), we see
if all an disappear the Eq. (S17) will become exactly the same as Eq. (13). Thus it motivates us to
analyze the dynamics of an that characterizes the magnitude of perturbations.

Since the eigenfunctions fn(x|s) form a orthogonal and complete basis set of the perturbed dynamics
(Eq. S15e), we could project the Eq. (S17) onto each eigenfunction fn(x|s) to compute the temporal
evolution of an. The projection corresponds to compute the inner product between the network state
u(x, t) and the fn(x|s),

〈u(x), fn(x)〉 =

∫
u(x)fn(x)dx. (S18)

Using the orthogonality between eigenfunctions, the projection of Eq. (S17) on fn(x|s) can be
computed as

τ
∂

∂t
〈ū(x− s), fn(x|s)〉+ τ

dan
dt

=− τv∂x〈ū(x− s), fn(x|s)〉+ (λn − 1)an − τv∂x(λnan).

Moreover, the stationary state ū(x− s) ∝ f2(x|s) (Eq. S15e), and therefore

〈ū(x− s), fn(x|s)〉 ∝ δn,2〈f2(x|s), f2(x|s)〉 ≡ δn,2|f2(x|s)|2,

where δn,2 is a Kronecker delta function. Since the L2 norm |f2(x|s)|2 is a constant, its derivatives
will be zero, i.e.,

∂

∂t
〈ū(x− s), fn(x|s)〉 =

∂

∂t
|f2(x|s)|2 = 0,

∂

∂x
〈ū(x− s), fn(x|s)〉 =

∂

∂x
|f2(x|s)|2 = 0.

Finally the projection of Eq. (S17) onto fn(x|s) can be calculated as,

τ
dan
dt

= (λn − 1)an + τv∂x(λnan),

= (λn − 1)an,
(S19)

where we use that ∂x(λnan) = 0. The eigenvalues λn for n ≥ 2 are smaller than 1, indicating the
coefficients an (n ≥ 2) will eventually decay to zero and then they can be ignored. Meanwhile,
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λ1 = 1 indicates the coefficient a1 will remain constant over time. Assuming a1 = 0, all terms
containing an in Eq. (S17) will vanish in the end,

∂

∂t
ū(x− s) ≈ −v∂xū(x− s) = vp̂ · ū(x− s). (S20)

Comparing Eq. (S20) and the Eq. (13), we see the modified CAN dynamics with a derivative of
recurrent connection component (Eq. 15) will firstly remove the pertubations of network activities
to get smooth Gaussian-profile network responses, and then the stationary network responses can
self-consistently translate with speed v along the stimulus manifold.

5 The network model inspired from Drosophila’s compass circuit

5.1 Stationary network responses

Similar with the analysis in the CAN, we propose the following Gaussian ansatz of network’s
stationary responses (Eqs. 19a and 19b),

ū(x− s) = Ue−(x−s)2/4σ2

, r̄(x− s) = Ue−(x−s)2/2σ2

,

ū±(x− s) = U±e
−(x−s)2/2σ2

, r̄±(x− s) = R±e
−(x−s)2/4σ2

.
(S21)

For simplicity, we assume the speed neurons’ responses ū±(x − s) and r̄±(x − s) have the same
position s on the stimulus manifold with the stimulus neurons’ responses, i.e., ū(x− s) and r̄(x− s).
This simplification is equivalent to assume that the transmission delay from stimulus neurons to speed
neurons and the time constant of speed neurons are small enough. Substituting the above Gaussian
ansatz into the network dynamics of stimulus neurons (Eq. 19a),

τU

2σ2

ds

dt
(x− s)e−(x−s)2/4σ2

=− Ue−(x−s)2/4σ2

+
ρwrR√

2
e−(x−s)2/4σ2

,

+
ρwsv√

2

∑
m=±

Rme
−(x−s−m∆x)2/4σ2

.
(S22)

5.2 Translation in the network model

In order to study whether and how feedback inputs from speed neurons to stimulus neurons (the last
term in above equation) induce translations on stimulus neurons’ responses, we project Eq. (S22) onto
the eigenfunction f1(x|s) corresponding to the translation along the continuous stimulus manifold.
The projection is computing the inner product between the network dynamics (Eq. S22) and f1(x|s)
(Eq. S18). Denoting the f1(x|s) = Z−1(x− s)e−(x−s)2/4σ2

with Z a normalization factor, we list
the major calculations of the projection in the text below.

LHS =

〈
τU

2σ2

ds

dt
(x− s)e−(x−s)2/4σ2

, f1(x|s)
〉
,

=
τU

2σ2

ds

dt

1

Z

∫
(x− s)2e−(x−s)2/2σ2

dx,

=
τU

2Z

ds

dt

√
2πσ,

The projection of the first two terms on the RHS of Eq. (S22) on f1(x|s) would be zero, because

〈
e−(x−s)2/4σ2

, Z−1(x− s)e−(x−s)2/4σ2
〉
∝
∫

(x− s)e−(x−s)2/2σ2

dx = 0.
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At last, the projection of the last term of Eq. (S22) on f1(x|s) is

ρwsv√
2Z

∑
m=±

Rm
〈
e−(x−s−m∆x)2/4σ2

, (x− s)e−(x−s)2/4σ2
〉
,

=
ρwsv√

2Z

∑
m=±

Rm

∫
[(x− s−m∆x/2) +m∆x/2] exp

[
− (x− s−m∆x/2)2

2σ2
− ∆x2

8σ2

]
dx,

=
ρwsv∆x

2
√

2Z

∑
m=±

mRm exp

(
−∆x2

8σ2

)∫
exp

[
− (x− s−m∆x/2)2

2σ2

]
dx,

=
ρwsv∆x

2
√

2Z

√
2πσ exp

(
−∆x2

8σ2

) ∑
m=±

mRm.

Combining all above calculations, the projection of Eq. (S22) onto the stimulus translation direction
can be eventually computed as

ds

dt
=
ρwsv∆x√

2τU

∑
m=±

mRme
−∆x2/8a2 ,

=
ρwsv∆x√

2τU
(R+ − R−)e−∆x2/8a2 .

(S23)

Suppose the amount of connection shift ∆x is small enough compared with the connection width a,
i.e., (∆x)2 � 8a2, the exponential terms in above equation can be ignored for simplicity. Reorganize
the terms in above equation,

ds

dt
≈ ρwsv√

2τU
(R+ − R−)∆x. (S24)

In the stationary state, the network only translates along the stimulus space since the perturbations
along other directions are removed by network dynamics (Eq. S19), and then we can derive the Eq.
(21) in the main text,

∂ū(x− s)
∂t

=
∂ū(x− s)

∂s

∂s

∂t
,

=
∂s

∂t
[p̂ · ū(x− s)],

=
ρwsv√

2τU
(R+ − R−)∆x[p̂ · ū(x− s)].

(S25)

5.3 Translating with desired speed

The actual translation speed v of network responses should be the same as the speed which determines
the firing rate of speed neurons (Eq. 19b). We calculate how the network model satisfies this
requirement. Combining the Gaussian ansatz (Eq. S21) and the activation function of speed neurons
(Eq. 19b), and supposing the speed v is smaller than the baseline activity gv ,

R+ − R− = [(gv + v)− (gv − v)]wvsR = 2vwvsR.

Substituting above equation into Eq. (S24),

ds

dt
=

√
2ρwsvwvsR∆x

τU
v.

In order to translate the stimulus neurons’ population response with the desired speed v, the coefficient
on the right hand side of above equation should be one,

√
2ρwsvwvsR∆x = τU. (S26)

Now we arrive the Eq. (22) in the main text.
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6 Network simulation details

The typical set of network parameters can be found in Table 1. In the text below we briefly explain the
reasoning of network parameter setting. We simulated a continuous attractor network that is consist
of N = 180 neurons which are uniformly distributed in the space of s. To avoid boundary effect, we
consider s is a periodic variable in the network simulation and is in the range of (−180◦, 180◦]. The
periodic stimulus s doesn’t affect substantially our theoretical results from the 1d translation group
which acts on an infinite region, as long as the connection width, i.e., σ in Eq. (9), is much smaller
than the width of the stimulus space. In this setting, the neuronal density ρ = N/360◦ = 0.5/◦. The
connection width σ = 40◦, which is consistent with experimental data, and also make the width of
population responses smaller than the range of periodic stimulus space. The synaptic time constant
τ is rescaled to 1 as a dimensionless number. And the global connection strength k = 5 × 10−4

(Eq. 8b), which makes the peak firing rate R of the network (Eq. 10) saturate around 50Hz, consistent
with typical experimental observations. The network is simulated by using Euler method with time
step ∆t = 0.01τ . The code was written in Matlab R2022b and was simulated on MacBookPro laptop
which has a 10-core M1 CPU and 32GB RAM.

To scale the connection strength in the network model, we set the connection strength relative to the
critical strength, wc, under which a CAN can hold a persistent (non-zero) population response by
itself. Based on Eq. (S11) and the actual parameters in the network, it can be calculated that

wc = 2
√

2(2π)1/4
√
kσ/ρ ≈ 0.896. (S27)

In the network simulation, the instantaneous stimulus representation st is linearly read out from the
stimulus neurons’ response in the CAN, r(x, t) by using the population vector (Eq. [3]), i.e.,

st = Angle
[∑

j

r(xj , t)e
ixj

]
. (S28)

where i =
√
−1 is the pure imaginary number.

Symbol Description Typical values (range)
N Number of (excitatory) neurons 180
ρ Neuronal density in the stimulus space 0.5
σ Tuning width 40◦

k Global inhibition strength 5× 10−4

τ Synaptic decaying time constant 1 (dimensionless)
dt Time step in numerical simulation 0.01τ
wr The peak recurrent weight in the CAN wc

wr The critical recurrent weight of non-zero sustained response 0.896 (Eq. S27)
wvs The recurrent weight from stimulus to speed neurons 0.2
wsv The recurrent weight from speed to stimulus neurons 1
∆x The connection shift from speed neurons to stimulus neurons 22◦

gv The baseline activity of speed neurons 10

Table 1: Typical parameters of the network model
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