Differentiable Sparsification for Deep Neural Networks

Anonymous Author(s)
Affiliation
Address

email

Abstract

This is an appendix for Differentiable Sparsification for Deep Neural Networks.
Source codes for the proposed approaches are provided in the supplementary
material (source.zip).

+ 1 Sparsity Regularizer

5 In our approach, different sparsity patterns can be derived by adopting different norms for a regularizer.
6 For example, an individual component (ex. channel) can be removed by /;-norm and a group of
7 components or an entire module (ex. layer) can be zeroed-out by 5 1-norm. Note that we do not need
8 to manually implement different updating rules as in the proximal gradient approach. We just need to
9 change a regularization term in an objective function. The implementation example with TensorFlow
10 is in Listing

111

122 def safe_12_norm(tensor, axis=None, keepdims=None, name=None):

133 @tf.custom_gradient

14 4 def norm(x):

155 y = tf.norm(x, 2, axis, keepdims, name)

16 6

177 def grad(dy):

188 ex_dy = tf.expand_dims(dy, axis) if axis else dy

199 ex_y = tf.expand_dims(y, axis) if axis else y

2010 # for numerical stability, add a small constant

2111 return ex_dy * (x/ (ex_y + 1le-19))

2212

2313 return y, grad

2414

2515 return norm(tensor)

2616

2717 alpha_mag = tf.nn.relu(abs_alpha - beta*alpha_11)

2818 alpha = tf.math.sign(alpha) #* alpha_mag

2919

320 if norm == ’11’: #ll-norm

3121 reg = tf.reduce_sum(alpha_mag)

322 elif norm == ’group’: #l2-group norm

333 alpha_mags = tf.reshape (alpha, shape=[len(channels), -1])

344 reg = tf.reduce_sum(safe_12_norm(alpha_mags, axis=-1))

Listing 1: Codes for Regularizer

35 Figure[T]and [show the sparsified structures of DenseNet-K12 with 40 layer, which are trained with
l1-norm and [5 ;-norm. Each row corresponds with one hidden layer. For the sparse regularization
with [z 1-norm, we make a group of 12 channels such that layer-wise connection can be learned.

36
37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

38
39
40
41
42
43
44
45
46
47
48

Fig.[T]shows the sparsified structures of hidden layers in channel-wise. A pixel-like thin short strip
represents the magnitude of a scale parameter in the batch normalization. Fig. 2] shows the sparsified
structures in group-wise. Each square block represents a group of 12 channels. One block is added
at a time as a layer proceeds from top to bottom since each layer outputs new 12 channels. An
input layer generates 24 channels and thus the first row has 2 blocks. The number of survived
channels is colored by the magnitude of a block, whose brightness is proportionate to the number
of non-zero channels within a group. Table[I] shows the sparsity rates for a base model, Network-
slimming(NS) [7] and the proposed method (DS). Although the two cases of the proposed approach
have similar channel-sparsity rates, the learned structures are very different. The experimental results
show that the proposed sparse parameterization is not limited to a particular norm and it can learn
different structures by simply changing norms.

Table 1: Sparsity Rate on CIFAR-10, DenseNet-40-K12.

Model C. Sparsity(%) G. Sparsity(%) Top-1 Error(%) Parmas
Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Base 00.0 0.0 00.0 0.0 5.92 0.20 1.1 x 10° 0.0
NS 60.0 0.4 6.0 0.9 5.71 0.16 4.8 x 105 7.7 x 10?
DS-l; 603 04 6.4 0.3 572 0.16 4.7 x 10° 3.5 x 10°
DS-la;1 60.6 0.4 56.5 0.5 6.28 0.25 4.7x10° 5.0 x 10°

¥ /10
\HI n i L] IIII-\IIHI 1
it I
]
T
| [

nie I [[1]
I 1 0T T
(TR ERTCIETR N Y ENTON Y e DT 0F
I I) | i
1 (1] [1]
! Ll L1l

1l [T il il]
1 UL I 10/ inw LR) | 1] L[} [}
L] HII‘
e 1 ninm [T
1 I LT

(a) I;-norm (b) l2,1-group norm

Figure 1: Sparsified connection in channel-wise view. DenseNet-40-K12.

(a) l1-norm (b) l2,1-group norm

Figure 2: Sparsified connection in group-wise view. DenseNet-40-K12.

49

50

51

66

67

68
69

70

71

72
73
74
75
76

77

78

2 Rectified Gradient Flow

2.1 Implementation

Listing 2] shows TensorFlow implementation of the rectified gradient flow. The learning method can
be implemented by simply switching #f.nn.relu to rgf_relu.

@tf.custom_gradient

3 def rgf_relu(x):

ol
02

tf.nn.relu(x) # forward-pass
tf.keras.activations.elu(x, alpha=0.1) # backward-pass

def grad(dy): # the gradient of elu is used in backward-pass
return tf.gradients (o2, [x], grad_ys=[dyl)

return ol, grad

#alpha_mag = tf.nn.relu(abs_alpha - sig_beta*alpha_11)
alpha_mag = rgf_relu(abs_alpha - sig_beta*alpha_11)

Listing 2: Codes for Rectified Gradient Flow

2.2 Analysis on Gradient Flow

Assume that an output y of a neuron in a hidden layer is written as

y(x) = aifi (x;wy),
=1

where x denotes an input from a proceeding layer, w; model parameters for component f;, and a; an
edge or an architecture parameter. A loss function can be denoted by

L(a(a),f(xw).
Let a; be a function of «,
ai (i) = sign (a;) (ou] — o (ﬁ))Jr)
which is made simpler for analysis than the main paper. The gradients can be written as
oL oL . da; (o)

oL _ oL .\ Ofi(xiwi)

ow, ~ oy () ow, 2)
oL 0L & af; (x;w;)
&:@'%:(aﬂ'(“j)‘]axj) @

If|o;| < o (8), Da;/dc; in Eq. (1)) becomes zero and «; does not have a learning signal. If elw [1]] is
employed in the backward pass, it can generate approximated gradient for «;. Regardless of whether
elu is used in the backward pass or not, w; and x do not receive a learning signal through a; since
a; = 0in Eq. (Z) and (3). This leads to a similar learning mechanism proposed in DNW [§]], where
the gradients flows to zeroed-out (hallucinated) edges but does not through them.

If we define a as in the main paper,

a; (@) = sign (o) (ol — o (B)[lally) , ,
the gradient is written as

OL _OL N~ (0ai(@) o
da; Oy ZJ:(Oa; 1 (X7Wj)>'

Even if elu [1] is not used in the backward pass, the gradient for «; is still generated through others.
However, a learning signal can be generated more eagerly with elu.

3 Channel Pruning in Convolutional Network

We compare network-slimming (NS) [7] and our proposed method (DS). We ran each experiments 5
times and showed the average and the standard deviation. We controlled the value of A such that it has
similar pruning rate with that of the network-slimming approach. Table 2]and [3| show experimental
results on DenseNet with 100 layers [5]], and TableE|and|§]on ResNet with 164 layers [2}[3]]. In the
tables, sparsity denotes a pruning rate, i.e, the number of removed channels in hidden layers. When
the sparsity rate is relative low, they have similar error rates but the gap increases as the sparsity rate
does.

Table 2: Performance on CIFAR-10, DenseNet-100-BC-K12.

Model Sparsity(%) Top-1 Error(%) Parmas FLOPs
Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Base 00.0 0.0 544 0.11 7.6 x 10° 0.0 5.8 x 108 0.0
NS 60.0 0.0 5.40 0.14 3.7x10° 3.3 x 102 2.5x 108 3.0 x 10°
NS 70.0 0.0 6.53 0.19 2.9 x10° 9.3 x 102 1.9 x 108 5.0 x 10°
NS 750 0.0 7.29 0.27 2.5x10° 1.0 x 10® 1.6 x 108 3.3 x 10°
NS 80.0 0.0 8.39 0.28 2.0x10° 2.0 x 10° 1.4 x 108 3.4 x 10°
DS 604 04 5.42 0.20 3.6 x10° 3.5x 103 2.5x 108 3.4 x 10°
DS 703 0.1 5.77 0.09 2.7x10° 2.3 x10° 1.8 x 108 1.6 x 10°
DS 757 02 6.05 0.26 2.2x10° 2.6 x 103 1.5 x 108 3.0 x 10°
DS 804 0.1 6.64 0.11 1.7 x10° 0.6 x 10° 1.3x10® 2.0 x 10°
Table 3: Performance on CIFAR-100, DenseNet-100-BC-K12.
Model Sparsity(%) Top-1 Error(%) Parmas FLOPs
Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Base 00.0 0.0 2400 0.23 7.9 x 10° 0.0 5.8 x 10% 0.0
NS 60.0 0.0 25.02 0.26 3.9x10° 2.0x10° 2.4 x10% 4.9 x 10°
NS 70.0 0.0 28.02 0.75 3.1x10° 1.5x 103 1.9 x 108 4.0 x 10°
NS 750 0.0 29.66 0.51 2.8 x10° 1.1 x10° 1.6 x 108 4.7 x 10°
NS 80.0 0.0 31.50 0.46 2.4 x10° 7.9 x 102 1.3x10% 2.7 x10°
DS 60.5 02 2486 0.20 3.6 x10° 2.9x103 2.4 x10% 5.0 x 10°
DS 704 04 2637 0.15 2.7x10° 3.5 x 10° 1.8 x 108 5.4 x 10°
DS 753 03 2720 0.06 2.3x10° 29x10° 1.5 x 108 3.0 x 10°
DS 80.3 04 28.12 023 1.8 x 10° 3.5 x 10° 1.3x10% 1.1 x 107
Table 4: Performance on CIFAR-10, ResNet-164.
Model Sparsity(%) Top-1 Error(%) Parmas FLOPs
Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Base 00.0 0.0 5.13 0.05 1.7 x 108 0.0 5.0 x 108 0.0
NS 600 00 549 0.06 1.1x10° 7.9x10° 2.9x10° 3.0 x10°
NS 70.0 0.0 6.67 0.19 8.1x10° 1.4 x10* 2.2x10% 3.4 x10°
DS 60.7 03 5.33 0.15 8.9x10° 1.7 x 10* 2.6 x 108 3.4 x 10°
DS 70.5 03 5.68 0.21 59 x10° 1.8 x 10* 1.9 x 108 5.3 x 10°

90
91
92
93
94

Table 5: Performance on CIFAR-100, ResNet-164.

Model Sparsity(%) Top-1 Error(%) Parmas FLOPs
Avg. Std. Avg. Std. Avg. Std. Avg. Std.
Base 00.0 0.0 2323 028 1.7 x 108 0.0 5.0 x 108 0.0
NS 60.0 0.0 2471 024 1.2x 10 5.3 x10° 2.5 x10% 4.8 x 10°
NS 70.0 0.0 2791 0.36 1.1x10% 3.7x10° 1.9x 108 5.7 x10°
DS 596 1.0 2452 0.08 1.0 x 10 3.1 x 10* 2.4 x10% 1.1 x 107
DS 708 1.5 2544 040 6.3 x10° 1.9 x10* 1.8 x 108 1.3 x 107

4 Discovering Neural Wirings

We compare Discovering Neural Wirings(DNW) [8] and our proposed method(DS).
MobileNetV1 (x0.25) [4] is employed as a base model and our implementation closely follows that
of DNW. DNW chose the value of £ such that a final learned model has similar Mult-Adds with the
base model, and we also set the value of X in the same manner. We ran each experiments 5 times and
showed the average and the standard deviation. Table[6]and[7]show the experimental results.

Table 6: Performance on CIFAR-10, Discovering Neural Wirings

Model Top-1 Error(%) Parmas Mult-Adds
Avg. Std. Avg. Std. Avg. Std.
MobileNetV1(x0.25) 13.44 0.4 2.2 x 10° 0.0 3.3 x 10° 0.0
No Update(x0.225) 13.86 0.27 2.2x10° 3.7 x 10 45x10% 3.7 x 10*
DNW(x0.225) 10.30 0.20 1.8 x 10° 6.7 x 10* 3.1x10° 4.6 x10*
A x 1073 Proximal Gradient with [;-norm
1.875 11.64 041 2.4 x10* 9.0 x 102 3.7%x10° 1.3x10°
1.950 1195 042 2.3x10* 1.5x10° 3.7x10% 2.6x10°
2.225 12.17 044 2.1x10* 9.4 x 102 33x10% 1.7x10°
2.325 1250 028 1.9 x 10* 5.7 x 10? 3.2x10° 1.1 x10°
2.400 12.66 038 1.8 x 10* 1.1x10° 3.0x10% 6.4x10*
Ax 1073 Proximal Gradient with /1 2-norm
1.250 12.15 1.17 1.0 x 10> 1.3 x 10* 3.7x10% 1.2x10°
1.375 13.14 042 9.6 x 10* 1.2 x 10* 3.6 x10° 2.1x10°
1.500 13.62 0.56 9.6 x 10* 1.6 x 10* 3.4x10° 8.6 x10*
1.625 14.12 0.62 8.7x10* 8.6 x 103 3.3x10° 1.6 x10°
1.750 15.09 1.21 8.7x10* 1.5x10* 3.2x10° 2.0 x10°
Ax107° DS-No Rectified Gradient
1.125 1020 0.08 6.9 x 10* 8.9 x 102 3.6 x 10° 4.9 x 10*
1.375 10.55 023 6.1 x 10* 5.7 x 10? 3.4 x10% 4.5x10*
1.625 1096 0.18 56 x10* 1.7 x 103 3.2x10° 5.3x10*
1.875 11.06 045 5.1 % 10* 2.4 x 102 3.1x10° 3.7x10*
2.000 11.05 025 4.9 x10* 8.0 x 102 3.0x10° 3.4 x10*
Ax107° DS-Rectified Gradient
6.0 9.04 0.10 5.3 x10* 7.0 x 102 3.5x10° 4.8 x10*
6.5 928 0.38 5.0x 10* 9.8 x 102 3.5%x10° 7.8 x10*
7.0 9.36 0.27 4.7 x10* 8.4 x 102 3.3x10% 6.7x10*
7.5 9.32 0.19 45 % 10* 3.2x 102 3.3x10° 85 x10*
8.0 966 0.07 42 % 10* 9.0 x 10? 3.1x10° 6.0x10*

95

96

97
98
99

101
102
103
104

106
107

Table 7: Performance on CIFAR-100, Discovering Neural Wirings

Model Top-1 Error(%) Parmas Mult-Adds
Avg. Std. Avg. Std. Avg. Std.
MobileNetV1(x0.25) 43.78 0.54 2.4 x 10° 0.0 3.4 x 10° 0.0
No Update(x0.225) 40.50 0.30 3.1 x10° 3.8 x 10! 4.6 x 105 3.6 x 10*
DNW(x0.225) 34.18 037 2.6 x 10° 5.0 x 102 3.3x10° 4.7x10*
Ax 1073 Proximal Gradient with /;-norm
2.1 3527 0.65 1.3 x 10° 4.5 x 10° 3.9x10% 2.6x10°
22 36.00 0.70 1.2 x 10° 3.9 x 10° 3.6 x10° 9.5 x 10*
2.3 3521 0.32 1.2 x10° 4.1 x10° 3.6 x10° 1.4x10°
24 36.57 0.53 1.2 x10° 4.3 x 10° 34x10% 1.9x10°
2.5 36.81 0.41 1.1 x 10° 3.5 x 10° 3.2x10° 2.0x10°
A x 1073 Proximal Gradient with [, 2-norm
1.00 3597 0.59 3.0x10° 7.7x10° 4.4 x10° 1.2 x10°
1.25 3752 0.84 2.7x10° 6.3x 103 39x10% 1.2x10°
1.50 3845 0.29 2.6 x 10° 5.5 x 103 3.7x10% 1.1x10°
1.75 39.63 0.54 25 x10° 1.1 x10* 3.5%x10° 1.4x10°
2.00 4135 0.86 2.5 x 10° 9.7 x 103 3.3x10% 1.6 x10°
A x 1075 DS-No Rectified Gradient
2.00 3551 0.62 1.8 x 10° 5.4 x 10? 3.7x10% 4.8 x10*
2.25 3526 0.50 1.7 x 10° 7.8 x 10? 3.5x10° 4.6 x10*
2.50 35.68 0.47 1.7 x 10° 7.5 x 10? 3.4x10° 4.3 x10*
2.75 3532 028 1.6 x 10° 5.2 x 10? 3.3x10° 2.5x10*
3.00 3577 0.36 1.6 x 10° 1.0 x 10° 32x10° 2.3x10*
A x 1074 DS-Rectified Gradient
0.850 32.16 0.18 2.0x10° 3.0 x 103 3.8x10° 1.2x10°
0.925 32.84 044 1.9 x 10° 4.8 x 10° 3.6 x10% 8.6 x10*
1.000 3278 0.83 1.8 x 10° 3.3 x 10° 3.5x10° 1.2 x10°
1.125 3292 0.60 1.6 x 10> 4.6 x 10° 3.3x10° 6.8 x 10*
1.250 33.80 0.8 1.6 x 10° 4.4 x 10° 3.1x10° 8.9 x10*

5 Learning relationship between Nodes in Graph

5.1 Data
Table 8: Summary of Experiment Data
Area # Road Collection Collection Time Interval Time Horizon
Segments Method Period for Prediction
See Fig. 170 Taxi with GPS Jan.-Oct. 15 min. 1 (15 min.)

A summary of the data reported in the main paper is shown in Table[8] There were approximately
70, 000 probe taxis operating in the metropolitan area where the data were collected. As the taxis
operated in three shifts, more than 20, 000 probes on average ran at any point. The traffic speed
data covers 4, 663 links in the area, which includes major arterials. Speed data from probes in the
metropolitan area were aggregated every 5 minutes for each road segment; if no probe passed a link
during a 5-minute period, the speed was estimated based on speeds in the previous time periods
or from the same time periods in the past. After the preprocessing, the raw data were once again
aggregated in 15-minute periods to maximize forecasting utility. The 15-minute period is the standard
on which the highway capacity manual is based. As no information was available regarding probe
counts that contribute to averaging speed data, three speeds for a 5-minute period were averaged
without weight. Among the 4, 663 links for which speed data were available, we selected 170 links

108
109
110
111
112

113

114
115
116
117
118

119

120
121
122
123
124

in the subarea (see Fig.[3) of the metropolitan; it was expected that the speed data collected in this
region would be free from missing observations as it is the busiest region in the metropolitan area,
and most taxi drivers congregate in the region to find passengers. Following the generic conventions
of machine learning, we used data from the previous eight months to train the proposed model and
reserved the data for the latter two months to test the trained model.

Figure 3: The gray lines represent 170 road links where the experimental data were collected.

5.2 Prediction Model with GCN

Figure []illustrates our GCN implementation. The outputs of hidden GCN blocks are concatenated
and fed into an output block. This was motivated by the dense connections of DenseNet [3]. The
structure of hidden GCN blocks were illustrated in the main paper. We trained the model for 500
epochs using Adam [6] with the defaulting parameter setting of TensorFlow. The initial learning rate
was set to 0.0005 and multiplied by 0.5 at epochs 400 and 450.

A training loss is defined by the mean relative error (MRE)

1 < |3 — vl
T — Y

where NV is the number of road segments; y; and y; denote an estimate and actual future observation
of travel speed on road segment ¢, respectively. We ran each experiment five times and selected the
median among the five lowest validation errors. We reported the test error from the epoch with the
median validation MRE. The report error was re-written in tables with mean absolute percentage
error (MAPE) for readers’ accessability, which is defined by multiplying MRE by 100.

‘ Input Block }—" GCN Block }—* —| GCN Block

))

‘ Concatenated Feature Map ’

!

Output Block

Figure 4: Structure of GCN. Graph convolutional neural network (GCN) structure. The GCN in our
experiments consists of 5 GCN blocks. The output feature maps of GCN blocks are concatenated
and then fed into an output block. Input and Output blocks consist of 3 fully connected layers,
respectively.

125

126
127
128
129
130
131
132
133
134

135
136
137

138
139
140

141
142
143

144
145
146
147
148
149
150

151
152
153
154

5.3 Exclusive Sparsity Regularization

Table 9: Traffic speed prediction with GCN and [; »-norm regularization

(a) Proximal Gradient (b) Proposed
A #NZ MAPE%) _ ROI0 y wN7z MAPE@%) R0
k=1 k=2 k=1 k=2
3 12,895 53898 5724 6242 3 6170 53891 5075 58.74
5 11915 53933 5548 60.90 5 5692 53872 5290 60.86
10 8723 54894 3339 4035 10 5009 53999 5368 61.64
15 7,584 55395 1337 18.05 15 4704 53948 5583 63.68

The l,,-norm with p < 1 can induce strong competition within a group, but its closed form solution
for the proximal operator is unknown. Among the norms which have the closed form solutions, the
exclusive sparsity regularization can be a promising substitute {,-norm with p < 1 because it is also
known that it promotes the sparsity or the competition within a group. We performed comparison
experiments with the [; g-exclusive norm [[10, [9]. As in the main paper, we made groups for the
row and column vectors of an adjacency matrix. Note that the proximal operator should be applied
on free variables; it cannot be applied on «y or a of an adjacency matrix. Thus, we did not apply
the exponential function on « and instead constrained the elements of an adjacency matrix to be
non-negative by setting initial values as 1.0 and modifying the proximal operator as

O (aw- — n/\||ag||1>+,

where « represents the row or column vector of an adjacency matrix before the doubly-stochastic
normalization. We applied the proximal operator at every mini-batch after updating model variables
with the gradient of the prediction loss.

Similarly as above, we modified our proposed approach for comparison experiments. We did not
employ the exponential function but applied the differentiable thresholding operation described in the
main paper,

Vgii = <O‘9ai — 7 (By) 'HO‘9H1)+7

where 7, represents the row or column vector of an adjacency matrix before the doubly-stochastic
normalization. Then, it simultaneously optimized the prediction loss and the exclusive sparsity

regularizer,
2

1 2 1
R(a)= 5> flagly = 53" | D law

The regularization was applied on « rather than 7 in order to keep the consistency with the experiment
on the proximal operator, where the regularization is applied on free variables. Table 9a] and [0b|
show the experimental results with the proximal gradient and the proposed method, respectively. The
proximal method learned the mapping between inputs and targets by reducing the prediction loss, but
did not learn the relationship between nodes as well as our method. our method seeks the balance
between both by directly optimizing the regularized objective and learns the relationship between
nodes more effectively.

Note that it is more appropriate to apply the regularization on -y rather than « to enable the threshold
operator receive the learning signal directly from the regularization term and better learn how to
control the trade-offs. To be certain, we also performed the experiments with the regularization on ¥
before the doubly-stochastic normalization:

- 1 - 1 .
R =3 Yl =5 3 [Shud
g g 1

155
156

157
158
159
160
161
162

163

164
165

167

168
169

170
171
172
173

174
175

176
177

178
179

180
181

182
183

184
185

Table 10: Traffic speed prediction with GCN and [; >-norm regularization on 7y

L.R.(x100)
k=1 k=2

3 1,211 5.4089 7047 77.04
5 1,161 5.4408 69.73 75.54
10 924 5.4695 70.66 76.24
15 871 5.4696 66.63 72.06

A #NZ. MAPE(%)

The experimental results with the exclusive sparsity regularization on 7 are shown in Table[T0] We
can see that the direct regularization on 7 allows to better learn the relationship between nodes.

Note that we could not apply the /; »-norm regularization on the row or column vectors of an
adjacency matrix after the doubly-stochastic normalization as their values of /1 »-norm are scaled to
1 by the normalization. Again, the most appropriate approach is that applying a regularization on
the row or column vectors of an adjacency matrix after the doubly-stochastic normalization as in the
main paper, but it is not possible for the proximal gradient as discussed above. It shows the flexibility
of the proposed approach.

References

[1] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In /CLR, 2016.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV, 2016.

[4] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017. URL https://arxiv|
org/abs/1704.04861.

[5] Gao Huang, Zhuang Liu, and Laurens van der Maaten. Densely connected convolutional
networks. In CVPR, 2017.

[6] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[7] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In ICLR, 2019.

[8] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. In
NeurlIPS, 2019.

[9] Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural
networks. In ICML, 2017.

[10] Yang Zhou, Rong Jin, and Steven Chu-Hong Hoi. Exclusive lasso for multi-task feature
selection. In AISTATS, 2010.

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861

	Sparsity Regularizer
	Rectified Gradient Flow
	Implementation
	Analysis on Gradient Flow

	Channel Pruning in Convolutional Network
	Discovering Neural Wirings
	Learning relationship between Nodes in Graph
	Data
	Prediction Model with GCN
	Exclusive Sparsity Regularization

