
Differentiable Sparsification for Deep Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

This is an appendix for Differentiable Sparsification for Deep Neural Networks.1

Source codes for the proposed approaches are provided in the supplementary2

material (source.zip).3

1 Sparsity Regularizer4

In our approach, different sparsity patterns can be derived by adopting different norms for a regularizer.5

For example, an individual component (ex. channel) can be removed by l1-norm and a group of6

components or an entire module (ex. layer) can be zeroed-out by l2,1-norm. Note that we do not need7

to manually implement different updating rules as in the proximal gradient approach. We just need to8

change a regularization term in an objective function. The implementation example with TensorFlow9

is in Listing 1.10

111

2 def safe_l2_norm(tensor , axis=None , keepdims=None , name=None):12

3 @tf.custom_gradient13

4 def norm(x):14

5 y = tf.norm(x, 2, axis , keepdims , name)15

616

7 def grad(dy):17

8 ex_dy = tf.expand_dims(dy , axis) if axis else dy18

9 ex_y = tf.expand_dims(y, axis) if axis else y19

10 # for numerical stability , add a small constant20

11 return ex_dy * (x/ (ex_y + 1e-19))21

1222

13 return y, grad23

1424

15 return norm(tensor)25

1626

17 alpha_mag = tf.nn.relu(abs_alpha - beta*alpha_l1)27

18 alpha = tf.math.sign(alpha) * alpha_mag28

1929

20 if norm == 'l1': #l1-norm30

21 reg = tf.reduce_sum(alpha_mag)31

22 elif norm == 'group ': #l2-group norm32

23 alpha_mags = tf.reshape(alpha , shape =[len(channels), -1])33

24 reg = tf.reduce_sum(safe_l2_norm(alpha_mags , axis=-1))34

Listing 1: Codes for Regularizer

Figure 1 and 2 show the sparsified structures of DenseNet-K12 with 40 layer, which are trained with35

l1-norm and l2,1-norm. Each row corresponds with one hidden layer. For the sparse regularization36

with l2,1-norm, we make a group of 12 channels such that layer-wise connection can be learned.37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Fig. 1 shows the sparsified structures of hidden layers in channel-wise. A pixel-like thin short strip38

represents the magnitude of a scale parameter in the batch normalization. Fig. 2 shows the sparsified39

structures in group-wise. Each square block represents a group of 12 channels. One block is added40

at a time as a layer proceeds from top to bottom since each layer outputs new 12 channels. An41

input layer generates 24 channels and thus the first row has 2 blocks. The number of survived42

channels is colored by the magnitude of a block, whose brightness is proportionate to the number43

of non-zero channels within a group. Table 1 shows the sparsity rates for a base model, Network-44

slimming(NS) [7] and the proposed method (DS). Although the two cases of the proposed approach45

have similar channel-sparsity rates, the learned structures are very different. The experimental results46

show that the proposed sparse parameterization is not limited to a particular norm and it can learn47

different structures by simply changing norms.48

Table 1: Sparsity Rate on CIFAR-10, DenseNet-40-K12.

Model C. Sparsity(%) G. Sparsity(%) Top-1 Error(%) Parmas

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Base 00.0 0.0 00.0 0.0 5.92 0.20 1.1× 106 0.0

NS 60.0 0.4 6.0 0.9 5.71 0.16 4.8× 105 7.7× 102

DS-l1 60.3 0.4 6.4 0.3 5.72 0.16 4.7× 105 3.5× 103

DS-l2,1 60.6 0.4 56.5 0.5 6.28 0.25 4.7× 105 5.0× 103

(a) l1-norm (b) l2,1-group norm

Figure 1: Sparsified connection in channel-wise view. DenseNet-40-K12.

(a) l1-norm (b) l2,1-group norm

Figure 2: Sparsified connection in group-wise view. DenseNet-40-K12.

2

2 Rectified Gradient Flow49

2.1 Implementation50

Listing 2 shows TensorFlow implementation of the rectified gradient flow. The learning method can51

be implemented by simply switching tf.nn.relu to rgf_relu.52

153

2 @tf.custom_gradient54

3 def rgf_relu(x):55

4 o1 = tf.nn.relu(x) # forward -pass56

5 o2 = tf.keras.activations.elu(x, alpha =0.1) # backward -pass57

658

7 def grad(dy): # the gradient of elu is used in backward -pass59

8 return tf.gradients(o2, [x], grad_ys =[dy])60

961

10 return o1, grad62

1163

12 #alpha_mag = tf.nn.relu(abs_alpha - sig_beta*alpha_l1)64

13 alpha_mag = rgf_relu(abs_alpha - sig_beta*alpha_l1)65

Listing 2: Codes for Rectified Gradient Flow

2.2 Analysis on Gradient Flow66

Assume that an output y of a neuron in a hidden layer is written as67

y (x) =
n∑

i=1

aifi (x;wi),

where x denotes an input from a proceeding layer, wi model parameters for component fi, and ai an68

edge or an architecture parameter. A loss function can be denoted by69

L
(
a (α) , f (x;w)

)
.

Let ai be a function of α,70

ai (αi) = sign (αi)
(
|αi| − σ (β)

)
+
,

which is made simpler for analysis than the main paper. The gradients can be written as71

∂L
∂αi

=
∂L
∂y
· ∂ai (αi)

∂αi
· fi (x,wi) , (1)

∂L
∂wi

=
∂L
∂y
· ai (αi) ·

∂fi (x;wi)

∂wi
, (2)

∂L
∂x

=
∂L
∂y
·

n∑
j

(
aj
(
αj

)
·
∂fj

(
x;wj

)
∂x

)
. (3)

If|αi| < σ (β), ∂ai/∂αi in Eq. (1) becomes zero and αi does not have a learning signal. If elu [1] is72

employed in the backward pass, it can generate approximated gradient for αi. Regardless of whether73

elu is used in the backward pass or not, wi and x do not receive a learning signal through ai since74

ai = 0 in Eq. (2) and (3). This leads to a similar learning mechanism proposed in DNW [8], where75

the gradients flows to zeroed-out (hallucinated) edges but does not through them.76

If we define a as in the main paper,77

ai (α) = sign (αi)
(
|αi| − σ (β)‖α‖1

)
+
,

the gradient is written as78

∂L
∂αi

=
∂L
∂y
·

n∑
j

(
∂aj (α)

∂αi
· fj
(
x,wj

))
.

3

Even if elu [1] is not used in the backward pass, the gradient for αi is still generated through others.79

However, a learning signal can be generated more eagerly with elu.80

3 Channel Pruning in Convolutional Network81

We compare network-slimming (NS) [7] and our proposed method (DS). We ran each experiments 582

times and showed the average and the standard deviation. We controlled the value of λ such that it has83

similar pruning rate with that of the network-slimming approach. Table 2 and 3 show experimental84

results on DenseNet with 100 layers [5], and Table 4 and 5 on ResNet with 164 layers [2, 3]. In the85

tables, sparsity denotes a pruning rate, i.e, the number of removed channels in hidden layers. When86

the sparsity rate is relative low, they have similar error rates but the gap increases as the sparsity rate87

does.88

Table 2: Performance on CIFAR-10, DenseNet-100-BC-K12.

Model Sparsity(%) Top-1 Error(%) Parmas FLOPs

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Base 00.0 0.0 5.44 0.11 7.6× 105 0.0 5.8× 108 0.0

NS 60.0 0.0 5.40 0.14 3.7× 105 3.3× 102 2.5× 108 3.0× 106

NS 70.0 0.0 6.53 0.19 2.9× 105 9.3× 102 1.9× 108 5.0× 106

NS 75.0 0.0 7.29 0.27 2.5× 105 1.0× 103 1.6× 108 3.3× 106

NS 80.0 0.0 8.39 0.28 2.0× 105 2.0× 103 1.4× 108 3.4× 106

DS 60.4 0.4 5.42 0.20 3.6× 105 3.5× 103 2.5× 108 3.4× 106

DS 70.3 0.1 5.77 0.09 2.7× 105 2.3× 103 1.8× 108 1.6× 106

DS 75.7 0.2 6.05 0.26 2.2× 105 2.6× 103 1.5× 108 3.0× 106

DS 80.4 0.1 6.64 0.11 1.7× 105 0.6× 103 1.3× 108 2.0× 106

Table 3: Performance on CIFAR-100, DenseNet-100-BC-K12.

Model Sparsity(%) Top-1 Error(%) Parmas FLOPs

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Base 00.0 0.0 24.00 0.23 7.9× 105 0.0 5.8× 108 0.0

NS 60.0 0.0 25.02 0.26 3.9× 105 2.0× 103 2.4× 108 4.9× 106

NS 70.0 0.0 28.02 0.75 3.1× 105 1.5× 103 1.9× 108 4.0× 106

NS 75.0 0.0 29.66 0.51 2.8× 105 1.1× 103 1.6× 108 4.7× 106

NS 80.0 0.0 31.50 0.46 2.4× 105 7.9× 102 1.3× 108 2.7× 106

DS 60.5 0.2 24.86 0.20 3.6× 105 2.9× 103 2.4× 108 5.0× 106

DS 70.4 0.4 26.37 0.15 2.7× 105 3.5× 103 1.8× 108 5.4× 106

DS 75.3 0.3 27.20 0.06 2.3× 105 2.9× 103 1.5× 108 3.0× 106

DS 80.3 0.4 28.12 0.23 1.8× 105 3.5× 103 1.3× 108 1.1× 107

Table 4: Performance on CIFAR-10, ResNet-164.

Model Sparsity(%) Top-1 Error(%) Parmas FLOPs

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Base 00.0 0.0 5.13 0.05 1.7× 106 0.0 5.0× 108 0.0

NS 60.0 0.0 5.49 0.06 1.1× 106 7.9× 103 2.9× 108 3.0× 106

NS 70.0 0.0 6.67 0.19 8.1× 105 1.4× 104 2.2× 108 3.4× 106

DS 60.7 0.3 5.33 0.15 8.9× 105 1.7× 104 2.6× 108 3.4× 106

DS 70.5 0.3 5.68 0.21 5.9× 105 1.8× 104 1.9× 108 5.3× 106

4

Table 5: Performance on CIFAR-100, ResNet-164.

Model Sparsity(%) Top-1 Error(%) Parmas FLOPs

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Base 00.0 0.0 23.23 0.28 1.7× 106 0.0 5.0× 108 0.0

NS 60.0 0.0 24.71 0.24 1.2× 106 5.3× 103 2.5× 108 4.8× 106

NS 70.0 0.0 27.91 0.36 1.1× 106 3.7× 103 1.9× 108 5.7× 105

DS 59.6 1.0 24.52 0.08 1.0× 106 3.1× 104 2.4× 108 1.1× 107

DS 70.8 1.5 25.44 0.40 6.3× 105 1.9× 104 1.8× 108 1.3× 107

4 Discovering Neural Wirings89

We compare Discovering Neural Wirings(DNW) [8] and our proposed method(DS).90

MobileNetV1 (×0.25) [4] is employed as a base model and our implementation closely follows that91

of DNW. DNW chose the value of k such that a final learned model has similar Mult-Adds with the92

base model, and we also set the value of λ in the same manner. We ran each experiments 5 times and93

showed the average and the standard deviation. Table 6 and 7 show the experimental results.94

Table 6: Performance on CIFAR-10, Discovering Neural Wirings

Model Top-1 Error(%) Parmas Mult-Adds

Avg. Std. Avg. Std. Avg. Std.

MobileNetV1(×0.25) 13.44 0.24 2.2× 105 0.0 3.3× 106 0.0

No Update(×0.225) 13.86 0.27 2.2× 105 3.7× 101 4.5× 106 3.7× 104

DNW(×0.225) 10.30 0.20 1.8× 105 6.7× 101 3.1× 106 4.6× 104

λ× 10−3 Proximal Gradient with l1-norm

1.875 11.64 0.41 2.4× 104 9.0× 102 3.7× 106 1.3× 105

1.950 11.95 0.42 2.3× 104 1.5× 103 3.7× 106 2.6× 105

2.225 12.17 0.44 2.1× 104 9.4× 102 3.3× 106 1.7× 105

2.325 12.50 0.28 1.9× 104 5.7× 102 3.2× 106 1.1× 105

2.400 12.66 0.38 1.8× 104 1.1× 103 3.0× 106 6.4× 104

λ× 10−3 Proximal Gradient with l1,2-norm

1.250 12.15 1.17 1.0× 105 1.3× 104 3.7× 106 1.2× 105

1.375 13.14 0.42 9.6× 104 1.2× 104 3.6× 106 2.1× 105

1.500 13.62 0.56 9.6× 104 1.6× 104 3.4× 106 8.6× 104

1.625 14.12 0.62 8.7× 104 8.6× 103 3.3× 106 1.6× 105

1.750 15.09 1.21 8.7× 104 1.5× 104 3.2× 106 2.0× 105

λ× 10−5 DS-No Rectified Gradient

1.125 10.20 0.08 6.9× 104 8.9× 102 3.6× 106 4.9× 104

1.375 10.55 0.23 6.1× 104 5.7× 102 3.4× 106 4.5× 104

1.625 10.96 0.18 5.6× 104 1.7× 103 3.2× 106 5.3× 104

1.875 11.06 0.45 5.1× 104 2.4× 102 3.1× 106 3.7× 104

2.000 11.05 0.25 4.9× 104 8.0× 102 3.0× 106 3.4× 104

λ× 10−5 DS-Rectified Gradient

6.0 9.04 0.10 5.3× 104 7.0× 102 3.5× 106 4.8× 104

6.5 9.28 0.38 5.0× 104 9.8× 102 3.5× 106 7.8× 104

7.0 9.36 0.27 4.7× 104 8.4× 102 3.3× 106 6.7× 104

7.5 9.32 0.19 4.5× 104 3.2× 102 3.3× 106 8.5× 104

8.0 9.66 0.07 4.2× 104 9.0× 102 3.1× 106 6.0× 104

5

Table 7: Performance on CIFAR-100, Discovering Neural Wirings

Model Top-1 Error(%) Parmas Mult-Adds

Avg. Std. Avg. Std. Avg. Std.

MobileNetV1(×0.25) 43.78 0.54 2.4× 105 0.0 3.4× 106 0.0

No Update(×0.225) 40.50 0.30 3.1× 105 3.8× 101 4.6× 106 3.6× 104

DNW(×0.225) 34.18 0.37 2.6× 105 5.0× 102 3.3× 106 4.7× 104

λ× 10−3 Proximal Gradient with l1-norm

2.1 35.27 0.65 1.3× 105 4.5× 103 3.9× 106 2.6× 105

2.2 36.00 0.70 1.2× 105 3.9× 103 3.6× 106 9.5× 104

2.3 35.21 0.32 1.2× 105 4.1× 103 3.6× 106 1.4× 105

2.4 36.57 0.53 1.2× 105 4.3× 103 3.4× 106 1.9× 105

2.5 36.81 0.41 1.1× 105 3.5× 103 3.2× 106 2.0× 105

λ× 10−3 Proximal Gradient with l1,2-norm

1.00 35.97 0.59 3.0× 105 7.7× 103 4.4× 106 1.2× 105

1.25 37.52 0.84 2.7× 105 6.3× 103 3.9× 106 1.2× 105

1.50 38.45 0.29 2.6× 105 5.5× 103 3.7× 106 1.1× 105

1.75 39.63 0.54 2.5× 105 1.1× 104 3.5× 106 1.4× 105

2.00 41.35 0.86 2.5× 105 9.7× 103 3.3× 106 1.6× 105

λ× 10−5 DS-No Rectified Gradient

2.00 35.51 0.62 1.8× 105 5.4× 102 3.7× 106 4.8× 104

2.25 35.26 0.50 1.7× 105 7.8× 102 3.5× 106 4.6× 104

2.50 35.68 0.47 1.7× 105 7.5× 102 3.4× 106 4.3× 104

2.75 35.32 0.28 1.6× 105 5.2× 102 3.3× 106 2.5× 104

3.00 35.77 0.36 1.6× 105 1.0× 103 3.2× 106 2.3× 104

λ× 10−4 DS-Rectified Gradient

0.850 32.16 0.18 2.0× 105 3.0× 103 3.8× 106 1.2× 105

0.925 32.84 0.44 1.9× 105 4.8× 103 3.6× 106 8.6× 104

1.000 32.78 0.83 1.8× 105 3.3× 103 3.5× 106 1.2× 105

1.125 32.92 0.60 1.6× 105 4.6× 103 3.3× 106 6.8× 104

1.250 33.80 0.58 1.6× 105 4.4× 103 3.1× 106 8.9× 104

5 Learning relationship between Nodes in Graph95

5.1 Data96

Table 8: Summary of Experiment Data

Area # Road Collection Collection Time Interval Time Horizon
Segments Method Period for Prediction

See Fig. 3 170 Taxi with GPS Jan.-Oct. 15 min. 1 (15 min.)

A summary of the data reported in the main paper is shown in Table 8. There were approximately97

70, 000 probe taxis operating in the metropolitan area where the data were collected. As the taxis98

operated in three shifts, more than 20, 000 probes on average ran at any point. The traffic speed99

data covers 4, 663 links in the area, which includes major arterials. Speed data from probes in the100

metropolitan area were aggregated every 5 minutes for each road segment; if no probe passed a link101

during a 5-minute period, the speed was estimated based on speeds in the previous time periods102

or from the same time periods in the past. After the preprocessing, the raw data were once again103

aggregated in 15-minute periods to maximize forecasting utility. The 15-minute period is the standard104

on which the highway capacity manual is based. As no information was available regarding probe105

counts that contribute to averaging speed data, three speeds for a 5-minute period were averaged106

without weight. Among the 4, 663 links for which speed data were available, we selected 170 links107

6

in the subarea (see Fig. 3) of the metropolitan; it was expected that the speed data collected in this108

region would be free from missing observations as it is the busiest region in the metropolitan area,109

and most taxi drivers congregate in the region to find passengers. Following the generic conventions110

of machine learning, we used data from the previous eight months to train the proposed model and111

reserved the data for the latter two months to test the trained model.112

Figure 3: The gray lines represent 170 road links where the experimental data were collected.

5.2 Prediction Model with GCN113

Figure 4 illustrates our GCN implementation. The outputs of hidden GCN blocks are concatenated114

and fed into an output block. This was motivated by the dense connections of DenseNet [5]. The115

structure of hidden GCN blocks were illustrated in the main paper. We trained the model for 500116

epochs using Adam [6] with the defaulting parameter setting of TensorFlow. The initial learning rate117

was set to 0.0005 and multiplied by 0.5 at epochs 400 and 450.118

A training loss is defined by the mean relative error (MRE)119

1

N

N∑
i=1

|ỹi − yi|
yi

,

where N is the number of road segments; ỹi and yi denote an estimate and actual future observation120

of travel speed on road segment i, respectively. We ran each experiment five times and selected the121

median among the five lowest validation errors. We reported the test error from the epoch with the122

median validation MRE. The report error was re-written in tables with mean absolute percentage123

error (MAPE) for readers’ accessability, which is defined by multiplying MRE by 100.124

GCN Block … GCN BlockInput Block

Concatenated Feature Map

Output Block

Figure 4: Structure of GCN. Graph convolutional neural network (GCN) structure. The GCN in our
experiments consists of 5 GCN blocks. The output feature maps of GCN blocks are concatenated
and then fed into an output block. Input and Output blocks consist of 3 fully connected layers,
respectively.

7

5.3 Exclusive Sparsity Regularization125

Table 9: Traffic speed prediction with GCN and l1,2-norm regularization

(a) Proximal Gradient

λ # N.Z. MAPE(%) L. R.(×100)

k = 1 k = 2

3 12,895 5.3898 57.24 62.42
5 11,915 5.3933 55.48 60.90
10 8,723 5.4894 33.39 40.35
15 7,584 5.5395 13.37 18.05

(b) Proposed

λ # N.Z. MAPE(%) L.R.(×100)

k = 1 k = 2

3 6,170 5.3891 50.75 58.74
5 5,692 5.3872 52.90 60.86
10 5,009 5.3999 53.68 61.64
15 4,704 5.3948 55.83 63.68

The lp-norm with p < 1 can induce strong competition within a group, but its closed form solution126

for the proximal operator is unknown. Among the norms which have the closed form solutions, the127

exclusive sparsity regularization can be a promising substitute lp-norm with p < 1 because it is also128

known that it promotes the sparsity or the competition within a group. We performed comparison129

experiments with the l1,2-exclusive norm [10, 9]. As in the main paper, we made groups for the130

row and column vectors of an adjacency matrix. Note that the proximal operator should be applied131

on free variables; it cannot be applied on γ or a of an adjacency matrix. Thus, we did not apply132

the exponential function on α and instead constrained the elements of an adjacency matrix to be133

non-negative by setting initial values as 1.0 and modifying the proximal operator as134

αg,i ←
(
αg,i − ηλ

∥∥αg

∥∥
1

)
+
,

where αg represents the row or column vector of an adjacency matrix before the doubly-stochastic135

normalization. We applied the proximal operator at every mini-batch after updating model variables136

with the gradient of the prediction loss.137

Similarly as above, we modified our proposed approach for comparison experiments. We did not138

employ the exponential function but applied the differentiable thresholding operation described in the139

main paper,140

γ̃g,i =
(
αg,i − σ

(
βg
)
·
∥∥αg

∥∥
1

)
+
,

where γ̃g represents the row or column vector of an adjacency matrix before the doubly-stochastic141

normalization. Then, it simultaneously optimized the prediction loss and the exclusive sparsity142

regularizer,143

R (α) =
1

2

∑
g

∥∥αg

∥∥2
1
=

1

2

∑
g

∑
i

∣∣αg,i

∣∣2

.

The regularization was applied on α rather than γ̃ in order to keep the consistency with the experiment144

on the proximal operator, where the regularization is applied on free variables. Table 9a and 9b145

show the experimental results with the proximal gradient and the proposed method, respectively. The146

proximal method learned the mapping between inputs and targets by reducing the prediction loss, but147

did not learn the relationship between nodes as well as our method. our method seeks the balance148

between both by directly optimizing the regularized objective and learns the relationship between149

nodes more effectively.150

Note that it is more appropriate to apply the regularization on γ rather than α to enable the threshold151

operator receive the learning signal directly from the regularization term and better learn how to152

control the trade-offs. To be certain, we also performed the experiments with the regularization on γ̃153

before the doubly-stochastic normalization:154

R (γ̃) =
1

2

∑
g

∥∥γ̃g∥∥21 =
1

2

∑
g

∑
i

∣∣γ̃g,i∣∣
2

.

8

Table 10: Traffic speed prediction with GCN and l1,2-norm regularization on γ̃

λ # N.Z. MAPE(%) L.R.(×100)

k = 1 k = 2

3 1,211 5.4089 70.47 77.04
5 1,161 5.4408 69.73 75.54
10 924 5.4695 70.66 76.24
15 871 5.4696 66.63 72.06

The experimental results with the exclusive sparsity regularization on γ̃ are shown in Table 10. We155

can see that the direct regularization on γ̃ allows to better learn the relationship between nodes.156

Note that we could not apply the l1,2-norm regularization on the row or column vectors of an157

adjacency matrix after the doubly-stochastic normalization as their values of l1,2-norm are scaled to158

1 by the normalization. Again, the most appropriate approach is that applying a regularization on159

the row or column vectors of an adjacency matrix after the doubly-stochastic normalization as in the160

main paper, but it is not possible for the proximal gradient as discussed above. It shows the flexibility161

of the proposed approach.162

References163

[1] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network164

learning by exponential linear units (elus). In ICLR, 2016.165

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image166

recognition. In CVPR, 2016.167

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual168

networks. In ECCV, 2016.169

[4] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias170

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural171

networks for mobile vision applications. CoRR, abs/1704.04861, 2017. URL https://arxiv.172

org/abs/1704.04861.173

[5] Gao Huang, Zhuang Liu, and Laurens van der Maaten. Densely connected convolutional174

networks. In CVPR, 2017.175

[6] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR,176

2015.177

[7] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value178

of network pruning. In ICLR, 2019.179

[8] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. In180

NeurIPS, 2019.181

[9] Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural182

networks. In ICML, 2017.183

[10] Yang Zhou, Rong Jin, and Steven Chu–Hong Hoi. Exclusive lasso for multi-task feature184

selection. In AISTATS, 2010.185

9

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861

	Sparsity Regularizer
	Rectified Gradient Flow
	Implementation
	Analysis on Gradient Flow

	Channel Pruning in Convolutional Network
	Discovering Neural Wirings
	Learning relationship between Nodes in Graph
	Data
	Prediction Model with GCN
	Exclusive Sparsity Regularization

