
Shelving, Stacking, Hanging: Relational Pose Diffusion for528

Multi-modal Rearrangement – Supplementary Material529

Section A1 includes additional visualizations of iterative test-time evaluation on simulated shapes530

and examples of object-scene point clouds that were used as training data. In Section A2, we present531

details on data generation, model architecture, and training for RPDiff. In Section A3 we elaborate532

in more detail on the multi-step iterative regression inference procedure which predicts the set of533

rearrangement transforms. Section A4 describes more details about how the success classifier is534

trained and used in conjunction with our transform predictor as a simple mechanism for selecting535

which among multiple candidate transforms to execute. In Section A5, we describe more details536

about our experimental setup, and Section A6 discusses more details on the evaluation tasks and robot537

execution pipelines. In Section A7 we present an additional set of ablations to highlight the impact538

of other hyperparameters and design decisions. Section A8 describes additional implementation539

details for the real-world executions along with an expanded discussion on limitations and avenues540

for future work. Finally, Section A9 shows model architecture diagrams a summarized set of relevant541

hyperparameters that were used in training and evaluation.542

A1 Additional Test-time and Training Data Visualizations543

Here, we show additional visualizations of the tasks used in our simulation experiments and the noised544

point clouds used to train our pose regression model. Figure A1 shows snapshots of performing the545

iterative de-noising at evaluation time with simulated objects, and Figure A2 shows examples of546

the combined object-scene point clouds and their corresponding noised versions that were used for547

training to perform iterative de-noising.548

A2 Iterative Pose Regression Training and Data Generation549

In this section, we present details on the data used for training the pose diffusion model in RPDiff,550

the neural network architecture we used for processing point clouds and predicting SE(3) transforms,551

and details on training the model.552

A2.1 Training Data Generation553

Objects used in simulated rearrangement demonstrations. We create the rearrangement demon-554

strations in simulation with a set of synthetic 3D objects. The three tasks we consider include objects555

from five categories: mugs, racks, cans, books, “bookshelves” (shelves partially filled with books),556

and “cabinets” (shelves partially-filled with stacks of cans). We use ShapeNet [67] for the mugs and557

procedurally generate our own dataset of .obj files for the racks, books, shelves, and cabinets. See558

Figure A3 for representative samples of the 3D models from each category.559

Procedurally generated rearrangement demonstrations in simulation. The core regression560

model fθ in RPDiff is trained to process a combined object-scene point cloud and predict an561

SE(3) transformation updates the pose of the object point cloud. To train the model to make these562

relative pose predictions, we use a dataset of demonstrations showing object and scene point clouds563

in final configurations that satisfy the desired rearrangement tasks. Here we describe how we obtain564

these “final point cloud” demonstrations565

We begin by initializing the objects on a table in PyBullet [19] in random positions and orientations566

and render depth images with the object segmented from the background using multiple simulated567

cameras. These depth maps are converted to 3D point clouds and fused into the world coordinate568

frame using known camera poses. To obtain a diverse set of point clouds, we randomize the number569

of cameras (1-4), camera viewing angles, distances between the cameras and objects, object scales,570

and object poses. Rendering point clouds in this way allows the model to see some of the occlusion571

patterns that occur when the objects are in different orientations and cannot be viewed from below572

the table. To see enough of the shelf/cabinet region, we use the known state of the shelf/cabinet to573

position two cameras that roughly point toward the open side of the shelf/cabinet.574

14

(a) Mug/Rack

(b) Book/Shelf

(c) Can/Cabinet

Figure A1: Visualizations of multiple steps of iterative de-noising on simulated objects. Starting from the left
side, each object is initialized in a random SE(3) pose in the vicinity of the scene. Over multiple iterations,
RPDiff updates the object pose. The right side shows the final set of converged solutions.

15

Can/Cabinet

Final combined
object/scene

Interpolated
noise steps

Sample w/
cropped scene

Book/Shelf

Final combined
object/scene

Interpolated
noise steps

Sample w/
cropped scene

Mug/Rack-Multi

Final combined
object/scene

Interpolated
noise steps

Sample w/
cropped scene

Figure A2: Example point clouds from the demonstrations for each task of Can/Cabinet (top), Book/Shelf
(middle) and Mug/RackMed-Multi (bottom). For each task, the top row shows the ground truth combined
object-scene point cloud. Scene point clouds are in black and object point clouds are in dark blue. The middle
row in each task shows an example of creating multiple steps of noising perturbations by uniformly interpolating
a single randomly sampled perturbation transform (with a combination of linear interpolation for the translation
and SLERP for the rotation). Different colors show the point clouds at different interpolated poses. The bottom
row shows a sampled step among these interpolated poses, with the corresponding “noised” object point cloud
(dark blue), ground truth target point cloud (light blue), and cropped scene point cloud (red).

16

mugs

racks

books +
shelves

cans +
cabinets

Figure A3: Example 3D models used to train RPDiff and deploy RPDiff on our rearrangement tasks. Mugs
are from ShapeNet [67] while we procedurally generated our own synthetic racks, books, cans, shelves, and
cabinets.

After obtaining the initial object and scene point clouds, we obtain an SE(3) transform to apply to575

the object, such that transforming into a “final” objct pose using this transform results in the desired576

placement. This transform is used to translate and rotate the initial object point cloud, such that577

the combined “final object” and scene point cloud can be used for generating training examples.578

Figure A2 shows example visualizations of the final point clouds in the demonstrations for each task.579

We obtain the final configuration that satisfies these tasks using a combination of privileged knowledge580

about the objects in the simulator (e.g., ground truth state, approximate locations of task-relevant581

object parts, 3D mesh models for each object, known placing locations that are available) and human582

intuition about the task. To create mug configurations that satisfy “hanging” on one of the pegs of a583

rack, we first approximately locate one of the pegs on one of the racks (we select one uniformly at584

random) and the handle on the mug (which is straightforward because all the ShapeNet mugs are585

aligned with the handle pointing in the +y axis of the body frame). We then transform the mug so that586

the handle is approximately “on” the selected hook. Finally, we sample small perturbations about this587

nominal pose until we find one that does not lead to any collision/penetration between the two shapes.588

We perform an analogous process for the other tasks, where the ground truth available slots in the589

bookshelf and positions that work for placing the mug (e.g., on top of a stack, or on a flat shelf region590

in between existing stacks) are recorded when the 3D models for the shelves/cabinets are created.591

The exact methods for generating these shapes and their corresponding rearrangement poses can be592

found in our code.593

A2.2 Pose Prediction Architecture594

Transformer point cloud processing and pose regression. We follow the Transformer [15] ar-595

chitecture proposed in Neural Shape Mating [3] for processing point clouds and computing shape596

features that are fed to the output MLPs for pose prediction.597

17

We first downsample the observed point clouds PO ∈ RN ′×3 and PS ∈ RM ′×3 using farthest598

point sampling into P̄O ∈ RN×3 and P̄S ∈ RM×3. We then normalize to create PO
norm ∈ RN×3599

and PS
norm ∈ RM×3, based on the centroid of the scene point cloud and a scaling factor that600

approximately scales the combined point cloud to have extents similar to a unit bounding box:601

P̄S =

pS
1

pS
2
...
pS
M

 P̄O =

p
O
1

pO
2
...
pO
M

 pS,cent =
1

M

M∑
i=1

pS
i a = max{pS

i } −min{pS
i }

PS
norm =


pS,norm

1

pS,norm
2
...

pS,norm
M

 pS,norm
i = a(pS

i − pS,cent) ∀ i ∈ 1, ...,M

PO
norm =


pO,norm

1

pO,norm
2
...

pO,norm
M

 pO,norm
i = a(pO

i − pS,cent) ∀ j ∈ 1, ..., N

Next, we “tokenize” the normalized object/scene point clouds into d-dimensional input features602

φO ∈ RN×d and φS ∈ RM×d by concatenating a two-dimensional one-hot feature to each point in603

PO
norm and PS

norm (to explicitly inform the Transformer which points correspond to the object and604

the scene) and projecting to a d-dimensional vector with a linear layer Win ∈ Rd×5:605

φS =


Winp̄

S,norm
1

Winp̄
S,norm
2
...

Winp̄
S,norm
M

 p̄S,norm
i = pS,norm

i ⊕ [1, 0] ∀ i ∈ 1, ...,M

φO =


Winp̄

O,norm
1

Winp̄
O,norm
2
...

Winp̄
O,norm
M

 p̄O,norm
j = pO,norm

i ⊕ [0, 1] ∀ j ∈ 1, ..., N

Note we could also pass the point cloud through a point cloud encoder to pool local features together,606

as performed in NSM via DGCNN [17]. We did not experiment with this as we obtained satisfactory607

results by directly operating on the individual point features, but it would likely perform similarly or608

even better if we first passed through a point cloud encoder. We also incorporate the timestep t that609

the current prediction corresponds to by including the position-encoded timestep as an additional610

input token together with the object point tokens as φ̄O ∈ R(N+1)×d where φ̄O =

[
φO

pos emb(t)

]
.611

We then use a Transformer encoder and decoder to process the combined tokenized point cloud (see612

Figure A4 for visual depiction). This consists of performing multiple rounds of self-attention on613

the scene features (encoder) and then performing a combination of self-attention on the object point614

cloud together with cross-attention between the object point cloud and the output features of the615

scene point cloud (decoder):616

qS = QE(φS) kS = KE(φS) vS = VE(φS)

sS = Attention(qS, kS, vS) = softmax
(qSkST

√
d

)
vS

qO = QD(φ̄O) kO = KD(φ̄O) vO = VD(φ̄O)

sO = Attention(qO, kO, vO) = softmax
(qOkOT

√
d

)
vO

hO = Attention(q = sO, k = sS, v = sS) = softmax
(sOsST
√
d

)
sS

18

Timestep embedding

Pool

Self
Attn

Transform

Self
Attn

Cross
Attn

Point tokens

MLP

to

Figure A4: Architecture diagram showing a combination of self-attention and cross-attention among object and
scene point cloud for SE(3) transform prediction. The scene point cloud is processed via multiple rounds of
self-attention, while the object features are combined via a combination of self-attention and cross-attention
with the scene point cloud. The timestep embedding is incorporated as both an input token and via a residual
connection with the pooled output feature. The global output feature is used to predict the translation and rotation
that are applied to the object point cloud.

This gives a set of output features hO ∈ R(N+1)×d where d is the dimension of the embedding617

space. We compute a global feature by mean-pooling the output point features and averaging with618

the timestep embedding as a residual connection, and then use a set of output MLPs to predict the619

translation and rotation (the rotation is obtained by converting a pair of 3D vectors into an orthonormal620

basis and then stacking into a rotation matrix [10, 18]):621

h̄O =
1

2

(1

N

N+1∑
i=1

hO,i + pos emb(t)
)

h̄O ∈ Rd

t = MLPtrans(h̄O) t ∈ R3

a, b = MLProt(h̄O) a ∈ R3, b ∈ R3
622

â =
a

||a||
b̂ =

b− 〈â, b〉â
||b||

ĉ = â× b̂

R =

 | | |â b̂ ĉ
| | |


623

624

Local scene point cloud cropping. As shown in the experimental results, local cropping helps625

improve performance due to increasing precision while generalizing well to unseen layouts of the626

scene. Our “Fixed” cropping method uses a box with fixed side length Lbox = Lmin, centered at the627

current object point cloud iterate across all timesteps, and selects scene point cloud points that lie628

within this box. Our “Varying” cropping method adjusts the length of the box based on the timestep,629

with larger timesteps using a larger crop, and smaller timesteps using a smaller crop. We parameterize630

this as a function of the timestep t via the following linear decay function:631

Lbox = Lmin + (Lmax − Lmin)
T − t
T

where Lmin and Lmax are hyperparameters.632

633

Applying Predicted Transforms to Object Point Cloud. We apply the predicted rotation and634

translation by first mean-centering the object point cloud, applying the rotation, and then translating635

back to the original world frame position, and then finally translating by the predicted translation.636

This helps reduce sensitivity to the rotation prediction, whereas if we rotate about the world frame637

coordinate axes, a small rotation can cause a large configuration change in the object.638

19

Skill Type Number
of samples

Mug/EasyRack 3190
Mug/MedRack 950
Mug/Multi-MedRack 3240
Book/Shelf 1720
Can/Cabinet 2790

Table 2: Number of demonstrations used in each task. The same set of demonstrations is used to train
both our method and each baseline method.

A2.3 Training Details639

Here we elaborate on details regarding training the RPDiff pose diffusion model using the demonstra-640

tion data and model architecture described in the sections above. A dataset sample consists of a tuple641

(PO,PS). From this tuple, we want to construct a perturbed object point cloud PO
(t) for a particular642

timestep t ∈ 1, ..., T , where lower values of t correspond to noised point clouds that are more similar643

to the ground truth, and larger values of T are more perturbed. At the limit, the distribution of point644

clouds corresponding to t = T should approximately match the distribution we will sample from645

when initializing the iterative refinement procedure at test time.646

Noising schedules and perturbation schemes are an active area of research currently in the diffusion647

modeling litierature [68, 69], and there are many options available for applying noise to the data648

samples. We apply a simple method that makes use of uniformly interpolated SE(3) transforms.649

First, we sample one “large” transform from the same distribution we use to initialize the test-time650

evaluation procedure from – rotations are sampled uniformly from SO(3) and translations are651

sampled uniformly within a bounding box around the scene point cloud. We then use a combination652

of linear interpolation on the translations, and spherical-linear interpolation (SLERP) on the rotations,653

to obtain a sequence of T uniformly-spaced transforms (see Fig. A2 for example visualizations).654

Based on the sampled timestep t, we select the transform corresponding to timestep t in this sequence655

as the noising perturbation T
(t)
noise, and use the transform corresponding to timestep t− 1 to compute656

the “incremental”/“interval” transform to use as a prediction target. As discussed in Section 3.1, using657

the incremental transform as a prediction target helps maintain a more uniform output scale among658

the predictions across samples, which is beneficial for neural network optimization as it minimizes659

gradient fluctuations [14]. We also provide quantitative evidence that predicting only the increment660

instead of the full inverse perturbation benefits overall performance. See Section A7 for details.661

The main hyperparameter for this procedure is the number of steps T . In our experiments, we662

observed it is important to find an appropriate value for T . When T is too large, the magnitude of the663

transforms between consecutive timesteps is very small, and the iterative predictions at evaluation664

time make tiny updates to the point cloud pose, oftentimes failing to converge. When T is too small,665

most of the noised point clouds will be very far from the ground truth and might look similar across666

training samples but require conflicting prediction targets, which causes the model to fit the data667

poorly. We found that values in the vicinity of T = 5 work well across our tasks (T = 2 and T = 50668

both did not work well). This corresponds to an average perturbation magnitude of 2.5cm for the669

translation and 18 degrees for the rotation.670

After obtaining the ground truth prediction target, we compute the gradient with respect to the loss671

between the prediction and the ground truth, which is composed of the mean-squared translation error,672

a geodesic rotation distance error [12, 13], and the chamfer distance between the point cloud obtained673

by applying the predicted transform and the ground-truth next point cloud. We also found the model674

to work well using either just the chamfer distance loss or the combined translation/rotation losses.675

We trained a separate model for each task, with each model training for 500 thousand iterations on676

a single NVIDIA V100 GPU with a batch size of 16. We used a learning rate schedule of linear677

warmup and cosine decay, with a maximum learning rate of 1e-4. Training takes about three days.678

We train the models using the AdamW [70] optimizer. Table 2 includes the number of demonstrations679

we used for each task.680

20

A3 Test time evaluation681

Here, we elaborate in more detail on the iterative de-noising procedure performed at test time. Starting682

with PO and PS, we sample K initial transforms {T̂(I)
k }Kk=1, where initial rotations are drawn from683

a uniform grid over SO(3) , and we uniformly sample translations that position the object within the684

bounding box of the scene point cloud. We create K copies of PO and apply each corresponding685

transform to create initial object point clouds {P̂(I)
O,k}Kk=1 where P̂

(I)
O,k = T̂

(I)
k PO. We then perform686

the following update for I steps for each of the K initial transforms:687

T̂(i−1) = (TRand
∆ T̂∆)T̂(n) P̂

(n−1)
O = (TRand

∆ T̂∆)P̂
(i)
O

where transform T̂∆ is obtained as T̂∆ = fθ(P̂
(i)
O ,PS, pos emb(i to t(i))). Transform TRand

∆ is688

sampled from a timestep-conditioned uniform distribution that converges toward deterministically689

producing an identify transform as i tends toward 0. We obtain the random noise by sampling from690

a Gaussian distribution for both translation and rotation. For the translation, we directly output a691

3D vector with random elements. For the rotation, we represent the random noise via axis angle 3D692

rotation R0
aa ∈ R3 and convert it to a rotation matrix using the SO(3) exponential map [71] (and a693

3D translation t0 ∈ R3). We exponentially decay the variance of these noise distributions so that694

they produce nearly zero effect as the iterations tend toward 0. We perform the updates in a batch.695

The full iterative inference procedure can be found in Alg. 1.696

Evaluation timestep scheduling and prediction behavior for different timestep values.. The697

function i to t is used to map the iteration number i to a timestep value t that the model has been698

trained on. This allows the number of steps during evaluation (I) to differ from the number of steps699

during training (T). For example, we found values of T = 5 to work well during training but used700

a default value of I = 50 for evaluation. We observed this benefits performance since running701

the iterative evaluation procedure for many steps helps convergence and enables “bouncing out” of702

“locally optimal” solutions. However, we found that if we provide values for i that go beyond the703

support of what the model is trained on (i.e., for i > T), the predictions perform poorly. Thus, the704

function i to t ensures all values i ∈ 1, ..., I are mapped to an appropriate value t ∈ 1, ..., T that705

the model has seen previously.706

There are many ways to obtain this mapping, and different implementations produce different kinds707

of behavior. This is because different i to t schedules emphasize using the model in different ways708

since the model learns qualitatively different behavior for different values of t. Specifically, for709

smaller values of t, the model has only been trained on “small basins of attraction” and thus the710

predictions are more precise and local, which allows the model to “snap on” to any solution in the711

immediate vicinity of the current object iterate. Figure A5 shows this in a set of artifically constrained712

evaluation runs where the model is constrained to use the same timestep for every step i = 1, ..., I .713

However, this can also lead the model to get stuck near regions that are far from any solution. On the714

other hand, for larger perturbations, the data starts to look more multi-modal and the model averages715

out toward either a biased solution in the direction of a biased region, or just an identity transform716

that doesn’t move the object at all.717

We find the pipeline performs best when primarily using predictions corresponding to smaller718

timesteps, but still incorporating predictions from higher timesteps. We thus parameterize the719

timestep schedule i to t such that it exponentially increases the number of predictions used for720

smaller values of t. While there are many ways this can be implemented, we use the following721

procedure: we construct an array D of length I where each element lies between 1 and T , and define722

the mapping i to t as723

t = i to t(i) = Di subscript i denotes the i-th element of D
The array D is parameterized by a constant value A (where higher value of A corresponds to using724

more predictions with smaller timesteps, while A = 1 corresponds to using each timestep an equal725

number of times) and ensures that predictions for each timestep are made at least once:726

21

Algorithm 1 Rearrangement Transform Inference via Iterative Point Cloud De-noising

1: Input: Scene point cloud PS, object point cloud PO, number of parallel runs K, number of
iterations to use in evaluation I , number of iterations used in training T , pose regression model fθ,
success classifier hφ, function to map from evaluation iteration values to training iteration values
i to t, parameters for controlling what fraction of evaluation iterations correspond to smaller
training timestep values A, local cropping function crop, distribution for sampling external pose
noise pAnnealedRandSE(3)

Init transforms, transformed object, and cropped scene
2: for k in 1,...,K do
3: R

(H)
k ∼ pUnifSO(3)(·)

4: t
(H)
k ∼ pUnifBoundingBox(· | PO,PS)

5: T̂
(H)
k =

[
R t
0 1

]
6: P̂

(H)
O,k = T̂

(H)
k PO

7: P̄
(H)
S,k = crop(P̂

(H)
O,k,PS)

8: end for
Init set of transform and final point cloud solutions and classifier scores

9: init S = ∅
10: init T = ∅
11: init P = ∅

Iterative pose regression
12: for i in I ,...,1 do

Map evaluation timestep to in-distribution training timestep
13: t = i to t(i, A)
14: for k in 1,...,K do
15: T̂∆,k = fθ(P

(t)
O,k, P̄

(t)
S,k, pos emb(t))

16: if i > (0.2 ∗ I) then
Apply random external noise, with noise magnitude annealed as i approaches 0

17: TRand
∆,k ∼ pAnnealedRandSE(3)(· | i)

18: else
Remove all external noise for the last 20% of the iterations

19: TRand
∆,k = I4

20: end if
21: T̂

(i−1)
k = TRand

∆,kT∆,kT̂
(i)
k

22: P̂
(i−1)
O,k = TRand

∆,kT∆,kP̂
(i)
O,k

23: P̄
(i−1)
S,k = crop(P̂

(i−1)
O,k ,PS, t, T)

24: if i == 1 then
Predict success probabilities from final objects

25: sk = hφ(P
(0)
O,k,PS)

Save final rearrangement solutions and predicted scores
26: S = S ∪ {sk}
27: T = T ∪ {T̂(0)

k }
28: P = T ∪ {P̂(0)

O,k}
29: end if
30: end for
31: end for

Decision rule (e.g., argmax) for output
32: kout = argmax(S)
33: Tout = T [kout]

Return top-scoring transform and full set of solutions for potential downstream planning/search
34: return Tout, T ,P,S

22

Figure A5: Examples of running our full iterative evaluation procedure for I steps with the model constrained
to use a fixed value for t on each iteration. This highlights the different behavior the model has learned for
different timesteps in the de-noising process. For timesteps near 1, the model has learned to make very local
updates that “snap on” to whatever features are in the immediate vicinity of the object. As the timesteps get
larger, the model considers a more global context and makes predictions that reach solutions that are farther
away from the initial object pose. However, these end up more biased to a single solution in a region where there
may be many nearby solutions (see the top row of shelves where there are four slots that the model finds when
using timestep 1, but the model only reaches two of them with timestep t = 2 and one of them with t = 3). For
even larger values of t, the model has learned a much more biased and “averaged out” solution that fails to rotate
the object and only approximately reaches the scene regions corresponding to valid placements.

B = [AT , , AT−1..., A2, A1] Exponentially decreasing values

C = d A ∗ I∑T
i=1Ai

e Normalize, scale up by I , and round up (minimum value per element is 1)

C̄ = d C ∗ I∑T
i=1 Ci

e Normalize again so
T∑
i=1

C̄i ≈ I with C̄i ∈ N ∀ i = 1, ..., T

C̄1 = C̄0 − (

T∑
i=1

C̄i − I) Ensure
T∑
i=1

C̄i = I exactly

Then, from C̄, we construct multiple arrays with values ranging from 1 to T , each with lengths727

corresponding to values in C̄,728

D̄1 = [D̄1,1 D̄1,2 ...] with D̄1,k = 1 ∀k ∈ 1, ..., C̄1

D̄2 = [D̄2,1 D̄2,2 ...] with D̄2,k = 2 ∀k ∈ 1, ..., C̄2

...

D̄T = [D̄T,1 D̄T,2 ...] with D̄T,k = T ∀k ∈ 1, ..., C̄T

and then stack these arrays together to obtain D as a complete array of length I:729

730

D = [D̄1 D̄2 ... D̄T]

A4 Success Classifier Details731

In this section, we present details on training and applying the success classifier hφ that we use for732

ranking and filtering the set of multiple predicted SE(3) transforms produced by RPDiff.733

23

Training Data. To train the success classifier, we use the demonstrations to generate positive and734

negative examples, where the positives are labeled with success likelihood 1.0 and the negatives have735

success likelihood 0.0. The positives are simply the unperturbed final point clouds and the negatives736

are perturbations of the final object point clouds. We use the same sampling scheme of sampling a737

rotation from a uniform distribution over SO(3) and sampling a translation uniformly from within a738

bounding box around the scene point cloud.739

Model Architecture. We use an identical Transformer architecture as described in Section A2,740

except that we use a single output MLP followed by a sigmoid to output the predicted success741

likelihood, we do not condition on the timestep, and we provide the uncropped scene point cloud.742

Training Details. We supervise the success classifier predictions with a binary cross entropy loss743

between the predicted and ground truth success likelihood. We train for 500k iterations with batch size744

64 on a V100 GPU which takes 5 days. We augment the data by rotating the combined object-scene745

point cloud by random 3D rotations to increase dataset diversity.746

A5 Experimental Setup747

This section describes the details of our experimental setup in simulation and the real world.748

A5.1 Simulated Experimental Setup749

We use PyBullet [19] and the AIRobot [72] library to set up the tasks in the simulation and quantita-750

tively evaluate our method along with the baselines. The environment consists of a table with the751

shapes that make up the object and the scene, and the multiple simulated cameras that are used to752

obtain the fused 3D point cloud. We obtain segmentation masks of the object and the scene using753

PyBullet’s built-in segmentation abilities.754

A5.2 Real World Experimental Setup755

In the real world, we use a Franka Robot arm with a Robotiq 2F140 parallel jaw gripper attached756

for executing the predicted rearrangements. We also use four Realsense D415 RGB-D cameras757

with known extrinsic parameters. Two of these cameras are mounted to provide a clear, close-up758

view of the object, and the other two are positioned to provide a view of the scene objects. We759

use a combination of Mask-RCNN, density-based Euclidean clustering [73], and manual keypoint760

annotation to segment the object, and use simple cropping heuristics to segment the overall scene761

from the rest of the background/observation (e.g., remove the table and the robot from the observation762

so we just see the bookshelf with the books on it).763

A6 Evaluation Details764

This section presents further details on the tasks we used in our experiments, the baseline methods765

we compared RPDiff against, and the mechanisms we used to apply the predicted rearrangement to766

the object in simulation and the real world.767

A6.1 Tasks and Evaluation Criteria768

Task Descriptions. We consider three relational rearrangement tasks for evaluation: (1) hanging a769

mug on the hook of a rack, where there might be multiple racks on the table, and each rack might770

have multiple hooks, (2) inserting a book into one of the multiple open slots on a randomly posed771

bookshelf that is partially filled with existing books, and (3) placing a cylindrical can upright either772

on an existing stack of cans or on a flat open region of a shelf where there are no cans there. Each773

of these tasks features many placing solutions that achieve the desired relationship between the774

object and the scene (e.g., multiple slots and multiple orientations can be used for placing, multiple775

racks/hooks and multiple orientations about the hook can be used for hanging, multiple stacks and/or776

multiple regions in the cabinet can be used for placing the can, which itself can be placed with either777

flat side down and with any orientation about its cylindrical axis).778

24

Evaluation Metrics and Success Criteria. To quantify performance, we report the average success779

rate over 100 trials, where we use the ground truth simulator state to compute success. For a trial to780

be successful, the object O and S must be in contact and the object must have the correct orientation781

relative to the scene (for instance, the books must be on the shelf, and must not be oriented with the782

long side facing into the shelf). For the can/cabinet task, we also ensure that the object O did not run783

into any existing stacks in the cabinet, to simulate the requirement of avoiding hitting the stacks and784

knocking them over.785

We also quantify coverage via recall between the full set of predicted solutions and the precomputed786

set of solutions that are available for a given task instance. This is computed by finding the closest787

prediction to each of the precomputed solutions and checking whether the translation and rotation788

error between the prediction and the solution is within a threshold (we use 3.5cm for the translation789

and 5 degrees for the rotation). If the error is within this threshold, we count the solution as “detected”.790

We compute recall for a trial as the total number of “detected solutions” divided by the total number of791

solutions available and report overall recall as the average over the 100 trials. Precision is computed792

in an analogous fashion but instead checks whether each prediction is within the threshold for at least793

one of the ground truth available solutions.794

A6.2 Baseline Implementation and Discussion795

In this section, we elaborate on the implementation of each baseline approach in more detail and796

include further discussion on the observed behavior and failure modes of each approach.797

A6.2.1 Coarse-to-Fine Q-attention (C2F-QA).798

C2F-QA adapts the classification-based approach proposed in [8], originally designed for pick-and-799

place with a fixed robotic gripper, to the problem of relational object rearrangement. We voxelize the800

scene and use a local PointNet [74] that operates on the points in each voxel to compute per-voxel801

input features. We then pass this voxel feature grid through a set of 3D convolution layers to compute802

an output voxel feature grid. Finally, the per-voxel output features are each passed through a shared803

MLP which predicts per-voxel scores. These scores are normalized with a softmax across the grid to804

represent a distribution of “action values” representing the “quality” of moving the centroid of the805

object to the center of each respective voxel. This architecture is based on the convolutional point806

cloud encoder used in Convolutional Occupany Networks [7].807

To run in a coarse-to-fine fashion, we take the top-scoring voxel position (or the top-k voxels if808

making multiple predictions), translate the object point cloud to this position, and crop the scene809

point cloud to a box around the object centroid position. From this cropped scene and the translated810

object, we form a combined object-scene input point cloud and re-voxelize just this local portion of811

the point cloud at a higher resolution. We then compute a new set of voxel features with a separate812

high-resolution convolutional point cloud encoder. Finally, we pool the output voxel features from813

this step and predict a distribution over a discrete set of rotations to apply to the object. We found814

difficulty in using the discretized Euler angle method that was applied in [8], and instead directly815

classify in a binned version of SO(3) by using an approximate uniform rotation discretization method816

that was used in [75].817

We train the model to minimize the cross entropy loss for both the translation and the rotation (i.e.,818

between the ground truth voxel coordinate containing the object centroid in the demonstrations and819

the ground truth discrete rotation bin). We use the same object point cloud perturbation scheme to820

create initial “noised” point clouds for the model to de-noise but have the model directly predict how821

to invert the perturbation transform in one step.822

Output coverage evaluation. Since C2F-QA performs the best in terms of task success among all823

the baselines and is naturally suited for handling multi-modality by selecting more than just the824

argmax among the binned output solutions, we evaluate the ability of our method and C2F-QA to825

achieve high coverage among the available placing solutions while still achieving good precision826

(see Section 5.2). To obtain multiple output predictions from C2F-QA, we first select multiple voxel827

positions using the top-k voxel scores output by the PointNet→ 3D CNN→MLP pipeline. We then828

copy the object point cloud and translate it to each of the selected voxel positions. For each selected829

position, we pool the local combined object-scene point cloud features and use the pooled features830

to predict a distribution of scores over the discrete space of rotations. Similar to selecting multiple831

25

voxel positions, we select the top-k scoring rotations and use this full set of multiple translations +832

multiple rotations-per-translation as the set of output transforms to use for computing coverage.833

Relationship to other “discretize-then-classify” methods. C2F-QA computes per-voxel features834

from the scene and uses these to output a normalized distribution of scores representing the quality of835

a “translation” action executed at each voxel coordinate. This idea of discretizing the scene and using836

each discrete location as a representation of a translational action has been successfully applied by a837

number of works in both 2D and 3D [44, 47, 76]. In most of these pipelines, the translations typically838

represent gripper positions, i.e., for grasping. In our case, the voxel coordinates represent a location839

to move the object for rearrangement.840

However, techniques used by “discreteize-then-classify” methods for rotation prediction somewhat841

diverge. C2F-QA and the recently proposed PerceiverActor [47] directly classify the best discrete842

rotation based on pooled network features. On the other hand, TransporterNets [44] and O2O-843

Afford [46] exhaustively evaluate the quality of different rotation actions by “convolving” some844

representation of the object being rearranged (e.g., a local image patch or a segmented object point845

cloud) in all possible object orientations, with respect to each position in the entire discretized scene846

(e.g., each pixel in the overall image or each point in the full scene point cloud). The benefit is the847

ability to help the model more explicitly consider the “interaction affordance” between the object and848

the scene at various locations and object orientations and potentially make a more accurate prediction849

of the quality of each candidate rearrangement action. However, the downside of this “exhaustive850

search” approach is the computational and memory requirements are much greater, hence these851

methods have remained limited to lower dimensions.852

A6.2.2 Relational Neural Descriptor Fields (R-NDF).853

R-NDF [20] uses a neural field shape representation trained on category-level 3D models of the objects854

used in the task. This consists of a PointNet encoder with SO(3)-equivariant Vector Neuron [77]855

layers and an MLP decoder. The decoder takes as input a 3D query point and the output of the point856

cloud encoder, and predicts either the occupancy or signed distance of the 3D query point relative to857

the shape. After training, a point or a rigid set of points in the vicinity of the shape can be encoded by858

recording their feature activations of the MLP decoder. The corresponding point/point set relative to a859

new shape can then be found by locating the point/point set with the most similar decoder activations.860

These point sets can be used to parameterize the pose of local oriented coordinate frames, which can861

represent the pose of a secondary object or a gripper that must interact with the encoded object.862

R-NDFs have been used to perform relational rearrangement tasks via the process of encoding task-863

relevant coordinate frames near the object parts that must align to achieve the desired rearrangement,864

and then localizing the corresponding parts on test-time objects so a relative transform that aligns them865

can be computed. We use the point clouds from the demonstrations to record a set of task-relevant866

coordinate frames that must be localized at test time to perform each of the tasks in our experiments.867

The main downside of R-NDF is if the neural field representation fails to faithfully represent the shape868

category, the downstream corresponding matching also tends to fail. Indeed, owing to the global869

point cloud encoding used by R-NDF, the reconstruction quality on our multi-rack/bookshelf/cabinet870

scenes is quite poor, so the subsequent correspondence matching does not perform well on any of the871

tasks we consider.872

A6.2.3 Neural Shape Mating (NSM) + CVAE.873

Neural Shape Mating (NSM) [3] uses a Transformer to process a pair of point clouds and predict how874

to align them. The method was originally deployed on the task of “mating” two parts of an object that875

has been broken but can be easily repurposed for the analogous task of relational rearrangement given876

a point cloud of a manipulated object and a point cloud of a scene/“parent object”. Architecturally,877

NSM is the same as our relative pose regression model, with the key differences of (i) being trained878

on arbitrarily large perturbations of the demonstration point clouds, (ii) not using local cropping,879

and (iii) only making a single prediction. We call this baseline “NSM-base” because we do not880

consider the auxiliary signed-distance prediction and learned discriminator proposed in the original881

approach [3]. As shown in Table 1, the standard version of NSM fails to perform well on any of882

the tasks that feature multi-modality in the solution space (nor can the model successfully fit the883

demonstration data). Therefore, we adapted it into a conditional variational autoencoder (CVAE) that884

at least has the capacity to learn from multi-modal data and output a distribution of transformations.885

26

We use the same Transformer architecture for both the CVAE encoder and decoder with some small886

modifications to the inputs and outputs to accommodate (i) the encoder also encoding the ground887

truth de-noising transforms and predicting a latent variable z, and (ii) the decoder conditioning on z888

in addition to the combined object-scene point cloud to reconstruct the transform. We implement889

this with the same method that was used to incorporate the timestep information in our architecture –890

for the encoder, we include the ground truth transform as both an additional input token and via a891

residual connection with the global output feature, and for the decoder, we include the latent variable892

in the same fashion. We also experimented with concatenating the residually connected features and893

did not find any benefit. We experimented with different latent variable dimensions and weighting894

coefficients for the reconstruction and the KL divergence loss terms, since the CVAE models still895

struggled to fit the data well when the KL loss weight was too high relative to the reconstruction.896

However, despite this tuning to enable the CVAE to fit the training data well, we found it struggled to897

perform well at test time on unseen objects and scenes.898

A6.3 Common failure modes899

This section discusses some of the common failure modes for each method on our three tasks.900

For Book/Shelf, our method occasionally outputs a solution that ignores an existing book already901

placed in the shelf. We also sometimes face slight imprecision in either the translation or rotation902

prevents the book from being able to be inserted. Similarly, the main failure modes on this task903

from the baselines are more severe imprecision. C2F-QA is very good at predicting voxel positions904

accurately (i.e., detecting voxels near open slots of the shelf) and the rotation predictions are regularly905

close to something that would work for book placement, but the predicted book orientations are906

regularly too misaligned with the shelf to allow the insertion to be completed.907

For Mug/Rack, a scenario where our predictions sometimes fail is when there is a tight fit between908

the nearby peg and the handle of the mug. For C2F-QA, the predictions appear to regularly ignore the909

location of the handle when orienting the mug – the positions are typically reasonable (e.g., right next910

to one of the pegs on a rack) but the orientation oftentimes appears arbitrary. We also find C2F-QA911

achieves the highest training loss on this task (and hypothesize this occurs for the same reason).912

Finally, for Can/Cabinet, a common failure mode across the board is predicting a can position that913

causes a collision between the can being placed and an existing stack of cans, which we don’t allow914

to simulate the requirement of avoiding knocking over an existing stack.915

A6.4 Task Execution916

This section describes additional details about the pipelines used for executing the inferred relations917

in simulation and the real world.918

A6.4.1 Simulated Execution Pipeline919

The evaluation pipeline mirrors the demonstration setup. Objects from the 3D model dataset for the920

respective categories are loaded into the scene with randomly sampled position and orientation. We921

sample a rotation matrix uniformly from SO(3), load the object with this orientation, and constrain922

the object in the world frame to be fixed in this orientation. We do not allow it to fall on the table923

under gravity, as this would bias the distribution of orientations covered to be those that are stable on924

a horizontal surface, whereas we want to evaluate the ability of each method to generalize over all925

of SO(3). In both cases, we randomly sample a position on/above the table that are in view for the926

simulated cameras.927

After loading object and the scene, we obtain point clouds PO and PS and use RPDiff to obtain a928

rearrangement transform to execute. The predicted transformation is applied by resetting the object929

state to a “pre-placement” pose and directly actuating the object with a position controller to follow a930

straight-line path. Task success is then checked based on the criteria described in the section above.931

Pre-placement Offset and Insertion Controller. Complications with automatic success evaluation932

can arise when directly resetting the object state based on the predicted transform. To avoid such933

complications, we simulate a process that mimics a closed-loop controller executing the last few934

inches of the predicted rearrangement from a “pre-placement” pose that is a pure translational offset935

from the final predicted placement. For our quantitative evaluations, we use the ground truth state of936

27

the objects in the simulator together with prior knowledge about the task to determine the direction of937

this translational offset. For the mug/rack task, we determine the axis that goes through the handle938

and offset by a fixed distance in the direction of this axis (taking care to ensure it does not go in the939

opposite direction that would cause an approach from the wrong side of the rack). For the can/cabinet940

task and the book/bookshelf task, we use the known top-down yaw component of the shelf/cabinet941

world frame orientation to obtain a direction that offsets along the opening of the shelf/cabinet.942

To execute the final insertion, we reset to the computed pre-placement pose and directly actuate the943

object with a position controller to follow a straight line path from the pre-placement pose to the944

final predicted placement. To simulate some amount of reactivity that such an insertion controller945

would likely possess in a full-stack rearrangement system, we use the simulator to query contact946

forces that are detected between the object and the scene. If the object pose is not close to the final947

predicted pose when contacts are detected, we back off and sample a small “delta” translation and948

body-frame rotation to apply to the object before attempting another straight line insertion. These949

small adjustments are attempted up to a maximum of 10 times before the execution is counted as a950

failure. If, upon detecting contact between the object and the scene, the object is within a threshold of951

its predicted place pose, the controller is stopped and the object is dropped and allowed to fall under952

gravity (which either allows it to settle stably in its final placement among the scene object, or causes953

it to fall away from the scene). We use this same procedure across all methods that we evaluated in954

our experiments.955

We justify the use of this combination of a heuristically-computed pre-placement pose and “trial-and-956

error” insertion controller because (i) it removes the need for a full object-path planning component957

that searches for a feasible path the object should follow to the predicted placement pose (as this958

planning problem would be very challenging to solve to due all the nearby collisions between the959

object and the scene), (ii) it helps avoid other artificial execution failures that can arise when we960

perform the insertion from the pre-placement pose in a purely open-loop fashion, and (iii) it enables961

us to avoid complications that can arise from directly resetting the object state based on the predicted962

rearrangement transform.963

A6.4.2 Real World Execution Pipeline964

Here, we repeat the description of how we execute the inferred transformation using a robot arm with965

additional details. At test time, we are given point clouds PO and PS of object and scene, and we966

obtain T, the SE(3) transform to apply to the object from RPDiff. T is applied to O by transforming967

an initial grasp pose Tgrasp, which is obtained using a separate grasp predictor [10], by T to obtain a968

placing pose Tplace = TTgrasp. As in the simulation setup, we use a set of task-dependent heuristics969

to compute an additional “pre-placement” pose Tpre-place, from which we follow a straight-line end-970

effector path to reach Tplace. We then use off-the-shelf inverse kinematics and motion planning to971

move the end-effector to Tgrasp and Tplace.972

To ease the burden of collision-free planning with a grasped object whose 3D geometry is unknown,973

we also compute an additional set of pre-grasp and post-grasp waypoints which are likely to avoid974

causing collisions between the gripper and the object during the execution to the grasp pose, and975

collisions between the object and the table or the rest of the scene when moving the object to the976

pre-placement pose. Each phase of the overall path is executed by following the joint trajectory in977

position control mode and opening/closing the fingers at the correct respective steps. The whole978

pipeline can be run multiple times in case the planner returns infeasibility, as the inference methods979

for both grasp and placement generation have the capacity to produce multiple solutions.980

A7 Extra Ablations981

In this section, we perform additional experiments wherein different system components are modified982

and/or ablated.983

With vs. Without Success Classifier. We use neural network hφ to act as a success classifier and984

support selecting a “best” output among theK predictions made by our iterative de-noising procedure.985

Another simple mechanism for selecting an output index kexec for execution would be to uniformly986

sample among the K outputs. However, due to the local nature of the predictions at small values of t987

and the random guess initializations used to begin the inference procedure, some final solutions end988

28

No external noise

With external noise ()

small noise scale

medium noise scale

Figure A6: Examples of running our full iterative evaluation procedure for I steps with different values of
A (and subsequently, D) in our i to t function (which maps from test-time iteration values n = 1, ..., I to
the timestep values t = 1, .., T that were used in training), and with different amounts of external noise TRand

∆

added from the annealed external noise distribution pAnnealedRandSE(3)(·). We observe that with large values of A,
the model makes more predictions with smaller values of t. These predictions are more local and the overall
solutions converge to a more broad set of rearrangement transforms. This sometimes leads to “locally optimal”
solutions that fail at the desired task (see top right corner with A = 10). With small A, the early iterations are
more biased toward the average of a general region, so the set of transforms tends to collapse on a single solution
within a region. By incorporating external noise, a better balance of coverage for smaller values of A and “local
optima” avoidance for larger values of A can be obtained.

in configurations that don’t satisfy the task (see the book poses that converge to a region where there989

is no available slot for placement in Figure A5 for A = 10).990

Therefore, a secondary benefit of incorporating hφ is to filter out predictions that may have converged991

to these “locally optimal” solutions, as these resemble some of the negatives that the classifier has992

seen during training. Indeed, we find the average success rate across tasks with RPDiff when using the993

success classifier is 0.88, while the average success when uniformly sampling the output predictions994

is 0.83. This difference is relatively marginal, indicating that the majority of the predictions made995

by the pose de-noising procedure in RPDiff are precise enough to achieve the task. However, the996

performance gap indicates that there is an additional benefit of using a final success classifier to rank997

and filter the outputs based on predicted success.998

Noise vs. No Noise. In each update of the iterative evaluation procedure, we update the overall999

predicted pose and the object point cloud by a combination of a transform predicted by fθ and a1000

randomly sampled “external noise” transform TRand
∆ . The distribution that TRand

∆ is sampled from is1001

parameterized by the iteration number i to converge toward producing an identity transform so the1002

final pose updates are purely a function of the network fθ.1003

The benefit of incorporating the external noise is to better balance between precision and coverage.1004

First, external noise helps the pose/point cloud at each iteration “bounce out” of any locally optimal1005

regions and end up near regions where a high quality solution exists. Furthermore, if there are1006

many high-quality solutions close together, the external noise on later iterations helps maintain some1007

variation in the pose so that more overall diversity is obtained in the final set of transform solutions.1008

29

For instance, see the qualitative comparisons in Figure A6 that include iterative predictions both with1009

and without external noise. For a value of A = 1 in i to t, only two of the available shelf slots are1010

found when no noise is included. With noise, however, the method finds placements that cover four1011

of the available slots. Quantitatively, we also find that incorporating external noise helps in terms of1012

overall success rate and coverage achieved across tasks. The average
(
Success Rate, Recall

)
across1013

our three tasks with and without noise was found to be (0.88, 0.44) and (0.83, 0.36), respectively.1014

Number of diffusion steps T during training. The total number of steps T and the noise distribution1015

for obtaining perturbation a transform T
(t)
noise affects the magnitude of the translation and rotation1016

predictions that must be made by the model fθ. While we did not exhaustively search over these1017

hyperparameters, early in our experiments we found that very small values of T (e.g., T = 2) cause1018

the predictions to be much more imprecise. This is due to the averaging that occurs between training1019

samples when they are too far away from the ground truth. In this regime, the examples almost1020

always “look multi-modal” to the model. On the other hand, for large values of T (e.g., T = 50),1021

the incremental transforms that are used to de-noise become very small and close to the identity1022

transform. When deployed, models trained on this data end up failing to move the object from its1023

initial configuration because the network has only learned to make extremely small pose updates.1024

We found a moderate value of T = 5 works well across each of our tasks, though other similar values1025

in this range can likely also provide good performance. This approximately leads the average output1026

scale of the model to be near 2.5cm translation and 18-degree rotation. We also observe a benefit in1027

biasing sampling for the timesteps t = 1, ..., T to focus on smaller values. This causes the model to1028

see more examples close to the ground truth and make more precise predictions on later iterations1029

during deployment. We achieve this biased sampling by sampling t from an exponentially decaying1030

categorical probability distribution over discrete values 1, 2, ..., T .1031

Incremental targets vs. full targets. As discussed in Section 3.1, encouraging the network fθ to1032

predict values with roughly equal magnitude is beneficial. To confirm this observation from the1033

literature, we quantitatively evaluate a version of the de-noising model fθ trained to predict the full1034

de-noising transform
[
T

(t)
noise

]−1
. The quantitative

(
Success Rate, Recall

)
results averaged across1035

our three tasks with the incremental de-noising targets are (0.88, 0.44), while the model trained on1036

full de-noising targets are (0.76, 0.34). These results indicate a net benefit in using the incremental1037

transforms as de-noising prediction targets during training.1038

Value of A in i to t. In this section, we discuss the effect of the value A in the i to t function1039

used during the iterative evaluation procedure. The function i to t maps evaluation iteration values i1040

to timestep values t that were seen during training. For instance, we may run the evaluation procedure1041

for 50 iterations, while the model may have only been trained to take values up to t = 5 as input. Our1042

i to t function is parameterized by A such that larger values of A lead to more evaluation iterations1043

with small values of t. As A approaches 1, the number of iterations for each value of t becomes equal1044

(i.e., for A = 1, the number of predictions made for each value of t is equal to I/T).1045

Figure A6 shows qualitative visualizations of de-noising the pose of a book relative to a shelf with1046

multiple available slots with different values of A in the i to t function. This example shows that1047

the solutions are more biased to converge toward a single solution for smaller values of A. This is1048

because more of the predictions use larger values of t, which correspond to perturbed point clouds1049

that are farther from the ground truth in training. For these perturbed point clouds, their association1050

with the correct target pose compared to other nearby placement regions is more ambiguous. Thus,1051

for large t, the model learns an averaged-out solution that is biased toward a region near the average1052

of multiple placement regions that may be close together. On the other hand, for large A, more1053

predictions correspond to small values of t like t = 1 and t = 0. For these timesteps, the model has1054

learned to precisely snap onto whatever solutions may exist nearby. Hence, the pose updates are1055

more local and the overall coverage across the K parallel runs is higher. The tradeoff is that these1056

predictions are more likely to remain stuck near a “locally optimal” region where a valid placement1057

pose may not exist. Table 3 shows the quantitative performance variation on the Book/Shelf task for1058

different values of A in the i to t function. These results reflect the trend toward higher coverage1059

and marginally lower success rate for larger values of A.1060

30

Metric Value of A in i to t

1 2 5 10 20
Success Rate 1.00 0.95 0.96 0.94 0.90
Recall (coverage) 0.37 0.41 0.48 0.48 0.52

Table 3: Performance for different values of A in i to t. Larger values of A obtain marginally better
precision at the expense of worse coverage (lower recall).

A8 Further Discussion on Real-world System Engineering and Limitations1061

This section provides more details on executing rearrangement via pick-and-place on the real robot1062

(to obtain the results shown in Figures 1 and 4) and discusses additional limitations of our approach.1063

A8.1 Executing multiple predicted transforms in sequence in real-world experiments1064

The output of the pose diffusion process in RPDiff is a set of K SE(3) transforms {T(0)
k }Kk=1. To1065

select one for execution, we typically score the outputs with success classifier hφ and search through1066

the solutions while considering other feasibility constraints such as collision avoidance and robot1067

workspace limits. However, to showcase executing a diverse set of solutions in our real-world1068

experiments, a human operator performs a final step of visually inspecting the set of feasible solutions1069

and deciding which one to execute. This was mainly performed to ease the burden of recording robot1070

executions that span the space of different solutions (i.e., to avoid the robot executing multiple similar1071

solutions, which would fail to showcase the diversity of the solutions produced by our method).1072

A8.2 Expanded set of limitations and limiting assumptions1073

Section 7 mentions some of the key limitations of our approach. Here, we elaborate on these and1074

discuss additional limitations, as well as potential avenues for resolving them in future work.1075

• We train from scratch on demonstrations and do not leverage any pre-training or feature-sharing1076

across multiple tasks. This means we require many demonstrations for training. A consequence of1077

this is that we cannot easily provide enough demonstrations to train the diffusion model in the real1078

world (while still enabling it to generalize to unseen shapes, poses, and scene layouts). Furthermore,1079

because we train only in simulation and directly transfer to the real world, the domain gap causes1080

some challenges in sim2real transfer, so we do observe worse overall prediction performance in the1081

real world. This could be mitigated if the number of demonstrations required was lower and we1082

could train the model directly on point clouds that appear similar to those seen during deployment.1083

• In both simulation and the real world, we manually completed offset poses for moving the object1084

before executing the final placement. A more ideal prediction pipeline would involve generating1085

“waypoint poses” along the path to the desired placement (or even the full collision-free path, e.g.,1086

as in [78]) to support the full insertion trajectory rather than just specifying the final pose.1087

• Our method operates using a purely geometric representation of the object and scene. As such,1088

there is no notion of physical/contact interaction between the object and the scene. If physical1089

interactions were considered in addition to purely geometric/kinematic interactions/alignment, the1090

method may be even more capable of accurate final placement prediction and avoid some of the1091

small errors that sometimes occur. For instance, a common error in hanging a mug on a rack is1092

to have the handle just miss the hook on the rack. While these failed solutions are geometrically1093

very close to being correct, physically, they are completely different (i.e., in one, contact occurs1094

between the two shapes, while in the other, there is no contact that can support the mug hanging).1095

• Our method operates using 3D point clouds which are currently obtained from depth cameras.1096

While this permits us to perform rearrangements with a wide variety of real-world objects/scenes1097

that can be sensed by depth cameras, there are many objects which cannot be observed by depth1098

cameras (e.g., thin, shiny, transparent objects). Investigating a way to perform similar relational1099

object-scene reasoning in 6D using signals extracted from RGB sensors would be an exciting1100

avenue to investigate.1101

31

A9 Model Architecture Diagrams1102

Parameter Value
Number of PO and PS points 1024
Batch size 16
Transformer encoder blocks 4
Transformer decoder blocks 4
Attention heads 1
Timestep position embedding Sinusoidal
Transformer embedding dimension 256
Training iterations 500k
Optimizer AdamW
Learning rate 1e-4
Minimum learning rate 1e-6
Learning rate schedule linear warmup, cosine decay
Warmup epochs 50
Optimizer momentum β1 = 0.9, β2 = 0.95
Weight decay 0.1
Maximum training timestep T 5
Maximum PS crop size Lmax PS bounding box maximum extent
Minimum PS crop size Lmin 18cm

1103

Table 4: Training hyperparameters1104

Parameter Value
Number of evaluation iterations I 50
Number of parallel runs K 32
Default value of A in i to t 10
Expression for pAnnealedRandSE(3)(· | i) N (· | 0, σ(i))
σ(i) in pAnnealedRandSE(3) (for trans and rot) a ∗ exp(−bi/I)
Value of a (axis-angle rotation, in degrees) 20
Value of b (axis-angle rotation) 6
Value of a (translation, in cm) 3
Value of b (translation) 6

1105

Table 5: Evaluation hyperparameters1106

32

Downsample point clouds (N +M)× 3

One-hot concat (N +M)× 5

Linear (N +M)× d
Concat pos emb(t) (N +M + 1)× d[

Self-attention (scene)
]
× 4

M × d[
Self-attention (object)

Cross-attention (object, scene)

]
× 4

(N + 1)× d

Global Pooling d

Residual pos emb(t) d

MLP (translation) d→ 3

MLP→ orthonormalize (rotation) d→ 6→ 3× 3

1107

Table 6: Transformer architecture for predicting SE(3) transforms1108

Downsample point clouds (N +M)× 3

One-hot concat (N +M)× 5

Linear (N +M)× d[
Self-attention (scene)

]
× 4

M × d[
Self-attention (object)

Cross-attention (object, scene)

]
× 4

N × d

Global Pooling d

MLP→ sigmoid (success) d→ 1

1109

Table 7: Transformer architecture for predicting success likelihood1110

33

	Introduction
	Problem Setup
	Method
	Object-Scene Point Cloud Diffusion via Iterative Pose De-noising
	Architecture
	Local Conditioning

	Experiments: Design and Setup
	Task Descriptions and Training Data Generation
	Evaluation Environment Setup
	Baselines

	Results
	Simulation: Success Rate Evaluation
	Simulation: Coverage Evaluation
	Simulation: Local Cropping Ablations and Modifications
	Real World: Object rearrangement via pick-and-place

	Related Work
	Limitations and Conclusion
	Additional Test-time and Training Data Visualizations
	Iterative Pose Regression Training and Data Generation
	Training Data Generation
	Pose Prediction Architecture
	Training Details

	Test time evaluation
	Success Classifier Details
	Experimental Setup
	Simulated Experimental Setup
	Real World Experimental Setup

	Evaluation Details
	Tasks and Evaluation Criteria
	Baseline Implementation and Discussion
	Coarse-to-Fine Q-attention (C2F-QA).
	Relational Neural Descriptor Fields (R-NDF).
	Neural Shape Mating (NSM) + CVAE.

	Common failure modes
	Task Execution
	Simulated Execution Pipeline
	Real World Execution Pipeline

	Extra Ablations
	Further Discussion on Real-world System Engineering and Limitations
	Executing multiple predicted transforms in sequence in real-world experiments
	Expanded set of limitations and limiting assumptions

	Model Architecture Diagrams

