528

529

530
531
532
533
534
535
536

538
539
540
541
542

543

544

546
547
548

549

550
551
552

553

554
555
556
557
558
559

560
561
562
563
564
565

566
567
568
569
570
571
572
573
574

Shelving, Stacking, Hanging: Relational Pose Diffusion for
Multi-modal Rearrangement — Supplementary Material

Section Al includes additional visualizations of iterative test-time evaluation on simulated shapes
and examples of object-scene point clouds that were used as training data. In Section A2, we present
details on data generation, model architecture, and training for RPDiff. In Section A3 we elaborate
in more detail on the multi-step iterative regression inference procedure which predicts the set of
rearrangement transforms. Section A4 describes more details about how the success classifier is
trained and used in conjunction with our transform predictor as a simple mechanism for selecting
which among multiple candidate transforms to execute. In Section A5, we describe more details
about our experimental setup, and Section A6 discusses more details on the evaluation tasks and robot
execution pipelines. In Section A7 we present an additional set of ablations to highlight the impact
of other hyperparameters and design decisions. Section A8 describes additional implementation
details for the real-world executions along with an expanded discussion on limitations and avenues
for future work. Finally, Section A9 shows model architecture diagrams a summarized set of relevant
hyperparameters that were used in training and evaluation.

A1l Additional Test-time and Training Data Visualizations

Here, we show additional visualizations of the tasks used in our simulation experiments and the noised
point clouds used to train our pose regression model. Figure A1 shows snapshots of performing the
iterative de-noising at evaluation time with simulated objects, and Figure A2 shows examples of
the combined object-scene point clouds and their corresponding noised versions that were used for
training to perform iterative de-noising.

A2 TIterative Pose Regression Training and Data Generation

In this section, we present details on the data used for training the pose diffusion model in RPDiff,
the neural network architecture we used for processing point clouds and predicting SE(3) transforms,
and details on training the model.

A2.1 Training Data Generation

Objects used in simulated rearrangement demonstrations. We create the rearrangement demon-
strations in simulation with a set of synthetic 3D objects. The three tasks we consider include objects
from five categories: mugs, racks, cans, books, “bookshelves” (shelves partially filled with books),
and “cabinets” (shelves partially-filled with stacks of cans). We use ShapeNet [67] for the mugs and
procedurally generate our own dataset of . obj files for the racks, books, shelves, and cabinets. See
Figure A3 for representative samples of the 3D models from each category.

Procedurally generated rearrangement demonstrations in simulation. The core regression
model fy in RPDIff is trained to process a combined object-scene point cloud and predict an
SE(3) transformation updates the pose of the object point cloud. To train the model to make these
relative pose predictions, we use a dataset of demonstrations showing object and scene point clouds
in final configurations that satisfy the desired rearrangement tasks. Here we describe how we obtain
these “final point cloud” demonstrations

We begin by initializing the objects on a table in PyBullet [19] in random positions and orientations
and render depth images with the object segmented from the background using multiple simulated
cameras. These depth maps are converted to 3D point clouds and fused into the world coordinate
frame using known camera poses. To obtain a diverse set of point clouds, we randomize the number
of cameras (1-4), camera viewing angles, distances between the cameras and objects, object scales,
and object poses. Rendering point clouds in this way allows the model to see some of the occlusion
patterns that occur when the objects are in different orientations and cannot be viewed from below
the table. To see enough of the shelf/cabinet region, we use the known state of the shelf/cabinet to
position two cameras that roughly point toward the open side of the shelf/cabinet.

14

3 s 3 8 8 3
&uﬂmﬁﬂnﬁ
i H o
Tk e UM Oy My SO
hﬁ”n-—

b) Book/Shelf

[
. .
' l

(c) Can/Cabinet

l

Figure A1: Visualizations of multiple steps of iterative de-noising on simulated objects. Starting from the left
side, each object is initialized in a random SE(3) pose in the vicinity of the scene. Over multiple iterations,
RPDiff updates the object pose. The right side shows the final set of converged solutions.

15

Final combined
object/scene

Interpolated
noise steps

Sample w/
cropped scene

Final combined
object/scene

Interpolated
noise steps

Sample w/
cropped scene

Final combined
object/scene

Interpolated
noise steps

Sample w/
cropped scene

Mug/Rack-Multi

Figure A2: Example point clouds from the demonstrations for each task of Can/Cabinet (top), Book/Shelf
(middle) and Mug/RackMed-Multi (bottom). For each task, the top row shows the ground truth combined
object-scene point cloud. Scene point clouds are in black and object point clouds are in dark blue. The middle
row in each task shows an example of creating multiple steps of noising perturbations by uniformly interpolating
a single randomly sampled perturbation transform (with a combination of linear interpolation for the translation
and SLERP for the rotation). Different colors show the point clouds at different interpolated poses. The bottom
row shows a sampled step among these interpolated poses, with the corresponding “noised” object point cloud
(dark blue), ground truth target point cloud (light blue), and cropped scene point cloud (red).

16

575
576
577
578
579

580
581
582
583
584
585
586
587
588
589
590
591
592
593

594

595
596
597

racks

books +
shelves

cans + ' '
cabinets ELL|

I

, _
T

Figure A3: Example 3D models used to train RPDiff and deploy RPDiff on our rearrangement tasks. Mugs
are from ShapeNet [67] while we procedurally generated our own synthetic racks, books, cans, shelves, and
cabinets.

After obtaining the initial object and scene point clouds, we obtain an SE(3) transform to apply to
the object, such that transforming into a “final” objct pose using this transform results in the desired
placement. This transform is used to translate and rotate the initial object point cloud, such that
the combined “final object” and scene point cloud can be used for generating training examples.
Figure A2 shows example visualizations of the final point clouds in the demonstrations for each task.

We obtain the final configuration that satisfies these tasks using a combination of privileged knowledge
about the objects in the simulator (e.g., ground truth state, approximate locations of task-relevant
object parts, 3D mesh models for each object, known placing locations that are available) and human
intuition about the task. To create mug configurations that satisfy “hanging” on one of the pegs of a
rack, we first approximately locate one of the pegs on one of the racks (we select one uniformly at
random) and the handle on the mug (which is straightforward because all the ShapeNet mugs are
aligned with the handle pointing in the +y axis of the body frame). We then transform the mug so that
the handle is approximately “on” the selected hook. Finally, we sample small perturbations about this
nominal pose until we find one that does not lead to any collision/penetration between the two shapes.
We perform an analogous process for the other tasks, where the ground truth available slots in the
bookshelf and positions that work for placing the mug (e.g., on top of a stack, or on a flat shelf region
in between existing stacks) are recorded when the 3D models for the shelves/cabinets are created.
The exact methods for generating these shapes and their corresponding rearrangement poses can be
found in our code.

A2.2 Pose Prediction Architecture

Transformer point cloud processing and pose regression. We follow the Transformer [15] ar-
chitecture proposed in Neural Shape Mating [3] for processing point clouds and computing shape
features that are fed to the output MLPs for pose prediction.

17

598
599
600
601

602
603
604
605

606
607
608
609
610

611

612
613
614
615
616

We first downsample the observed point clouds Po € RN %3 and Pg € RM'*3 using farthest
point sampling into Po € RY*3 and Pg € R*3, We then normalize to create Po"™ € RY*3
and Pg"™ ¢ RM*3 based on the centroid of the scene point cloud and a scaling factor that
approximately scales the combined point cloud to have extents similar to a unit bounding box:

P} PP
D pS » po S,cent 1 = S S : S
Ps= P2 Po=|PT pSer= 3 7pf = max{p?) - min{pf)
S (o) i=1
Pu P
p?,norm'
S,norm S s s
Psnorm — | P2 p; ;norm_ a(pi -p 7cenl) Vie 1,.. M
S,norm
Py
O,norm-
1
O,norm O.notm o s
Ponorm — 2 pi ,NO! — a(pi _ p 7cent) V] c 1’ ,N
O,norm
Py

Next, we “tokenize” the normalized object/scene point clouds into d-dimensional input features
do € RA*d apd os € RMxd by concatenating a two-dimensional one-hot feature to each point in
Po"™ and Ps"™ (to explicitly inform the Transformer which points correspond to the object and
the scene) and projecting to a d-dimensional vector with a linear layer Wy, € R%*5:

Winf)z,norm

— S, norm

bs = WD, f)iS,norm = piS,norm D [1,0] Viel,...M
Winp]S\/}norm

VVinf’g,norm
— O,norm
Wi,p$ pOnom _ pOmm gy 10 1] Vi1, N

¢O - cee 4

Winl_)gfnorm

Note we could also pass the point cloud through a point cloud encoder to pool local features together,
as performed in NSM via DGCNN [17]. We did not experiment with this as we obtained satisfactory
results by directly operating on the individual point features, but it would likely perform similarly or
even better if we first passed through a point cloud encoder. We also incorporate the timestep ¢ that
the current prediction corresponds to by including the position-encoded timestep as an additional
¢o }

input token together with the object point tokens as po € R+ x4 where ¢o = [posemb()

We then use a Transformer encoder and decoder to process the combined tokenized point cloud (see
Figure A4 for visual depiction). This consists of performing multiple rounds of self-attention on
the scene features (encoder) and then performing a combination of self-attention on the object point
cloud together with cross-attention between the object point cloud and the output features of the
scene point cloud (decoder):

qgs = Qe(¢s) ks = Kg(¢s) wvs = Ve(ds)

k T
ss = Attention(gs, ks, vs) = softmax(qS S)vs

Vd
go = Qp(do) ko =Kp(po) vo = Vp(do)
QOkoT)UO

Vd

1 SOS
ho = Attention(q = so, k = 55,0 = 55) = softmaX(i)Ss

Vd

so = Attention(qo, ko, vo) = softmax(

18

617
618
619
620
621

622

624

625
626
627
628
629
630
631

632
633
634
635
636
637
638

Transform P(Ot) to P(Otfl)

Self .-
e
Attn

u
Self . C
e ross
Attn .._> Attn we | (R, t)

(t)
PO Point tokens

t —> pos_emb(t) [

Timestep embedding

Figure A4: Architecture diagram showing a combination of self-attention and cross-attention among object and
scene point cloud for SE(3) transform prediction. The scene point cloud is processed via multiple rounds of
self-attention, while the object features are combined via a combination of self-attention and cross-attention
with the scene point cloud. The timestep embedding is incorporated as both an input token and via a residual
connection with the pooled output feature. The global output feature is used to predict the translation and rotation
that are applied to the object point cloud.

This gives a set of output features ho € R(N+tD*d where d is the dimension of the embedding
space. We compute a global feature by mean-pooling the output point features and averaging with
the timestep embedding as a residual connection, and then use a set of output MLPs to predict the
translation and rotation (the rotation is obtained by converting a pair of 3D vectors into an orthonormal

basis and then stacking into a rotation matrix [10, 18]):
1,1 N
h = — — . R 7 Rd
ho 5\ ; ho,: + pos emb(t)) ho €
t = MLPans(ho) t € R3
a, b =MLP.y(ho) aceR3 beR3
a=2 p=tT@DE g
lall |[01]
|
R=|a b ¢
Il

Local scene point cloud cropping. As shown in the experimental results, local cropping helps
improve performance due to increasing precision while generalizing well to unseen layouts of the
scene. Our “Fixed” cropping method uses a box with fixed side length Lyox = L, centered at the
current object point cloud iterate across all timesteps, and selects scene point cloud points that lie
within this box. Our “Varying” cropping method adjusts the length of the box based on the timestep,
with larger timesteps using a larger crop, and smaller timesteps using a smaller crop. We parameterize
this as a function of the timestep ¢ via the following linear decay function:

T—1t
Lbox = Lmin + (Lmax - Lmin)T
where Ly, and Ly,.x are hyperparameters.

Applying Predicted Transforms to Object Point Cloud. We apply the predicted rotation and
translation by first mean-centering the object point cloud, applying the rotation, and then translating
back to the original world frame position, and then finally translating by the predicted translation.
This helps reduce sensitivity to the rotation prediction, whereas if we rotate about the world frame
coordinate axes, a small rotation can cause a large configuration change in the object.

19

639

640
641

642
643
644
645
646

647

649
650
651
652
653
654
655

656

658
659
660
661

662
663
664
665
666
667
668
669
670

671
672
673
674
675

676

677

679
680

. Number
Skill Type of samples
Mug/EasyRack 3190
Mug/MedRack 950
Mug/Multi-MedRack 3240
Book/Shelf 1720
Can/Cabinet 2790

Table 2: Number of demonstrations used in each task. The same set of demonstrations is used to train
both our method and each baseline method.

A2.3 Training Details

Here we elaborate on details regarding training the RPDiff pose diffusion model using the demonstra-
tion data and model architecture described in the sections above. A dataset sample consists of a tuple

(Po,Pg). From this tuple, we want to construct a perturbed object point cloud Po) fora particular
timestep ¢ € 1, ..., T, where lower values of ¢ correspond to noised point clouds that are more similar
to the ground truth, and larger values of 7" are more perturbed. At the limit, the distribution of point
clouds corresponding to ¢ = 7" should approximately match the distribution we will sample from
when initializing the iterative refinement procedure at test time.

Noising schedules and perturbation schemes are an active area of research currently in the diffusion
modeling litierature [68, 69], and there are many options available for applying noise to the data
samples. We apply a simple method that makes use of uniformly interpolated SE(3) transforms.
First, we sample one “large” transform from the same distribution we use to initialize the test-time
evaluation procedure from — rotations are sampled uniformly from SO(3) and translations are
sampled uniformly within a bounding box around the scene point cloud. We then use a combination
of linear interpolation on the translations, and spherical-linear interpolation (SLERP) on the rotations,
to obtain a sequence of 7" uniformly-spaced transforms (see Fig. A2 for example visualizations).
Based on the sampled timestep ¢, we select the transform corresponding to timestep ¢ in this sequence

as the noising perturbation Tr(lf))ise, and use the transform corresponding to timestep ¢ — 1 to compute
the “incremental”/“interval” transform to use as a prediction target. As discussed in Section 3.1, using
the incremental transform as a prediction target helps maintain a more uniform output scale among
the predictions across samples, which is beneficial for neural network optimization as it minimizes
gradient fluctuations [14]. We also provide quantitative evidence that predicting only the increment

instead of the full inverse perturbation benefits overall performance. See Section A7 for details.

The main hyperparameter for this procedure is the number of steps 7'. In our experiments, we
observed it is important to find an appropriate value for 7. When T’ is too large, the magnitude of the
transforms between consecutive timesteps is very small, and the iterative predictions at evaluation
time make tiny updates to the point cloud pose, oftentimes failing to converge. When 7' is too small,
most of the noised point clouds will be very far from the ground truth and might look similar across
training samples but require conflicting prediction targets, which causes the model to fit the data
poorly. We found that values in the vicinity of 7' = 5 work well across our tasks (" = 2 and T' = 50
both did not work well). This corresponds to an average perturbation magnitude of 2.5cm for the
translation and 18 degrees for the rotation.

After obtaining the ground truth prediction target, we compute the gradient with respect to the loss
between the prediction and the ground truth, which is composed of the mean-squared translation error,
a geodesic rotation distance error [12, 13], and the chamfer distance between the point cloud obtained
by applying the predicted transform and the ground-truth next point cloud. We also found the model
to work well using either just the chamfer distance loss or the combined translation/rotation losses.

We trained a separate model for each task, with each model training for 500 thousand iterations on
a single NVIDIA V100 GPU with a batch size of 16. We used a learning rate schedule of linear
warmup and cosine decay, with a maximum learning rate of 1e-4. Training takes about three days.
We train the models using the AdamW [70] optimizer. Table 2 includes the number of demonstrations
we used for each task.

20

681

682

683
684
685

686
687

688
689
690
691

693
694
695
696

710
71
712
713

714
715
716
77

718
719
720
721
722
723

724
725
726

A3 Test time evaluation

Here, we elaborate in more detail on the iterative de-noising procedure performed at test time. Starting

with Po and Pg, we sample K initial transforms {Tg)},{.{:l, where initial rotations are drawn from
a uniform grid over SO(3) , and we uniformly sample translations that position the object within the
bounding box of the scene point cloud. We create K copies of Pg and apply each corresponding

transform to create initial object point clouds {Pg)k}szl where f’g)k = T;CI)PO. We then perform
the following update for I steps for each of the K initial transforms:
pl-1) — (TlendTA)T(n) P(C;H) _ (TiandTA)f)g)

where transform T » is obtained as Ta = fo(PY), Ps, pos_emb(i_to_t(i))). Transform TR i
sampled from a timestep-conditioned uniform distribution that converges toward deterministically
producing an identify transform as ¢ tends toward 0. We obtain the random noise by sampling from
a Gaussian distribution for both translation and rotation. For the translation, we directly output a
3D vector with random elements. For the rotation, we represent the random noise via axis angle 3D
rotation RY, € R3 and convert it to a rotation matrix using the SO(3) exponential map [71] (and a
3D translation t° € R?). We exponentially decay the variance of these noise distributions so that
they produce nearly zero effect as the iterations tend toward 0. We perform the updates in a batch.
The full iterative inference procedure can be found in Alg. 1.

Evaluation timestep scheduling and prediction behavior for different timestep values.. The
function i_to_t is used to map the iteration number ¢ to a timestep value ¢ that the model has been
trained on. This allows the number of steps during evaluation (/) to differ from the number of steps
during training (7). For example, we found values of 7" = 5 to work well during training but used
a default value of I = 50 for evaluation. We observed this benefits performance since running
the iterative evaluation procedure for many steps helps convergence and enables “bouncing out” of
“locally optimal” solutions. However, we found that if we provide values for ¢ that go beyond the
support of what the model is trained on (i.e., for 7 > T), the predictions perform poorly. Thus, the
function i_to_t ensures all values ¢ € 1, ..., I are mapped to an appropriate value ¢ € 1, ...,7T that
the model has seen previously.

There are many ways to obtain this mapping, and different implementations produce different kinds
of behavior. This is because different i_to_t schedules emphasize using the model in different ways
since the model learns qualitatively different behavior for different values of t. Specifically, for
smaller values of ¢, the model has only been trained on “small basins of attraction” and thus the
predictions are more precise and local, which allows the model to “snap on” to any solution in the
immediate vicinity of the current object iterate. Figure A5 shows this in a set of artifically constrained
evaluation runs where the model is constrained to use the same timestep for every stepi =1, ..., I.

However, this can also lead the model to get stuck near regions that are far from any solution. On the
other hand, for larger perturbations, the data starts to look more multi-modal and the model averages
out toward either a biased solution in the direction of a biased region, or just an identity transform
that doesn’t move the object at all.

We find the pipeline performs best when primarily using predictions corresponding to smaller
timesteps, but still incorporating predictions from higher timesteps. We thus parameterize the
timestep schedule i_to_t such that it exponentially increases the number of predictions used for
smaller values of ¢t. While there are many ways this can be implemented, we use the following
procedure: we construct an array D of length I where each element lies between 1 and 7', and define
the mapping i_to_t as
t=1itot(i)=D; subscript ¢ denotes the i-th element of D

The array D is parameterized by a constant value A (where higher value of A corresponds to using
more predictions with smaller timesteps, while A = 1 corresponds to using each timestep an equal
number of times) and ensures that predictions for each timestep are made at least once:

21

Algorithm 1 Rearrangement Transform Inference via Iterative Point Cloud De-noising

1:

R

10:
11:

12:

13:
14:

15:
16:

17:
18:

19:
20:
21:

22:

23:
24

25:

26:
27:

28:

29:
30:
31:

32:
33:

34

Input: Scene point cloud Pg, object point cloud P, number of parallel runs K, number of
iterations to use in evaluation I, number of iterations used in training 7', pose regression model fo,
success classifier hg, function to map from evaluation iteration values to training iteration values
i_to_t, parameters for controlling what fraction of evaluation iterations correspond to smaller
training timestep values A, local cropping function crop, distribution for sampling external pose

NOISE PAnnealedRandSE(3)

Init transforms, transformed object, and cropped scene
for kin1,...,K do
H
REC)~ Punitso3)(+)
H
t/g{;) ~ pUnitBoundingBox(. | PO; PS)
~) _ |R Ot
T = [0 1
H(H) _ n(H)
Po =T, 'Po
5 (H 5 (H
P(S,k) = crop(PE)Jl,Ps)
end for
Init set of transform and final point cloud solutions and classifier scores
init S=10
init 7 =10
init P =10
Iterative pose regression
for7in I,...,1 do
Map evaluation timestep to in-distribution training timestep
t=1ito t(i,A)
forkin1,... K do
2 1) plt
Tak = Jo(Pg)y, P) pos_emb(1))
if i > (0.2 I) then
Apply random external noise, with noise magnitude annealed as ¢ approaches 0
T]Xt'}f ~ DAnnealedRandSEG3) (- | ©)

else
Remove all external noise for the last 20% of the iterations
TRand =1
Ak — 4
end if

(i1 . - (i
T, = TRYET AT
. 1 L
Pg,k = TIX‘,[;STA,kPE;),k
5(i—1 (i1
Pg,k) — crop(ngk),Ps,t,T)
if == 1 then
Predict success probabilities from final objects
0
Sk = h¢’(P(O,)k’ Ps)
Save final rearrangement solutions and predicted scores
S=8U {Sk}
T =TUu{T{}
P =TU{PS,
end if
end for
end for
Decision rule (e.g., argmax) for output
k" = argmax(S)
Tout — T[koul]
Return top-scoring transform and full set of solutions for potential downstream planning/search
return T, 7, P, S

22

727
728

729

730

731

732
733

fo (Po, Ps, pos_emb(l))

fo(Po,Ps,pos_emb(2))

f0 (POa PSa pos_emb(3))

fo(Po,Ps,pos_emb(4))

fo (Po, Pg, pos_emb(5))

UEEE=E
2R = e
ERESE
EEEEE

Figure AS: Examples of running our full iterative evaluation procedure for I steps with the model constrained
to use a fixed value for ¢ on each iteration. This highlights the different behavior the model has learned for
different timesteps in the de-noising process. For timesteps near 1, the model has learned to make very local
updates that “snap on” to whatever features are in the immediate vicinity of the object. As the timesteps get
larger, the model considers a more global context and makes predictions that reach solutions that are farther
away from the initial object pose. However, these end up more biased to a single solution in a region where there
may be many nearby solutions (see the top row of shelves where there are four slots that the model finds when
using timestep 1, but the model only reaches two of them with timestep ¢ = 2 and one of them with ¢ = 3). For
even larger values of ¢, the model has learned a much more biased and “averaged out” solution that fails to rotate
the object and only approximately reaches the scene regions corresponding to valid placements.

B=[AT, AT-1. A% AY Exponentially decreasing values
= [#1 Normalize, scale up by I, and round up (minimum value per element is 1)
Dim1 A
~ CxI o _
C=[—F——1 Normalize again so ZCi ~IwithC;eNVi=1,..,T
> i1 Ci i=1
T T
C,=Cy— (Z C;—1) Ensure Z C; = I exactly
i=1 i=1

Then, from C, we construct multiple arrays with values ranging from 1 to 7, each with lengths
corresponding to valuesin C, ~ B
D1 = [D171 D172] with Dl,k =1Vk e]., ...,Cl

D2 = [DQ,I D272] Wlth DQ,k = 2Vk S 1, -~-aé2

DT = [DT,I DT,2] with DT,k: =TVkel, -~-7CT
and then stack these arrays together to obtain D as a complete array of length I:

D = [Dy Ds ... D1

A4 Success Classifier Details

In this section, we present details on training and applying the success classifier i that we use for
ranking and filtering the set of multiple predicted SE(3) transforms produced by RPDiff.

23

734
735
736
737
738
739

740
741
742

743
744
745
746

747

748

749

751
752
753
754

755

756
757
758
759
760
761
762
763

764

765
766
767

768

769
770
771
772
773
774
775
776
77
778

Training Data. To train the success classifier, we use the demonstrations to generate positive and
negative examples, where the positives are labeled with success likelihood 1.0 and the negatives have
success likelihood 0.0. The positives are simply the unperturbed final point clouds and the negatives
are perturbations of the final object point clouds. We use the same sampling scheme of sampling a
rotation from a uniform distribution over SO(3) and sampling a translation uniformly from within a
bounding box around the scene point cloud.

Model Architecture. We use an identical Transformer architecture as described in Section A2,
except that we use a single output MLP followed by a sigmoid to output the predicted success
likelihood, we do not condition on the timestep, and we provide the uncropped scene point cloud.

Training Details. We supervise the success classifier predictions with a binary cross entropy loss
between the predicted and ground truth success likelihood. We train for 500k iterations with batch size
64 on a V100 GPU which takes 5 days. We augment the data by rotating the combined object-scene
point cloud by random 3D rotations to increase dataset diversity.

AS Experimental Setup
This section describes the details of our experimental setup in simulation and the real world.

AS.1 Simulated Experimental Setup

We use PyBullet [19] and the AIRobot [72] library to set up the tasks in the simulation and quantita-
tively evaluate our method along with the baselines. The environment consists of a table with the
shapes that make up the object and the scene, and the multiple simulated cameras that are used to
obtain the fused 3D point cloud. We obtain segmentation masks of the object and the scene using
PyBullet’s built-in segmentation abilities.

A5.2 Real World Experimental Setup

In the real world, we use a Franka Robot arm with a Robotiq 2F140 parallel jaw gripper attached
for executing the predicted rearrangements. We also use four Realsense D415 RGB-D cameras
with known extrinsic parameters. Two of these cameras are mounted to provide a clear, close-up
view of the object, and the other two are positioned to provide a view of the scene objects. We
use a combination of Mask-RCNN, density-based Euclidean clustering [73], and manual keypoint
annotation to segment the object, and use simple cropping heuristics to segment the overall scene
from the rest of the background/observation (e.g., remove the table and the robot from the observation
so we just see the bookshelf with the books on it).

A6 Evaluation Details

This section presents further details on the tasks we used in our experiments, the baseline methods
we compared RPDiff against, and the mechanisms we used to apply the predicted rearrangement to
the object in simulation and the real world.

A6.1 Tasks and Evaluation Criteria

Task Descriptions. We consider three relational rearrangement tasks for evaluation: (1) hanging a
mug on the hook of a rack, where there might be multiple racks on the table, and each rack might
have multiple hooks, (2) inserting a book into one of the multiple open slots on a randomly posed
bookshelf that is partially filled with existing books, and (3) placing a cylindrical can upright either
on an existing stack of cans or on a flat open region of a shelf where there are no cans there. Each
of these tasks features many placing solutions that achieve the desired relationship between the
object and the scene (e.g., multiple slots and multiple orientations can be used for placing, multiple
racks/hooks and multiple orientations about the hook can be used for hanging, multiple stacks and/or
multiple regions in the cabinet can be used for placing the can, which itself can be placed with either
flat side down and with any orientation about its cylindrical axis).

24

779
780
781
782
783
784

786
787

789
790
791
792
793
794

795

796
797

798

799
800
801
802
803

805
806
807

808
809
810
811
812

814
815
816
817

818
819
820
821
822

823
824
825
826
827
828

830
831

Evaluation Metrics and Success Criteria. To quantify performance, we report the average success
rate over 100 trials, where we use the ground truth simulator state to compute success. For a trial to
be successful, the object O and S must be in contact and the object must have the correct orientation
relative to the scene (for instance, the books must be on the shelf, and must not be oriented with the
long side facing into the shelf). For the can/cabinet task, we also ensure that the object O did not run
into any existing stacks in the cabinet, to simulate the requirement of avoiding hitting the stacks and
knocking them over.

We also quantify coverage via recall between the full set of predicted solutions and the precomputed
set of solutions that are available for a given task instance. This is computed by finding the closest
prediction to each of the precomputed solutions and checking whether the translation and rotation
error between the prediction and the solution is within a threshold (we use 3.5cm for the translation
and 5 degrees for the rotation). If the error is within this threshold, we count the solution as “detected”.
We compute recall for a trial as the total number of “detected solutions” divided by the total number of
solutions available and report overall recall as the average over the 100 trials. Precision is computed
in an analogous fashion but instead checks whether each prediction is within the threshold for at least
one of the ground truth available solutions.

A6.2 Baseline Implementation and Discussion

In this section, we elaborate on the implementation of each baseline approach in more detail and
include further discussion on the observed behavior and failure modes of each approach.

A6.2.1 Coarse-to-Fine Q-attention (C2F-QA).

C2F-QA adapts the classification-based approach proposed in [8], originally designed for pick-and-
place with a fixed robotic gripper, to the problem of relational object rearrangement. We voxelize the
scene and use a local PointNet [74] that operates on the points in each voxel to compute per-voxel
input features. We then pass this voxel feature grid through a set of 3D convolution layers to compute
an output voxel feature grid. Finally, the per-voxel output features are each passed through a shared
MLP which predicts per-voxel scores. These scores are normalized with a softmax across the grid to
represent a distribution of “action values” representing the “quality”” of moving the centroid of the
object to the center of each respective voxel. This architecture is based on the convolutional point
cloud encoder used in Convolutional Occupany Networks [7].

To run in a coarse-to-fine fashion, we take the top-scoring voxel position (or the top-k voxels if
making multiple predictions), translate the object point cloud to this position, and crop the scene
point cloud to a box around the object centroid position. From this cropped scene and the translated
object, we form a combined object-scene input point cloud and re-voxelize just this local portion of
the point cloud at a higher resolution. We then compute a new set of voxel features with a separate
high-resolution convolutional point cloud encoder. Finally, we pool the output voxel features from
this step and predict a distribution over a discrete set of rotations to apply to the object. We found
difficulty in using the discretized Euler angle method that was applied in [8], and instead directly
classify in a binned version of SO(3) by using an approximate uniform rotation discretization method
that was used in [75].

We train the model to minimize the cross entropy loss for both the translation and the rotation (i.e.,
between the ground truth voxel coordinate containing the object centroid in the demonstrations and
the ground truth discrete rotation bin). We use the same object point cloud perturbation scheme to
create initial “noised” point clouds for the model to de-noise but have the model directly predict how
to invert the perturbation transform in one step.

Output coverage evaluation. Since C2F-QA performs the best in terms of task success among all
the baselines and is naturally suited for handling multi-modality by selecting more than just the
argmax among the binned output solutions, we evaluate the ability of our method and C2F-QA to
achieve high coverage among the available placing solutions while still achieving good precision
(see Section 5.2). To obtain multiple output predictions from C2F-QA, we first select multiple voxel
positions using the top-k voxel scores output by the PointNet — 3D CNN — MLP pipeline. We then
copy the object point cloud and translate it to each of the selected voxel positions. For each selected
position, we pool the local combined object-scene point cloud features and use the pooled features
to predict a distribution of scores over the discrete space of rotations. Similar to selecting multiple

25

832
833

834
835
836
837
838
839
840

841
842
843
844
845
846
847
848
849
850
851
852

853

854
855
856

858
859
860
861
862

863
864
865
866
867
868
869
870
871
872

873

874
875

877
878
879
880
881
882
883
884
885

voxel positions, we select the top-k scoring rotations and use this full set of multiple translations +
multiple rotations-per-translation as the set of output transforms to use for computing coverage.

Relationship to other “discretize-then-classify’’ methods. C2F-QA computes per-voxel features
from the scene and uses these to output a normalized distribution of scores representing the quality of
a “translation” action executed at each voxel coordinate. This idea of discretizing the scene and using
each discrete location as a representation of a translational action has been successfully applied by a
number of works in both 2D and 3D [44, 47, 76]. In most of these pipelines, the translations typically
represent gripper positions, i.e., for grasping. In our case, the voxel coordinates represent a location
to move the object for rearrangement.

However, techniques used by “discreteize-then-classify” methods for rotation prediction somewhat
diverge. C2F-QA and the recently proposed PerceiverActor [47] directly classify the best discrete
rotation based on pooled network features. On the other hand, TransporterNets [44] and O20-
Afford [46] exhaustively evaluate the quality of different rotation actions by “convolving” some
representation of the object being rearranged (e.g., a local image patch or a segmented object point
cloud) in all possible object orientations, with respect to each position in the entire discretized scene
(e.g., each pixel in the overall image or each point in the full scene point cloud). The benefit is the
ability to help the model more explicitly consider the “interaction affordance” between the object and
the scene at various locations and object orientations and potentially make a more accurate prediction
of the quality of each candidate rearrangement action. However, the downside of this “exhaustive
search” approach is the computational and memory requirements are much greater, hence these
methods have remained limited to lower dimensions.

A6.2.2 Relational Neural Descriptor Fields (R-NDF).

R-NDF [20] uses a neural field shape representation trained on category-level 3D models of the objects
used in the task. This consists of a PointNet encoder with SO(3)-equivariant Vector Neuron [77]
layers and an MLP decoder. The decoder takes as input a 3D query point and the output of the point
cloud encoder, and predicts either the occupancy or signed distance of the 3D query point relative to
the shape. After training, a point or a rigid set of points in the vicinity of the shape can be encoded by
recording their feature activations of the MLP decoder. The corresponding point/point set relative to a
new shape can then be found by locating the point/point set with the most similar decoder activations.
These point sets can be used to parameterize the pose of local oriented coordinate frames, which can
represent the pose of a secondary object or a gripper that must interact with the encoded object.

R-NDFs have been used to perform relational rearrangement tasks via the process of encoding task-
relevant coordinate frames near the object parts that must align to achieve the desired rearrangement,
and then localizing the corresponding parts on test-time objects so a relative transform that aligns them
can be computed. We use the point clouds from the demonstrations to record a set of task-relevant
coordinate frames that must be localized at test time to perform each of the tasks in our experiments.
The main downside of R-NDF is if the neural field representation fails to faithfully represent the shape
category, the downstream corresponding matching also tends to fail. Indeed, owing to the global
point cloud encoding used by R-NDF, the reconstruction quality on our multi-rack/bookshelf/cabinet
scenes is quite poor, so the subsequent correspondence matching does not perform well on any of the
tasks we consider.

A6.2.3 Neural Shape Mating (NSM) + CVAE.

Neural Shape Mating (NSM) [3] uses a Transformer to process a pair of point clouds and predict how
to align them. The method was originally deployed on the task of “mating” two parts of an object that
has been broken but can be easily repurposed for the analogous task of relational rearrangement given
a point cloud of a manipulated object and a point cloud of a scene/“parent object”. Architecturally,
NSM is the same as our relative pose regression model, with the key differences of (i) being trained
on arbitrarily large perturbations of the demonstration point clouds, (ii) not using local cropping,
and (iii) only making a single prediction. We call this baseline “NSM-base” because we do not
consider the auxiliary signed-distance prediction and learned discriminator proposed in the original
approach [3]. As shown in Table 1, the standard version of NSM fails to perform well on any of
the tasks that feature multi-modality in the solution space (nor can the model successfully fit the
demonstration data). Therefore, we adapted it into a conditional variational autoencoder (CVAE) that
at least has the capacity to learn from multi-modal data and output a distribution of transformations.

26

886
887
888
889
890
891
892
893
894
895
896
897
898

899

900

901
902
903
904
905
906
907

908
909
910
911
912

914
915

916

917
918

919

920
921
922
923
924

926
927

928
929
930
931

932
933
934
935
936

We use the same Transformer architecture for both the CVAE encoder and decoder with some small
modifications to the inputs and outputs to accommodate (i) the encoder also encoding the ground
truth de-noising transforms and predicting a latent variable z, and (ii) the decoder conditioning on z
in addition to the combined object-scene point cloud to reconstruct the transform. We implement
this with the same method that was used to incorporate the timestep information in our architecture —
for the encoder, we include the ground truth transform as both an additional input token and via a
residual connection with the global output feature, and for the decoder, we include the latent variable
in the same fashion. We also experimented with concatenating the residually connected features and
did not find any benefit. We experimented with different latent variable dimensions and weighting
coefficients for the reconstruction and the KL divergence loss terms, since the CVAE models still
struggled to fit the data well when the KL loss weight was too high relative to the reconstruction.
However, despite this tuning to enable the CVAE to fit the training data well, we found it struggled to
perform well at test time on unseen objects and scenes.

A6.3 Common failure modes

This section discusses some of the common failure modes for each method on our three tasks.

For Book/Shelf, our method occasionally outputs a solution that ignores an existing book already
placed in the shelf. We also sometimes face slight imprecision in either the translation or rotation
prevents the book from being able to be inserted. Similarly, the main failure modes on this task
from the baselines are more severe imprecision. C2F-QA is very good at predicting voxel positions
accurately (i.e., detecting voxels near open slots of the shelf) and the rotation predictions are regularly
close to something that would work for book placement, but the predicted book orientations are
regularly too misaligned with the shelf to allow the insertion to be completed.

For Mug/Rack, a scenario where our predictions sometimes fail is when there is a tight fit between
the nearby peg and the handle of the mug. For C2F-QA, the predictions appear to regularly ignore the
location of the handle when orienting the mug — the positions are typically reasonable (e.g., right next
to one of the pegs on a rack) but the orientation oftentimes appears arbitrary. We also find C2F-QA
achieves the highest training loss on this task (and hypothesize this occurs for the same reason).

Finally, for Can/Cabinet, a common failure mode across the board is predicting a can position that
causes a collision between the can being placed and an existing stack of cans, which we don’t allow
to simulate the requirement of avoiding knocking over an existing stack.

A6.4 Task Execution

This section describes additional details about the pipelines used for executing the inferred relations
in simulation and the real world.

A6.4.1 Simulated Execution Pipeline

The evaluation pipeline mirrors the demonstration setup. Objects from the 3D model dataset for the
respective categories are loaded into the scene with randomly sampled position and orientation. We
sample a rotation matrix uniformly from SO(3), load the object with this orientation, and constrain
the object in the world frame to be fixed in this orientation. We do not allow it to fall on the table
under gravity, as this would bias the distribution of orientations covered to be those that are stable on
a horizontal surface, whereas we want to evaluate the ability of each method to generalize over all
of SO(3). In both cases, we randomly sample a position on/above the table that are in view for the
simulated cameras.

After loading object and the scene, we obtain point clouds P and Pg and use RPDiff to obtain a
rearrangement transform to execute. The predicted transformation is applied by resetting the object
state to a “pre-placement” pose and directly actuating the object with a position controller to follow a
straight-line path. Task success is then checked based on the criteria described in the section above.

Pre-placement Offset and Insertion Controller. Complications with automatic success evaluation
can arise when directly resetting the object state based on the predicted transform. To avoid such
complications, we simulate a process that mimics a closed-loop controller executing the last few
inches of the predicted rearrangement from a “pre-placement” pose that is a pure translational offset
from the final predicted placement. For our quantitative evaluations, we use the ground truth state of

27

937
938
939
940
941
942

943
944

946
947
948
949
950
951

953
954
955

956
957
958
959
960

962
963

964

965
966

968
969
970
971
972

973
974
975

977
978
979
980

981

982
983

984
985
986
987
988

the objects in the simulator together with prior knowledge about the task to determine the direction of
this translational offset. For the mug/rack task, we determine the axis that goes through the handle
and offset by a fixed distance in the direction of this axis (taking care to ensure it does not go in the
opposite direction that would cause an approach from the wrong side of the rack). For the can/cabinet
task and the book/bookshelf task, we use the known top-down yaw component of the shelf/cabinet
world frame orientation to obtain a direction that offsets along the opening of the shelf/cabinet.

To execute the final insertion, we reset to the computed pre-placement pose and directly actuate the
object with a position controller to follow a straight line path from the pre-placement pose to the
final predicted placement. To simulate some amount of reactivity that such an insertion controller
would likely possess in a full-stack rearrangement system, we use the simulator to query contact
forces that are detected between the object and the scene. If the object pose is not close to the final
predicted pose when contacts are detected, we back off and sample a small “delta” translation and
body-frame rotation to apply to the object before attempting another straight line insertion. These
small adjustments are attempted up to a maximum of 10 times before the execution is counted as a
failure. If, upon detecting contact between the object and the scene, the object is within a threshold of
its predicted place pose, the controller is stopped and the object is dropped and allowed to fall under
gravity (which either allows it to settle stably in its final placement among the scene object, or causes
it to fall away from the scene). We use this same procedure across all methods that we evaluated in
our experiments.

We justify the use of this combination of a heuristically-computed pre-placement pose and “trial-and-
error” insertion controller because (i) it removes the need for a full object-path planning component
that searches for a feasible path the object should follow to the predicted placement pose (as this
planning problem would be very challenging to solve to due all the nearby collisions between the
object and the scene), (ii) it helps avoid other artificial execution failures that can arise when we
perform the insertion from the pre-placement pose in a purely open-loop fashion, and (iii) it enables
us to avoid complications that can arise from directly resetting the object state based on the predicted
rearrangement transform.

A6.4.2 Real World Execution Pipeline

Here, we repeat the description of how we execute the inferred transformation using a robot arm with
additional details. At test time, we are given point clouds P and Pg of object and scene, and we
obtain T, the SE(3) transform to apply to the object from RPDiff. T is applied to O by transforming
an initial grasp pose Tgrasp, Which is obtained using a separate grasp predictor [10], by T to obtain a
placing pose Tplace = T'Tgrasp. As in the simulation setup, we use a set of task-dependent heuristics
to compute an additional “pre-placement” pose T'pre-place, from which we follow a straight-line end-
effector path to reach Tpj.c.. We then use off-the-shelf inverse kinematics and motion planning to
move the end-effector to Tgpasp and Tpjace-

To ease the burden of collision-free planning with a grasped object whose 3D geometry is unknown,
we also compute an additional set of pre-grasp and post-grasp waypoints which are likely to avoid
causing collisions between the gripper and the object during the execution to the grasp pose, and
collisions between the object and the table or the rest of the scene when moving the object to the
pre-placement pose. Each phase of the overall path is executed by following the joint trajectory in
position control mode and opening/closing the fingers at the correct respective steps. The whole
pipeline can be run multiple times in case the planner returns infeasibility, as the inference methods
for both grasp and placement generation have the capacity to produce multiple solutions.

A7 Extra Ablations

In this section, we perform additional experiments wherein different system components are modified
and/or ablated.

With vs. Without Success Classifier. We use neural network hy to act as a success classifier and
support selecting a “best” output among the K predictions made by our iterative de-noising procedure.
Another simple mechanism for selecting an output index ke, for execution would be to uniformly
sample among the K outputs. However, due to the local nature of the predictions at small values of ¢
and the random guess initializations used to begin the inference procedure, some final solutions end

28

989
990

991
992
993
994
995
996

998

999
1000
1001
1002
1003

1004
1005
1006
1007
1008

No external noise

A=10

D =[1,1,1,5,42]

D = [10,10, 10, 10, 10]

RS
EEE
RS

With external noise (TRand)
A=1
D = [10,10,10, 10, 10]

small noise scale

A=5

D=11,1,2,9,37]

medium noise scale

=N 288

-

Figure A6: Examples of running our full iterative evaluation procedure for I steps with different values of
A (and subsequently, D) in our i_to_t function (which maps from test-time iteration values n = 1, ..., I to
the timestep values t = 1, .., T" that were used in training), and with different amounts of external noise TX™"
added from the annealed external noise distribution panneatedrandse) (). We observe that with large values of A,
the model makes more predictions with smaller values of ¢. These predictions are more local and the overall
solutions converge to a more broad set of rearrangement transforms. This sometimes leads to “locally optimal”
solutions that fail at the desired task (see top right corner with A = 10). With small A, the early iterations are
more biased toward the average of a general region, so the set of transforms tends to collapse on a single solution
within a region. By incorporating external noise, a better balance of coverage for smaller values of A and “local
optima” avoidance for larger values of A can be obtained.

in configurations that don’t satisfy the task (see the book poses that converge to a region where there
is no available slot for placement in Figure A5 for A = 10).

Therefore, a secondary benefit of incorporating h is to filter out predictions that may have converged
to these “locally optimal” solutions, as these resemble some of the negatives that the classifier has
seen during training. Indeed, we find the average success rate across tasks with RPDiff when using the
success classifier is 0.88, while the average success when uniformly sampling the output predictions
is 0.83. This difference is relatively marginal, indicating that the majority of the predictions made
by the pose de-noising procedure in RPDiff are precise enough to achieve the task. However, the
performance gap indicates that there is an additional benefit of using a final success classifier to rank
and filter the outputs based on predicted success.

Noise vs. No Noise. In each update of the iterative evaluation procedure, we update the overall
predicted pose and the object point cloud by a combination of a transform predicted by fy and a
randomly sampled “external noise” transform TR, The distribution that T8 is sampled from is
parameterized by the iteration number 7 to converge toward producing an identity transform so the
final pose updates are purely a function of the network fy.

The benefit of incorporating the external noise is to better balance between precision and coverage.
First, external noise helps the pose/point cloud at each iteration “bounce out” of any locally optimal
regions and end up near regions where a high quality solution exists. Furthermore, if there are
many high-quality solutions close together, the external noise on later iterations helps maintain some
variation in the pose so that more overall diversity is obtained in the final set of transform solutions.

29

1009
1010
1011
1012
1013
1014

1015

1016
1017
1018
1019
1020
1021
1022
1023
1024

1025
1026
1027
1028
1029
1030
1031

1032
1033
1034

1035
1036
1037
1038

1039
1040
1041
1042
1043
1044
1045

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

For instance, see the qualitative comparisons in Figure A6 that include iterative predictions both with
and without external noise. For a value of A = 1 in i_to_t, only two of the available shelf slots are
found when no noise is included. With noise, however, the method finds placements that cover four
of the available slots. Quantitatively, we also find that incorporating external noise helps in terms of
overall success rate and coverage achieved across tasks. The average (Success Rate, Recall) across
our three tasks with and without noise was found to be (0.88, 0.44) and (0.83, 0.36), respectively.

Number of diffusion steps 7" during training. The total number of steps 7" and the noise distribution

for obtaining perturbation a transform Tflf))ise affects the magnitude of the translation and rotation
predictions that must be made by the model fy. While we did not exhaustively search over these
hyperparameters, early in our experiments we found that very small values of T (e.g., T' = 2) cause
the predictions to be much more imprecise. This is due to the averaging that occurs between training
samples when they are too far away from the ground truth. In this regime, the examples almost
always “look multi-modal” to the model. On the other hand, for large values of T' (e.g., T = 50),
the incremental transforms that are used to de-noise become very small and close to the identity
transform. When deployed, models trained on this data end up failing to move the object from its
initial configuration because the network has only learned to make extremely small pose updates.

We found a moderate value of 7' = 5 works well across each of our tasks, though other similar values
in this range can likely also provide good performance. This approximately leads the average output
scale of the model to be near 2.5cm translation and 18-degree rotation. We also observe a benefit in
biasing sampling for the timesteps t = 1, ..., T" to focus on smaller values. This causes the model to
see more examples close to the ground truth and make more precise predictions on later iterations
during deployment. We achieve this biased sampling by sampling ¢ from an exponentially decaying
categorical probability distribution over discrete values 1, 2, ..., T

Incremental targets vs. full targets. As discussed in Section 3.1, encouraging the network fy to
predict values with roughly equal magnitude is beneficial. To confirm this observation from the
literature, we quantitatively evaluate a version of the de-noising model fy trained to predict the full

de-noising transform [T{")]™". The quantitative (Success Rate, Recall) results averaged across
our three tasks with the incremental de-noising targets are (0.88,0.44), while the model trained on
full de-noising targets are (0.76,0.34). These results indicate a net benefit in using the incremental

transforms as de-noising prediction targets during training.

Value of A in i_to_t. In this section, we discuss the effect of the value A in the i_to_t function
used during the iterative evaluation procedure. The function i_to_t maps evaluation iteration values ¢
to timestep values ¢ that were seen during training. For instance, we may run the evaluation procedure
for 50 iterations, while the model may have only been trained to take values up to ¢ = 5 as input. Our
i_to_t function is parameterized by A such that larger values of A lead to more evaluation iterations
with small values of ¢. As A approaches 1, the number of iterations for each value of ¢ becomes equal
(i.e., for A = 1, the number of predictions made for each value of ¢ is equal to I /7).

Figure A6 shows qualitative visualizations of de-noising the pose of a book relative to a shelf with
multiple available slots with different values of A in the i_to_t function. This example shows that
the solutions are more biased to converge toward a single solution for smaller values of A. This is
because more of the predictions use larger values of ¢, which correspond to perturbed point clouds
that are farther from the ground truth in training. For these perturbed point clouds, their association
with the correct target pose compared to other nearby placement regions is more ambiguous. Thus,
for large ¢, the model learns an averaged-out solution that is biased toward a region near the average
of multiple placement regions that may be close together. On the other hand, for large A, more
predictions correspond to small values of ¢ like £ = 1 and ¢ = 0. For these timesteps, the model has
learned to precisely snap onto whatever solutions may exist nearby. Hence, the pose updates are
more local and the overall coverage across the K parallel runs is higher. The tradeoff is that these
predictions are more likely to remain stuck near a “locally optimal” region where a valid placement
pose may not exist. Table 3 shows the quantitative performance variation on the Book/Shelf task for
different values of A in the i_to_t function. These results reflect the trend toward higher coverage
and marginally lower success rate for larger values of A.

30

1061

1062
1063

1064

1065
1066
1067
1068
1069
1070
1071
1072

1073

1074
1075

1076
1077
1078
1079
1080
1081
1082
1083

1084
1085
1086
1087

1088
1089
1090
1091
1092
1093
1094
1095

1096
1097
1098
1099
1100
1101

Value of Aini_to_t

1 2 5 10 20
Success Rate 1.00 095 096 0.94 0.90
Recall (coverage) 037 041 048 048 0.52

Metric

Table 3: Performance for different values of A in i_to_t. Larger values of A obtain marginally better
precision at the expense of worse coverage (lower recall).

A8 Further Discussion on Real-world System Engineering and Limitations

This section provides more details on executing rearrangement via pick-and-place on the real robot
(to obtain the results shown in Figures 1 and 4) and discusses additional limitations of our approach.

A8.1 Executing multiple predicted transforms in sequence in real-world experiments

The output of the pose diffusion process in RPDiff is a set of K SE(3) transforms {Téo) & . To
select one for execution, we typically score the outputs with success classifier hy and search through
the solutions while considering other feasibility constraints such as collision avoidance and robot
workspace limits. However, to showcase executing a diverse set of solutions in our real-world
experiments, a human operator performs a final step of visually inspecting the set of feasible solutions
and deciding which one to execute. This was mainly performed to ease the burden of recording robot
executions that span the space of different solutions (i.e., to avoid the robot executing multiple similar
solutions, which would fail to showcase the diversity of the solutions produced by our method).

A8.2 Expanded set of limitations and limiting assumptions

Section 7 mentions some of the key limitations of our approach. Here, we elaborate on these and
discuss additional limitations, as well as potential avenues for resolving them in future work.

* We train from scratch on demonstrations and do not leverage any pre-training or feature-sharing
across multiple tasks. This means we require many demonstrations for training. A consequence of
this is that we cannot easily provide enough demonstrations to train the diffusion model in the real
world (while still enabling it to generalize to unseen shapes, poses, and scene layouts). Furthermore,
because we train only in simulation and directly transfer to the real world, the domain gap causes
some challenges in sim2real transfer, so we do observe worse overall prediction performance in the
real world. This could be mitigated if the number of demonstrations required was lower and we
could train the model directly on point clouds that appear similar to those seen during deployment.

* In both simulation and the real world, we manually completed offset poses for moving the object
before executing the final placement. A more ideal prediction pipeline would involve generating
“waypoint poses” along the path to the desired placement (or even the full collision-free path, e.g.,
as in [78]) to support the full insertion trajectory rather than just specifying the final pose.

Our method operates using a purely geometric representation of the object and scene. As such,
there is no notion of physical/contact interaction between the object and the scene. If physical
interactions were considered in addition to purely geometric/kinematic interactions/alignment, the
method may be even more capable of accurate final placement prediction and avoid some of the
small errors that sometimes occur. For instance, a common error in hanging a mug on a rack is
to have the handle just miss the hook on the rack. While these failed solutions are geometrically
very close to being correct, physically, they are completely different (i.e., in one, contact occurs
between the two shapes, while in the other, there is no contact that can support the mug hanging).

Our method operates using 3D point clouds which are currently obtained from depth cameras.
While this permits us to perform rearrangements with a wide variety of real-world objects/scenes
that can be sensed by depth cameras, there are many objects which cannot be observed by depth
cameras (e.g., thin, shiny, transparent objects). Investigating a way to perform similar relational
object-scene reasoning in 6D using signals extracted from RGB sensors would be an exciting
avenue to investigate.

31

1102

1103

1104

1105

1106

A9 Model Architecture Diagrams

Parameter Value
Number of P and Pg points 1024
Batch size 16
Transformer encoder blocks 4
Transformer decoder blocks 4
Attention heads 1
Timestep position embedding Sinusoidal
Transformer embedding dimension 256
Training iterations 500k
Optimizer AdamW
Learning rate le-4
Minimum learning rate le-6

Learning rate schedule
Warmup epochs

Optimizer momentum

Weight decay

Maximum training timestep 7'
Maximum Pg crop size Lpax
Minimum Pg crop size Ly,

linear warmup, cosine decay

50

£1=0.9, By =0.95

0.1

5

Pg bounding box maximum extent
18cm

Table 4: Training hyperparameters

Parameter Value

Number of evaluation iterations I 50

Number of parallel runs K 32

Default value of Aini_to_t 10

Expression for panncatedrandse) (- | ©) N(-10,0(i))
0 (1) N PAnnealedRandsE(3) (for trans and rot) | a * exp(—bi/I)
Value of a (axis-angle rotation, in degrees) | 20

Value of b (axis-angle rotation) 6

Value of a (translation, in cm) 3

Value of b (translation) 6

Table 5: Evaluation hyperparameters

32

1107

1108

1109

1110

Downsample point clouds (N+M)x3
One-hot concat (N+M) x5
Linear (N+ M) xd

Concat pos_emb(t)

(N+M+1)xd

[Self-attention (scene)]X 4

M xd

Self-attention (object)

Cross-attention (object, scene) w4 (N +1) xd
Global Pooling d
Residual pos_emb(t) d
MLP (translation) d—3

MLP — orthonormalize (rotation)

d—6—3x%x3

Table 6: Transformer architecture for predicting SE(3) transforms

Downsample point clouds (N+M)x3
One-hot concat (N+M)x5
Linear (N+ M) xd
[Self-attention (scene)]X . M xd
Self-attention (object)
. . N xd
Cross-attention (object, scene) w4

Global Pooling d
MLP — sigmoid (success) d—1

Table 7: Transformer architecture for predicting success likelihood

33

	Introduction
	Problem Setup
	Method
	Object-Scene Point Cloud Diffusion via Iterative Pose De-noising
	Architecture
	Local Conditioning

	Experiments: Design and Setup
	Task Descriptions and Training Data Generation
	Evaluation Environment Setup
	Baselines

	Results
	Simulation: Success Rate Evaluation
	Simulation: Coverage Evaluation
	Simulation: Local Cropping Ablations and Modifications
	Real World: Object rearrangement via pick-and-place

	Related Work
	Limitations and Conclusion
	Additional Test-time and Training Data Visualizations
	Iterative Pose Regression Training and Data Generation
	Training Data Generation
	Pose Prediction Architecture
	Training Details

	Test time evaluation
	Success Classifier Details
	Experimental Setup
	Simulated Experimental Setup
	Real World Experimental Setup

	Evaluation Details
	Tasks and Evaluation Criteria
	Baseline Implementation and Discussion
	Coarse-to-Fine Q-attention (C2F-QA).
	Relational Neural Descriptor Fields (R-NDF).
	Neural Shape Mating (NSM) + CVAE.

	Common failure modes
	Task Execution
	Simulated Execution Pipeline
	Real World Execution Pipeline

	Extra Ablations
	Further Discussion on Real-world System Engineering and Limitations
	Executing multiple predicted transforms in sequence in real-world experiments
	Expanded set of limitations and limiting assumptions

	Model Architecture Diagrams

