A Proof of Theorem

Throughout the proof, we consider the general case where the concentrability (Assumption [3)) does
not necessarily hold, i.e., ¥ may be singular. Note that the projections b¥, F*, w# and Q* may not be
uniquely defined in this setting. Thus, we redefine them as the least-norm projections, where the norms
are measured with [|b%|z, [|F¥||p, ||w| 7, and ||Q*||7,, respectively. Here, || Al == Vitr AAT
denotes the Frobenius norm of matrix and || f[| , := infpers.g7y—y [|0]|, denotes the natural norm
of Fy. Accordingly, we repeatedly use the following notation.

Definition 13 (Smallest nonzero eigenvalue and eivenvectors). We denote by c, .= 1/A(21) > 0
the smallest nonzero eigenvalue of X.

Moreover, let K = rank 3. We denote by V € REXE qnd WEXE=K) the matrices of column
eigenvectors corresponding to nonzero and zero eigenvalues, respectively. That is, V and W are
column-maximal semi-orthogonal matrices satisfying

Y =V'ZV -0, YW =0,
and we have ¢, = A\ ().

We also frequently use the explicit formula of the projected Q-function Q.

Proposition 12. Suppose Assumptionholds. Let 0% = F}Y‘Tbﬁ. Then, 6% € R¥ is the least-norm
parameter satisfying

6* € argmin Lz (07 ¢),
OeRK

where Lp is given in Deﬁnition@ Consequently, Q* = 0°T ¢.
Proof. According to the stationary-point condition, any 6 € argming.px L5 (07 ¢) satisfies
0= 1B(0Te) 07 of;
=2(r¢" + 07 (YPo—9)d ") (0P — "),
= 2{(I —vF" T — b} (I — yFY).
The least-norm solution to the above equation is given by 6 = #*. O

To prove the main theorem, we exploit a more general form shown below. The notion of the
characteristic numbers (¢, @&, 3) is newly introduced, whose definitions are given in order.

Theorem 13. Let 0 < 6 < 1 be a confidence parameter. Let (e, @, B) € R3 be the characteristic
numbers associated with (Popg, ¢), given by Definition Under Assumption and

A € — hllf2
J(r) — J(x) — 1—7‘ < ﬁ (a+\/20*5) \/QTé

o (VpG* ln3/4% N Vp?G*? 1n2§> .

cen3/4 c2n

)

with probability 1 — 6, where n > 512(5# In(8K/4), p == ||Fﬁ§||2 andV =1+2 ||F£Tbﬁ|‘2. Here,
O(+) is hiding a universal constant.

Proof. (Sketch) Consider the policy value estimate of the projection, J*(7) = b*T F¥x, and
the associated approximation-estimation error decomposition .J(7) — J(m) = (J*(r) — J(7)) +

(J () — JE(7)). The proof strategy is to evaluate these terms separately. In particular, the first term
is exactly evaluated as J¥(7) — J() = 7 and the second term is controlled with the martingale

concentration inequalities. The full proof is deferred to Section O
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To define the characteristic numbers (¢, &, 8 ), we need several auxiliary definitions.
Definition 14 (Bellman bias and variance functions). The Bellman bias function B(s, a) and variance
function o (s, a) is given by

B(s,a) = E[R(s,a)], a2(s, a) = V[R(s,a)].

where R(s,a) = Q%(s,a) — (R + vQ!(S’, A")) is a random function such that (R,S’, A’) ~
pr(rls, a)pr(s'|s, a)w(a’ls’).

Intuitively, the Bellman bias (variance) functions measures the bias (variance) in a single transition

(s,a,r,s') relative to the projection (b¥, F'#), respectively. In particular, these functions are trivial

if the environment M is realizable and/or deterministic; If M € H4, B(-,-) = 0. Moreover, if

pr(r]s,a) and pr(s’|s, a) are Dirac’s delta functions, (-, ) = 0.

Now we are prepared to state the definition of the characteristic numbers.

Definition 15 (Characteristic numbers). The characteristic numbers (e, @, 3) associated with
(Popg, ¢) is given by

e=(6),, &= /(%) =T
where o(s,a) = (1 —y)zg (I — yFH)~1TST ¢(s,a).

Now each of the characteristic numbers is evaluated as follows.

Proposition 14. Under Assumption2land[@} we have

__(=yVp s (1=7Vp
— <RBR)(>#’ (0% S W, B \/7

Proof. Note that b = £ (7g),, and F* = ((P¢)¢") £+ by Corollary Then, we have
QF =b"Fio
={t"T + T FIF Y 6 (Ff = (I —~FH™")
={(roT), =t + W FE((Po)oT), =t } o
={(76T), ="+ ((PQ)eT), =F o
= (BQ's), 56,

According to Proposition 21} this implies Rp = = BQ*" — Q" lies in the orthogonal complement of
F4 with respect to p, i.e., RB € ]:l = {f SXxA=R|(ff)u=0,Vf e Fy}. Now, since
8 = —Rp by definition,

=(8),

B

oy
P

for any f* € Fy. Taking f* = wh as in Deﬁnition|§|proves the equality of e.

Now observe
Vv

lalle < 5

1Blee <V
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since |R(s,a)| = |Q¥(s,a)— R—yQ*(S', A’)| < 14+2||Q*||oc < V. Thus the remaining inequalities
are proved by
2
(0%), =

=72 {(ag (1 = 7FH) 5" 6)")

M
1= y)%ag (I =y FH) 7S (9 T) ST —7FF) g

(1=2)

=(1=7)

= (1=9)%ag (I =y F) VST —yFh) e
(1=

(1=7)%

IN

1= 2,; ||2+||2 (zoll < 1)

1—-

IN

(Definition [13))

Q

Now, combining Theorem T3]and Proposition [T4] we get

j(’]’(’)—J(’]‘(‘)— € < Vp (1+2\/ﬁ) 2111% Lo VpG*1H3/4% +VP2G*QIH%
L=ry]™ 2\/c n cnd/A 2n .

(®)

Noting that the RHS of (8) is 1ndependent of pg, we obtain the first desired result, i.e., the pp-uniform
convergence under the existence of F , by the Borel-Cantelli lemma.

Finally, to show the m-uniform convergence, we need to uniformly bound the 7-dependent quantities
on the RHS, i.e., p and V. As for sup,, p, it is directly bounded by the assumption of Theorem@ As
for sup, V, observe

V=12 |ET,
<1+ 20,

=1+4+2p HE+ (), (Proposition 22))
<r¢>”H2
2p -
<1+ <||r¢llz>#
2
<1+ —p7 (Boundedness of reward and Assumption@
Cx

where the last expression is uniformly bounded as long as sup, p is uniformly bounded. This
concludes the proof.

B Proof of Theorem

Consider the decomposition J(7) — J(r) = (Ji () — J(n)) + (J(x) — J4(x)), where J¥(n) is
defined as follows.

Definition 16. Let J* () denote the projected policy value given by J*(r) := <Qﬁ>pw = bﬁTFE}xo.
0

Then, the approximation error J#(7) — J(7) is evaluated as follows.

Lemma 15.
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Proof. Note that J#(7r) = <Qﬁ>pg and J(m) = (I — 7P)‘1f>pg. Therefore,
JH(r) = J(m) = (I =yP) (I = yP)Q* = 7)) .
=(I=7P)7'B),.

O

On the other hand, the estimation error .J(r) — J(7) is bounded as follows, which concludes the
proof.
Lemma 16. Let 0 < § < 1. Under Assumption |I| and if p = HFﬂgH2 < oo and

n> 75123’;292 In(8K/d),
a4+ vV2G*B [21n(12/6 VoG In®*2  Vp2G*2In 2K
a B n(12/4) (9( p 5 p A B

cen3/4 c2n

J(m) = J(m)| < —— -

with probability 1 — 6.

Proof. Consider the event E wherein the inequalities of Proposition 17} [T8]and[20]are simultaneously

true. Note P(E) > 1 — 26 and suppose E occurs.

By Proposition | By == (I — vF)~" is well-defined under E. Let ¢% = F£Tb* and observe that
J(r) = JH(m) = IA)FxO—bﬁTFjj

= (b—b") " Fizg + 0" (B, — Ff)zo

= (b— b T Ffzg + b T FE(F — F*)F o

= (b+~FT0F — 0T EL g (b +FITet = 0%, (10)

Moreover, since

N 1.
b—bf = —2to 7 —bf
n
1.
= 2T (7 — obY),
n
and
1
F—F'=_wloxt — F¥
n
1 ~
= (U] — FfoT)oxt, (11)
n
we have

J(r) = J¥(m) = 2TV E, @,
where 2 = %CDT {77 + 0 — <I>0ﬁ}.
Now according to Proposition[T7} I8 and 20] under E,

) _ 21n%
12l <2VG* [ ——,
n

4G* 2111%

2= 2 n

* 8K
16G*p? [21n 55
Cs n
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which implies J () — J¥(r) is well approximated by Z = 2T X% F¥x with probability 1 — 24,

J(m) — JE(x z)

E+F Z+Fﬁ)$0‘

< 2l (HE*HQ =) (el + |7 - #2)
- -1 S+ v o _

<Dl (e + |50 =27 ,) (o + 2 - 4]

VG2 ||FE||2n 2K
:O< ‘CJJQ ! ) (12)

where O(+) is hiding a universal constant.

To bound Z, note that Z = ﬁ E:l 1€(Z0) a(Si, Ay), where e(&;) = r; + v0% T (s]) —
0*T ¢(s;,a;). Thus, letting f(&;) = e(&;)o(si,a;), we learn from Proposition

~ (d-n v)n
|Z ~ ElZ]| < VAVIZTIn(4/8) + O (G* | fllo '/ 10/ (2/5) )
= /2V[Z]In(4/3) + O <63/4 (2/5)) . (13)

Now the proof is completed by evaluating E[Z] and V[Z]. Observe E[Z] = (—3¢), = 0 from
Proposition 23] and thus

E[Z] =E[5]" £ Flzg = 0.

To bound V[Z], consider the decomposition

7 =7, +Zﬁ7

n

= A;) AL
a nt:zl S’L, ) (Sﬂ Z)a

Z (Si, Ai) o(Si, Ai),

which yields an upper bound \/V[Z] < \/V[Z,] + /V[Z]
The first term V[Z,,] is evaluated straightforwardly since E[(g; — 8(S;, 4:))2|ZY] = o?(S;, Ai),

V[Z,] = < ni B(Si, Ai)) (Si,Al-)>

1=

—

- ﬁ Z]E (e — B(Si, Ai))? 02(Si, Ai)]
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On the other hand, the second term V[Z] is bounded by Proposition

V[Zg] = ZB Si, Ag) o (Si, Ay)

< 2G* ;V [(1 _1 - B(S;, A;) G(Si,Ai)]
7ﬁ§:v B(Si, Ai) o (Si, Ai)]

1_ 2712221E S“A)]
* 202
_ 2G <0’ B8 >#
=)
B 2G*B2
=
Back to (13)), we get

2 < JIZWTH + 0 ( 1550, 3/4<2/5>>
_at V2G* 3 21n§;1/5) ) (VG* HZ?H? 1n3/4(2/6)>

(1—7) cend/4

with probability 1 — ¢. Combining it with (I2) and take § — 6/3 concludes the proof. O

C Individual Concentration Bounds

C.1 Concentration of ||Z|,

Proposition 17. Let 2 = L&T {7+ V0% — 0%} and V = 1 + 2||[FETb*||,. Then, under
Assumption[I)and

_ 2In £
12y < 2vE | — =
n

with probability 1 — 4.

Proof. Observe

where R(&;) = 7; 4+ v0% 1 (s}) — 087 ¢(si, a;). Note E[R R(Z:)|S; = 5,4; = a] = E[R(s,a)] =
B(s,a) for 1 < i < n (Definition , which implies 2 is centered, E[2] = (¢), = 0, according

<
2

to Proposition Moreover, each summand is almost surely bounded by Hf%(EZ-)(;S(Si, A;)

‘7%(51-) <V,1<i<n.

Now consider the Doob martingale of 2, Y; = E[z =7 ], 0 < j < n. Then, Proposition with
[(&) = R(&)d(s4,a;)/n yields the desired result, where || f|| = V. O
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C.2 Concentration of 3.

Proposition 18. Under Assumption[l|and[2] we have

. QIH%
HZ—EH <G| 2 (14)
2 n

with probability 1 — §. Moreover, we also have
* 4K
g <0 [
27 2 n

Proof. Consider the Doob martingale given by Y; = E[f]|53 ], 0 < j < n. Then Proposition
yields the first inequality, where f(&;) = &(s;, ai)d(s;,a;) " and || f]|, < 1 (Assumption .

ifn > 192 In(4K/6).

To prove the second inequality, observe that the first inequality with n > 16%2 In(4K/4) implies

[ = 2la < ¢./2. Therefore, we have VTSV > 0. The concentration of the pseudo-inverse is
proved by

[SF = 2F], = |21 (E - 2)SF, (ZFE5F = %F since VI BV > 0)
< [IEF 2l EF 212 - Sl
< =Xl VTSV = 0)
c*(f* —[IX = Xl2)
<AE2Ek (I8 =Sl < e./2)
This concludes the proof. O

C.3 Concentration of F..

Proposition 19. Under Assumption|l|and |2} if n > 1662

C

* 8K
HF*FﬁH <8G 21n 55
27 Cx n

in addition to the inequalities of Proposition[I8| with probability 1 — 6.

In(8K/4), we have

Proof. Propositionshows [£F]2 = 1/Ax(2) < (¢ — |2 = Znll2) ™' < 2/c, with probability
1 — 6/2. Thus, combining it with the identity

N 1 - 1 -

F—Ff = —ulost — Ff = — (0] — F1eT)dSt,
n n

we have

. 2
|17 = F¥| < = 11Yall, (15)
2 NCy

where Y; = E[(V] — FOT)®|=7],0 < j < n. Now, let £(&) = (¥ (s]) — F*o(si,a;))p(si,ai) "
and note || f|| ., < 2by Assumption Note also Yy = n ((P¢ — F¢)¢T>M = 0 owing to Proposi-

tion 23] Thus Proposition 23] yields
K
1Yol < 4G™ inn% (16)

with probability 1 — /2. This completes the proof. O
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Proposition 20. Under Assumptionand ifp = HFM2 < ooandn > 512?# In(8K/4), we

have
. 16G*p? |2In 8K
Fv_FyﬁH < P =5
2 Cy n

in addition to the inequalities of Proposition[18|and[I9] with probability 1 — 6.

Proof. Consider the event E' wherein Proposition [18|and [19]are simultaneously true. Note P(E) >
1 — 4 and suppose F occurs.

Observe
I —yF = (I —yF*)(I+~F{(F - FY)),
where F}j = (I —yF*")~'. Since we have ||F' — F¥||, < i (under E), it follows that

I

which ensures the existence of (/+~F¥(F—F*))~1, and therefore the existence of F', := (I—vF)~L.
Moreover,

R ]

<ol e |5,
110 -

< —|F,|| .

=210 72

Thus, the triangle inequality ||, ||> < || F£|l2 + ||F, — F¥||> shows that ||F, |2 < 2||F¥|2 = 2p
Putting it back to (T7), we get

B - B <2? |- P .
H K vy = “7P 2
Finally, Proposition[I9)under E yields the first desired result.

D Additional Definitions
Definition 17 (‘¢’-mixing coefficient, Bradley|(2005)). The ‘¢’-mixing coefficients of 2", g(h), is
defined as

g(h) = sup sup sup [P(E>itn € Do | E<; € D1) —P(Esiqn € D9)|
1<i<n—h D;CDi DyCDn—i—h+1

forall1 < h < n—1and g(0) = 1, where D1 and D4 range over the measurable sets. Here,
E<i = (81,....,5;) and E>; = (E;, ..., 2y), respectively forall 1 < i,j < n.

E Additional Propositions
E.1 Explicit Formula for Least Squares Projections

Proposition 21. Let f be an arbitrary RX -valued function defined on S x A, K' € N. Let
A* € RE'K pbe the least-Frobenius-norm solution to

min (I - 49l13)

AERK’x n

Then, we have
* T +
A =(f¢ >M pY
and thus, for any f(s,a) = v’ ¢(s,a), s €S, a € A

(U-a0f) =0
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Proof. The solution A* satisfies the stationary point condition,

0= o (I - 4013)

(5l = 4018
2((f - A9)o "), u
2((f07), —Aos7T),)
2((f07), - 4%).

Thus, any stationary points can be written as A* = <f¢T># S+ 4+ XWT for some X € REX(K-K),
The least norm is attained if and only if X = 0. O

Corollary 22. Let (b%, F*) be given as in Deﬁnition Then, we have the following.
v =S (rg), . F* = ((P¢)p"), =7,

Proof. Tt immediately follows from Proposition [2T] O

E.2 Zero-Bias Projection

Proposition 23. We have

(F—bTg)pT) =0, ((Po—Fi)oT) =0, (B9), =0

o
Proof. By DeﬁnitionEI, the stationary-point condition on (bf, F'¥) is given as
0=E[@"#] —nZtf =n((F—b'"g)o") .
0=E[¥,®] — nF'S =n{(Pp— Fip)p")

(18)
e (19)
which proves the first two equalities. To see the last equality, observe

B(s,a) =T(s,a) — b* ¢(s,a) +v0* " {(Pg)(s,a) — F¢(s,a)}
by Definition 14, where 6% := F?b*. Thus, adding (T8) and (T9) multiplied with v6*T from left, we
get the desired result. O

E.3 Concentration Bounds under G*-mixing

Proposition 24 (Variance bound). Let f be a R-valued functionon D and Y =, f(Z;). Then,
under Assumption ||

VY| <26 Y V[f(E)F]
i=j+1
forall0 < j <n.

Proof. Let Cov,[-, -] denote Cov|[-,- | =7] and let f; :== f(Z;). Then

:Vj Z fi

i=j+1

= > > Covjlfi, f.

i=j+10=j+1
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Note that Cov;[f;, fo] < 2+/g([i — £])V;[fi]V;[fe] by the domination of the ‘¢’-mixing over the
‘p’-mixing, Eq. (1.13) in|Bradley| (2005), Wthh 1mphes

Vi[Y]= > > Cov,lfi fi]

i=j+16=j+1

SR SN TRIVAT A
i=j+1=j+1

< DD Valli— D AV,1A] + V5110 (AM-GM inequality)
i=j+1b=j+1

=2 3> Vil Y Veli— )
i=j+1 l=j+1

<26 Z V;lfil (Assumption )

i=j+1

O

Proposition 25 (Hoeffding type, matrix form). Let f be a RE*K "valued function on D and let
Y :=>"" | f(E:). Then, under Assumpti()n
A(K VK
)
with probability 1 — 6, where || f|| . = esssupgcp || f(§)l],. Here, aV b denotes max {a, b}.

Y = E[Y]ll, <2G"[|fll1/2n1n

Proof. LetY; := E[Y|Z7]. Note Y; is a matrix martingale with difference bounded by
1Y = Yj-1ll,

< 22 11l sup |P = € D|~J) P(Z; € D\Ej*1)|
i=j

<2171 3" { 3w [F(E: < DY)~ Pz € D) +

i=j

sup |P(Z; € D) —P(E; € DEj_1)|}

DCD
<2 flle | 142 Z gli—j)+g(n—j+1) (Assumption|[T))
=541
<2G" || fll - (20)

Here g(h) is given in Definition|17|and we exploited the fact that \/g(h) < 1 in the last inequality.
This concludes the proof owing to the Azuma inequality for rectangular matrices (Remark 7.3, [Tropp
(2012))). O

Proposition 26 (Bernstein type). Let f be a R-valued function on D andY =Y., f(Z;). Then,
under Assumption ||

Y —E[Y]] < 2(V[Y] + C1) In(4/5) + 4G || f|| ., In(4/8)

with  probability 1 — 0, where |fl = esssupgep [f(§)| and C) =
(G 12 IfI%, /2 Tn(2/5).
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Accordingly,

Y —EIY]| < V2VIZTIn(/8) + O (G | flloo '/ 0/ *(2/8) ),
ifIn(2/6) = O(n).
Proof. Let E;[-] and V;[] denote E[|=7] and V[-|Z7], 0 < j < n, respectively. Let Y; := E;[Y] and
Wy = S, Via[¥i,0 < j < . Note [¥; — Y| < L == 2G° | £ by @0).
Freedman’s inequality (Theorem 1.6, Freedman|(1975)) states that

P(|Y, —Yo| >a A W, <b) <2exp (2(Lzz—|—b)>
for all a, b > 0. Accordingly,
B(W, <b)>1-5/2 = P(Y,-Y|<a")>1-3 @1
where a* = /2b1n(4/5) + 2L In(4/4).

To show the concentration of W, consider the Doob martingale given by Z; = E;[W,],0 < j < n.
Let f; .= f(E;), 1 <14 < n. Then, the difference sequence of {Z;} is bounded by

Zj — Zj—a1| = |(Ej — Ej—1)[Wa]]|
= |(E; —E,_1) ZVH [Yi] (Definition of TW,,)
=1

= |(B; —Ej1) Y Vil
i=j+1

=|(E; —E;_1)V;[Y]| (Law of total variance)

=| > B —E)(fi —Bifi)(fe —E;fo)]

jH1<if<n
Note that
E; —E;j—)[(fi —Ejfi)(fe — Ej fe)]
< (E; —Ej-1) {Q(fi —E;fi)* + %(fe - Ejfé)] (AM-GM inequality)
< 8|15 {99(i —J)+ %g(ﬁ - j)} (Definition 7))
<16 £I2, v/a(i — §)g(C — 5) 0= /g(t=5)/9(i = j))

and therefore

Z; — Zi | <16 £15 Y. Vali—5)glt—j)

JH1<if<n

G -1\’
<16 ||f||iO ( 5 ) (Assumption|[T))

<4|lfI% (G = 1)’
Finally, the Azuma inequality yields
W, = V[Y] = Z, — Zo < 4(G* — 1)* || f|I%, v/2n1n(2/9),
with probability 1 — §/2. Combining it with 1)),
Y —E[Y]] < V2(VIY] + C1) In(4/6) +4G™ || f In(4/6)
with probability 1 — 6. O

23



F Proofs of Propositions in the Main Text

F.1 Proposition

Proof. The first argument is straightforward since all the pairs (=;,Z;) with |¢ — j| > H are
statistically mutually independent.

Let d(h) and d(h) be defined as in Section 4.4 of |Levin and Peres| (2017). The second argument
follows from the inequality

g(h) < d(h)

(tmix) Lh/tmiXJ

20l (b))}
2_ Lh/tmixj

IN

for all h > 1, where the first inequality is owing to the definition of g(h) and d(h), the second and
the third inequalities are shown by Lemma 4.12 and 4.11 of [Levin and Peres|(2017), respectively, and
the last inequality is owing to the definition of the mixing time. O

F.2 Proposition 2]

Proof. Let (b*, F*) be the least-norm parameter that satisfy (2)), where the norms are measured
in the ¢X- and the Frobenius metric. In the following, we prove the general case where the con-
centrability (Assumption [3)) does not necessarily hold, J(7) = b*" (I — vF*)zy. Then Proposi-
tion [2]immediately follows since the concentrability implies the uniqueness of the solution of (2),
(b*, F*)= (b, F).

Let Vo € RE*Ko K, < K, be a semi-orthogonal matrix such that span Vy = span ¢(S x A),
where span X denotes the linear span of a vector set X and Vj is interpreted as a K'-set of column
vectors. Let W, € REX(K—Ko) pe the complement of Vg, i.e., [Vo, Wy] € RE*X is an orthogonal
matrix. Note that Vo V' ¢ = ¢ and Wyé = 0 by definition.

Since b* and F'* are the least-norm solutions, we have b* = VOI; and F* = VOFVO for b := VOTb*

and F := V" F*Vj. Similarly, we have zo = Voo for &g = V' x since zg = ((b)pg € spanVj.

Let x5, == <Ph¢>p,r, i.e., the expected feature after h transitions starting from pg. Then, we can see
0
xp, = F*"zq from the recursion with the linear equations (2)), and therefore < th>p7r =b* T, =
0

b* T F*hgg = b FZ,. Substituting this to (T) yields the desired result,

h=0
=b"(I —yF) i (if the sum converges)
4T - -1
I7Al — Al z .
Lo ]| e | T 0] el | ] v malis omhogona

— T (I —7F") " g,
given Y27° 4" F"* converges.
The convergence of the infinite sum is shown as follows. Note that
IF" V" 6(s, a)ll2 = Vo V" (s, a)
= [ F*"¢(s, a)ll
= [|(P" )z |l2
< <\|Ph¢||2>pg <1, (Assumption[2)
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for all s,a € R¥ and arbitrarily large h > 0. Thus, since V" ¢ is full rank, i.e., span V' ¢(S x A) =
R0 the spectral radius of F is no larger than 1. This concludes the proof. O

F.3 Proposition[3]
Proof. Observe

EC(b, F;=")

%Z]E [|m - b%(si,ai)f + [Yn(h) — Fo(si, ai)|2]

i=1

1 & 2
= ZEE [’F(si,ai) - quS(si,ai)‘ +|(P)(si, a5) — Fp(si,a;)]? si,ai] +
i=1
1 n
- \% [ iy Wq A% T : 1y Ug
n;{ [ri] si, ai] +V [Yr(s) | 5, ail }
1 n
= D*(b, F) + D AVrilsisai] + V [x(s)) | 56, ail}
i=1
which yields the proposition since the second term is a constant with respect to (b, F'). O

F.4 Propositiond]

Proof. Note that (b, F') is the least-norm solution to the stationary-point equation Vu,rC(b, F; &) =
0. More concretely,

ViC(b, F;6n) =0 & @7 (Bb—7) =0,
VrC(b, F;&,) =06 T (OFT — U,) =0.

It is straightforward to check if the explicit formulae in the proposition satisfy the above equations
and have the least norms. O

F.5 Proposition

Proof. Observe the vector ), € R¥ of the h-th iteration of Algorithm 2]is given by
lea . . .
0n = Ezﬂlﬂ(r + U 0h—1) = b+ yF T 0)_1.

Suppose 0}, converges to 0,.. Then we have 6, = 3+7F’T0*, which implies 6, = (I—’yFT)l; =

5T,
5 b.
This completes the proof. O

F.6 Proposition

Proof. We first show Q™ € F, if Rp = 0. Observe that Rp = 0 implies BQ* = Q*, which is
exactly the Bellman equation and the solution is unique, Q¥ = Q™. This implies Q™ € Fy since
Qﬁ S ]:¢.

We now turn to the inverse direction, i.e., to show Rp = 0if Q™ € Fy. Let 67, 0% € RX be the least-
norm coefficients of Q™ and Q¥, respectively, i.e., Q" (s,a) = 0™ " ¢(s,a) and Q¥(s,a) = 6*T ¢(s, a)
for s € S and a € A. The true value function is the unique solution of the Bellman equation,

Q" = BQ" =7 ++PQ",
which implies

¢ O™ =F+yP(¢07).
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Multiplying ¢ and taking expectation with respect to the data marginal, we get
(907), 07 = (Fp +~9P(s767)),
= (79),, +7 (¢ ), 0"

Note that b* = X (7¢) <¢1/)T> Ytand ¥ = <¢¢T># by the definition of (b%, F'*).
Therefore, 67 is a solutlon of the followmg equation,

YY" = b 4 yFETO",

which is uniquely solved with ™ = (I — vF*T)~1b% = % under the concentrability condition.
Therefore Qf = Q™. Finally, the Bellman equation yields the desired result,

Rp=BQ'-Q*=BQ"-Q" =0

F.7 Proposition[J]

Proof. Let U be a linear mapping from K -vectors to functions over S x A such that Uz = 2T ¢,
x € RX. Also, let II be a linear mapping of functions on S x A such that IIf = Y%+ (fo)

f:SxA-=R

Now we have II is non-expansive since, for all s € S and a € A,

(W) (s,0) = |(F87), =*o(s,a)]
< <|f¢)TE+¢>(s,a)|>M (Jensen’s)
<l <¢TZ+¢(3, a)>u (Nonnegativity of ¢(s’,a’) " ST ¢(s, a))
= [1lloe (6}, B*(s,0)
= [1fllo vo &(s, )
= fll ;

where the second last equality follows from vy, = <¢¢T>u vo = {(vg )gzb)u = (¢), and the
invertibility of X.

Moreover, we have UF*T = I1PU since, for all z € RX,

UF Tz =US™ {p(P > (Corollary 22)
U (P ),
=us™! (¢(PUI))>
= II(PUz).
Thus, U (F*T)" is non-expansive for all A > 1 since U(F#T)" = MPU(F*T)"—! = ... = (TIP)"U

and II, P and U/ are all non-expansive. This implies

|:£TFW‘¢> (s,a)| = |( UF*The) (s ,a)|
< [ xH
< |zl

forallh > 1,z € R, s € Sand a € A, which implies || F*"¢(s,a)||, < 1forallh > 1,s € S
and a € A. Thus, we have A, (F¥) < 1 and F¥ = (I — YF#H) ! exists.
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Observe
IFZ)3 = tr [FEFET]

<tr[F! (c;'S+WWT) FiT] ('S +WWT =1)
= C—l*tr [FISFET] + (K - K) (FiW = W)
— ~(IFIR), + (K - K

< ﬁ +(K - K),

where the RHS is independent of 7. Here, the last inequality follows from

[Fio(s,a)|l, = | D_A"F"é(s,a) (M (FF) < 1)
h>0 9
<A [E (s, )]
h>0
1
- (|F*6(s.a)], < 1) (22)

F.8 Proposition 10|

The proposition is a special case of the following result.

Definition 18 (Refining tabular sequence). We call ¢ as a refining tabular sequence if, for
all m > 1, ¢'™ is tabular with respect to an K,,-partition {P,Em)}f:’"l of § x A such that
10, 00 Wi ) Ko VOL(PL™) > 0 and limy, 0 maxe ) diam(P{™) = 0.

Proposition 27. (¢, ) is consistent for all refining tabular sequences ¢ if
1. =™ is G*-mixing for some G* < oo (Assumption![]).
2. 0 < infses,aea (s, a) and supgegs 4e 4 11(8,a) < <.

3. Kpmy/v/n — 0asn — oo.

Proof. Let Rgn) and R‘X’”) be the residual functions for ¢(™). First, we show A,, := J (m; gb(m)) -
J(m) + <R§3m)72§g")>ﬂ/(1 — 1) converges to zero as n — oo, where m = m(n). Then, second, we
show (RUMRU™), — 0as m — oo.

For the first step, we examine the asymptotic behavior of the unbiased term Ay, (,,). According to
Theorem [I3|and Proposition[T4] we have

A —o Vimpm @iz 2 mpmgend 2 fimpm2ge2 ), 2K
m= mi 1 + (m) 3 + (2 !
s %n2 Cy ‘N1 cx ' n

where V)| p(m) and c,(km) are defined associated with each ¢("). An elementary calculation shows
V) < 142/(1 —+)and p™ < 1/(1 — ) for all tabular ¢("). Thus, the only m-dependent
factor is ¢™, lower bounded by

(m) _ s
cs = ké?}l(ryln] /P,im) u(s,a)dsda

> inf p(s,a) min vol(P,im))

T s€S,acA ke[Km]

Cy
> —— inf , Definition[I8
- K, seé‘r,laEA'u(S a> (
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for sufficiently large m. Hiding the dependencies on the variables other than n and m, we get
KY? K, K2
Bm =0 (mz ot

This implies A,y — 0 since K.y, /y/n — 0.

v _

For the second step, we utilize Holder’s inequality. Let f(™) = argmin FEF, (m) I fll1, where
p(m ’

m
[[[l,,, denotes the L'(p)-norm. Then
m m m v m m
RYRE, = (R (4= 1)) (RGY € Fym)
w
< [R5 % -7
oo || M w1
()]
1-— W il

where in the last inequality, we exploit HR%’L)

<V <14 2/(1—~). The second step is

completed by showing || — f (m))| .1 — 0. Fix arbitrary ¢ > 0. Note that the set of continuous
functions on 7' := S x A is dense in L' (T') since T is a compact subset of a product of Euclidean
spaces and discrete spaces. This implies there exists a continuous function f such that Hﬁ —flli <e.

Every continuous function on 7' is uniformly continuous since it is compact. Every uniformly
continuous function is approximated in the uniform norm with some piecewise constant function

flmx ¢ Fy(m) arbitrarily well as m — oo since the largest diameter of the constant cells P,im),

k € [K,,), is shrinking. This implies there exists mg > 1 such that || f — f(™)*||o, < e if m > my.
Finally, we get

r_ £0m) <%= frm) (f(™) is the minimizer)
IU/ w,1 ,LL w1
-1 -
H w,1 m,1
v A A *(m)
< C;L - f + f - f
o 1 oo
<(1+Cye
for m > mg. O

F.9 Proposition [T]]

The proposition is a special case of the following result.
Proposition 28. Let

N . In K,,
d* =1V limsup —
m—soo Milge(f, 11

1 -
n diam('P,(Cm))
Under the assumptions of Proposition if v/ are Lipschitz continuous, then we have \j (m; 1) —
J(m)| = O(n~ TR ) for all € > 0 with taking 7m.(n) such that K., = ©(n 2T ).

Proof. Without loss of generality, we assume v/ is 1-Lipschitz continuous. The strategy is similar
to Proposition The error is decomposed as J(m; ¢(™)) — J(n) = —ﬁ(R%m)R&m)m + Ay
The convergence rate of the unbiased term A,,, m = m(n), is established as in the proof of

Proposition
KY? K, K2
Ap =0 ( +

ni/2 " p3/4 n
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Taking m = i(n), the right-hand side is evaluated as O(n~ 2T ) since

1/2 2
K Kﬁl(n) K

- da* 1 da* 3 2d*
m(n) ! m(n) = n2EFFD) 2 f 2l 4 4 p2araa -1
iz T e "
__ 1 d*+1 _ 1  2d*+43 1
=n @ 2 4 @F I o 2T
1
— O(n~m), (@ > 1)

For the bias term, we show || — F) 1 = O(Kn_@(l_s)/d*) forall e > 0, where [|-|| , , denotes
the L' (y1)-norm and f(™) := argmingcz ||% — f|,.,1. It then yields the desired rate by the same

calculation as the proof of Proposition

. . 2 v 5
RO ponm)y < (1 N ) L
< B X >H 1- Y 12 n,1
—(1—¢)/d*
= O(K, 09"

=0(n" T ).
To bound || % — £(m) 1, recall by its definition that (m) is the best approximation of v/ in F, (m)
m i, y pp H &

with respect to the L' (11)-norm. Since v/ is 1-Lipschitz continuous and F 4(m) contains any function

having a constant value on each cell of the partition {P,im) Yre[k,.]» We have, for sufficiently large m,

<

w1

v Fm)
J7

v f<m>H
K s
< max diam P(m) .
- ICE[K%L] ( k )

=exp | — min ln; .
kelKn] diam(P™)

1—
< exp < “In Km> (Definition of d*)

d*

— KO-/
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