HSurf-Net: Normal Estimation for 3D Point Clouds by
Learning Hyper Surfaces
— Supplementary Material —

Qing Li' Yu-Shen Liu'* Jin-San Cheng? Cheng Wang?
Yi Fang* Zhizhong Han®
1School of Software, BNRist, Tsinghua University, Beijing, China
2 Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, China
3School of Informatics, Xiamen University, Xiamen, China
4Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Abu Dhabi, UAE
SDepartment of Computer Science, Wayne State University, Detroit, USA
{leoqli, liuyushenl}@tsinghua.edu.cn jcheng@amss.ac.cn

cwangOxmu.edu.cn yfang@Onyu.edu h312hQ@wayne.edu

1 Notations

n The order of polynomial function
n The point normal vector

P ={pili=1,..,N} Input point cloud patch

p=(x,y,2) A point and its coordinate

f(z,y) The height function in 3D space

S A smooth surface in 3D space

o() The remainder in Taylor’s multivariate formula

a, 3 The coefficient of polynomial function

J, J* The polynomial function and its optimal solution

N, N* The hyper surface and its optimal solution

T The order of hyper surface (i.e., parameters of an MLP)

0 The coefficient of hyper surface (i.e., parameters of an MLP)
(G,C,F) The high dimensional feature space

G The global location code from Space Transformation module
C The condition code from Relative Position Encoding module
F The height function in feature space

N, M The number of points in the point cloud patch

N, The number of terms in the coefficient

N The neighborhood size of the query point p at scale s

Ng The per-point neighborhood size in the Relative Position Encoding
H, ¥ MLP Layers in the Hyper Surface Fitting

u,v MLP Layers in the Global Shift Layer

E, ¢ MLP Layers in the Relative Position Encoding

MAX{-} Maxpooling

*Correspondig author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

2 Additional Details

2.1 Derivation

For Eq.(5) in the paper, we provide a more detailed derivation process to clarify its relationship to the
designed networks. In order to expand the polynomial surface fitting in 3D dimensional space into
the high dimensional feature space using a neural network with parameter ©, we define f1(¢%) := g
and fo(cV) := c, where f means MLP layer. Then, the multiplication of real numbers g* ® ¢V in the
polynomial function is represented as g [l c, i.e., g¢* ® ¢V := g [l c, and the orders w,v € [0, 1, ..., 7].
For the symbol [, we experimentally choose the commonly used feature concatenation operation,
hence

T k
Nor(GoC) =303 04y g5

k=0 j=0
= 00,0 + 01,09 + 001+ + 01 ,-19c" " + 0"
M1
g
c
= [00,0,01,0,00,1,+ ,01,—1,00,7] | .
1
g -
90 0
gt 0
9° o
= [00,0,01,0.00,1, - »01,r—1,00,7] ol with f
gl cT—l
gO c7
g1 C1
g2 C2
g3 C3
=0 . O
En,—1 Cn,oa
En, Cn,
elnre)

Then, the final bivariate function used in our hyper surface fitting is Ny - (G, C) = O(G [C), where
G and C are high dimensional features of the 3D point clouds extracted by the two different modules,
which are introduced in Sec.3.3 and Sec.3.4 of the paper, respectively.

2.2 Max-pooling in Eq. (9) of the Main Paper
In the traditional polynomial surface fitting, we have [5]]

1
Joan(,y) = 00 + (a1,0T + a0,1y) + 5(042,0362 + 201 17y + 0 29°%)
1 , , ey
+ 6(a370$ +3a2)1x y+...)+...
The origin, that is the point of the fitted surface where the estimation is performed, is (0,0, g o).
The coefficients of the principal terms (v o + p,1y) in the above polynomial equation are used to
calculate the normal of the fitted polynomial surface at the origin

n, = h(a) = (a1, —ao1,1)/y/1+afg+af ;.

The other terms except the principal terms in the polynomial equation are not used in the estimation
of the normal. Based on this, we use the max-pooling over all features from the hyper surface fitting

Figure 1: Visualization of the contribution of each 3D point to estimate the normal of the query point
(black). The red points are weighted higher than the blue points.

to choose the most prominent feature. Then, we use a liner layer H to predict the normal of the query
point p (i.e. origin)

n, = |[H(MAX{w; Ny -(G;,Ci)li =1, ..., N},

where Ny -(G;, C;) means the per-point feature result obtained from the hyper surface fitting process.

2.3 Datasets

Synthetic Shape Dataset. The PCPNet dataset [[6] consists of 30 shapes, including high quality scans
of figurines, CAD objects, and analytic shapes, with 8 shapes for training and 22 for testing. All
shapes are uniformly sampled with 100k points from triangle meshes. Each point cloud is augmented
by introducing Gaussian noise with standard deviations of 0.12%, 0.6% and 1.2% of the diagonal
length of the bounding box. In addition, two categories of point cloud with different sampling
densities (stripe and gradient) are generated for each figurine and CAD object.

Indoor Scene Dataset. The SceneNN dataset [9]] contains variety indoor scenes collected by a depth
camera, and we select four completely scanned scenes as our test data. We compute the ground-truth
normal from the provided reconstructed meshes and obtain one million points for each scene by
sampling on the mesh. In addition, we generate another point cloud for each scene by adding Gaussian
noise with standard deviations of 0.003 to the sampled points.

Outdoor Scene Dataset. The Semantic3D dataset [[7]] provides point clouds captured by a 3D laser
scanner in different outdoor environment, and we select a large-scale building scene with about 9.7
million points as our test data. It includes missing data and noise patterns that are very different
from the PCPNet and SceneNN dataset. Note that there is no reconstructed mesh data or ground-
truth normal for the Semantic3D dataset. For the SceneNN and Semantic3D dataset, in order to
decrease useless points for the evaluation of normal estimation and reduce the computation time, we
manually remove some isolated points and feature-less flat plane, such as the ground of square. The
preprocessed data is used as the test data for all methods and the data will be made publicly available
along with our code.

2.4 Baseline Method

Our evaluation of point cloud normal estimation covers three types of baselines: (1) the traditional
normal estimation methods, e.g. PCA [8] and Jet [4]]; (2) the learning-based surface fitting methods,
e.g. DeepFit [1] and AdaFit [16]; (3) the learning-based normal regression methods, e.g. PCPNet [6]],
Nesti-Net [2]] and Refine-Net [12]].

Since the method of Zhang et al. [[11] needs the precomputed feature as its input which is not publicly
available, we modify the source code to only feed 3D point clouds into their model. The numerical
results of Zhou et al. [13], MTRNet [3] and Zhou et al. [14] on the PCPNet dataset are taken from
their papers due to the absence of their source code.

Ground-truth Ours AdaFit Zhang et al. Refine-Net DeepFit

Il IH MUNTCHCHIMR_

WA,

LUL‘. RILY Y

LA

il

L, W7
T ![/é LT ,//7/

Figure 2: Cutting plane visualization of the estimated normals (black lines) in different regions with
complex geometric structures.

3 More Experiments

3.1 Point Weight Visualization

In our algorithm, we use the hyper surface fitting results to predict the query point normal using an
output module, in which we quantify each point’s contribution to the final result by computing a
weight w; =sigmoid(¥(Np, (G, C;))). In Fig.[Il we visualize how much contribution that each
point in a point cloud patch makes to estimate the normal of the query. We can see that the neighbors
of the query contribute more than the points that are far away from the query.

3.2 Additional Visualization Results

In Fig.[2] we provide the visualization results of the predicted point normal vectors in some regions
with complex geometric structures, such as sharp edges and corners. Our method performs well in
these regions and gives point normal vectors that are the most similar to the ground-truth normals.

In Fig.[6] we show the point clouds of the SceneNN dataset processed for normal estimation evaluation,
and we also show our estimated point normals and our normal angular error maps on these point
clouds. In Fig.[5} we show the point cloud of Semantic3D dataset processed for normal estimation
evaluation, and we also show our estimated point normals on this point cloud. The ground-truth
normal of this dataset is not available. Fig.[7] visualizes our normal estimation results on different
shapes of the PCPNet dataset, where the point clouds are rendered by the estimated normal vectors.

Table 1: Comparison of the network parameter and efficiency between different learning-based
normal estimation methods on the PCPNet dataset. We report the average execution time for a point
cloud with 100k points.

Ours AdaFit [16] Zhangeral. [11] Refine-Net [12] DeepFit [1]

Parameter (million) 2.16 4.87 3.55 1.23 3.53
Time (s) 72.47 56.23 36.27 - 36.24

Fig.[8|shows the normal angle errors compared with the ground-truth normals on different shapes of
the PCPNet dataset, where the point clouds are rendered with an error map.

3.3 Complexity & Efficiency

We compare our method against the related learning-based approaches that have similar normal
estimation performance on the PCPNet dataset. We use the original implementation of each method
and take the same point cloud data as the input. We report the number of the learnable network
parameters of each model and its execution time on a single NVIDIA 2080 Ti GPU. As shown in
Table[I] the parameter number of our method is relatively small. The execution time of our method has
no advantage over other baselines since the local coordinate frame construction with kNN searching in
our Space Transformation module takes lots of time. Compared with AdaFit [16], which has the most
similar performance to our method, its network parameters are twice as much as ours. Our method
formulates the surface fitting as learning hyper surfaces by MLP layers, while AdaFit approximates
the local structures using the classic polynomial surface fitting. The time of Refine-Net [[12] is not
reported as it has a standalone data processing step, including initial normal computation, clustering,
filtering, and height-map feature computation. This step is very time-consuming, and we do not count
it into the execution time for a fair comparison. Zhang et al. [11]] and DeepFit [1] take a similar
execution time as they have very similar network architectures.

3.4 Applications

In this section, we further demonstrate typical applications using point cloud normal estimation,
including point cloud filtering and rendering, which benefit directly from the accurately estimated
point cloud normals. In addition, we also investigate the effectiveness of our method and baseline
methods in these applications.

Point Cloud Filtering. In this application, we apply the method proposed in [[10] to perform point
cloud filtering using the point normals estimated by different methods. In Fig. 3] we visualize the
qualitative comparison of the filtered point clouds and their corresponding reconstructed surfaces
by Poisson algorithm. We can observe that the point cloud filtering algorithm can benefit from the
normal estimated by our method, which smooths the surfaces in flat areas while still keeping detailed
structures at sharp edges.

3D Rendering/Shading. In 3D computer graphics, the normal is often necessary for lighting
computation in rendering. We use the default rendering engine in [15] to show the appearance of
object surfaces with normals estimated by our method. We do not provide the visual comparison
with other baseline methods as the visualization results of different methods are very similar and it is
difficult to see obvious improvements.

4 Limitation & Broader Impact

Similar to other point cloud normal estimation methods, the performance of our method degrades
substantially when dealing with exceptionally severe noise, as shown in our experiment. With the
increase of noise and outliers, the underlying geometric structure of the object may be destroyed and
result in many ambiguous feature points (see Fig. [2). Moreover, existing learning-based methods
all need the ground-truth normal to supervise the training procedure, but it is difficult to obtain
the ground-truth normal, especially for real scanned point cloud data. Unlike the object detection
and segmentation benchmarks, which can get the annotations by manually labeling, it is almost
impossible to label the 3D normal vectors of a point cloud with manual methods. A practical and
effective solution (as most of the existing learning-based methods adopt) is to train the model on the

Input Ground-truth Ours AdaFit Zhang etal. Refine-Net DeepFit

Figure 3: Qualitative comparison results of point cloud filtering using the estimated normals of
different methods. The input and filtered point clouds are shown with RGB colors, and their
corresponding reconstructed shape models are provided under each point cloud. The local enlarged
views are provided under each shape.

synthetic dataset, where the normal is computed from the surface mesh data, and then generalize the
trained model to real-world data. Finally, our method extracts local-aware features for each point,
which is not efficient enough and is a major factor to limit speed. We may solve these issues by
introducing novel techniques in future work.

In this work, we present a novel normal estimation method from 3D point clouds with noise, outliers
and density variations. We convert the explicit polynomial surface fitting to implicitly learn hyper
surfaces. For the broader academic impact, our method can benefit various downstream 3D computer
vision tasks, such as point cloud filtering, surface reconstruction and rendering. The more accurate
point normals will definitely enhance the performance of these algorithms, especially when dealing
with complex geometric structures (see Fig.[2). Our method can also be applied to describe the object

Figure 4: Top row: shape model visualization without point normals. Bottom row: rendering/shading
with our estimated normals.

(b)

Figure 5: Visualization of the Semantic3D dataset [[7]] and our estimated point normals. (a) The raw
3D point cloud with RGB colors of the real-world outdoor scene. (b) Our estimated point normal
vectors mapped to RGB.

surfaces for robot navigation and grasping. The excellent generation ability of our method lets the
model trained on the synthetic dataset process the real-world data. The potential negative impact is
that the autonomous platform may cause damage if our estimated normal is not accurate enough to
make the controller identify the objects under certain special cases.

References

[1] Yizhak Ben-Shabat and Stephen Gould. DeepFit: 3D surface fitting via neural network weighted least

[2

[3
[4

(5

[6

[7

]

]

—_

]

]

—

squares. In European Conference on Computer Vision, pages 20-34. Springer, 2020.

Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. Nesti-Net: Normal estimation for unstruc-
tured 3D point clouds using convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 10112-10120, 2019.

Junjie Cao, Hairui Zhu, Yunpeng Bai, Jun Zhou, Jinshan Pan, and Zhixun Su. Latent tangent space
representation for normal estimation. IEEE Transactions on Industrial Electronics, 69(1):921-929, 2021.
Frédéric Cazals and Marc Pouget. Estimating differential quantities using polynomial fitting of osculating
jets. Computer Aided Geometric Design, 22(2):121-146, 2005.

Frédéric Cazals and Marc Pouget. Jet fitting 3: A generic c++ package for estimating the differential
properties on sampled surfaces via polynomial fitting. ACM Transactions on Mathematical Software, 35(3),
2008.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J Mitra. PCPNet: learning local shape
properties from raw point clouds. In Computer Graphics Forum, volume 37, pages 75-85. Wiley Online
Library, 2018.

Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K. Schindler, and M. Pollefeys. SEMANTIC3D.NET:
A new large-scale point cloud classification benchmark. In ISPRS Annals of the Photogrammetry, Remote

Figure 6: Visualization of the SceneNN dataset [9] and our estimated point normals. The first column
is the 3D point clouds with RGB colors of real-world indoor scenes. The columns 2 and 4 are point
normal vectors mapped to RGB. The columns 3 and 5 are point normal angular errors mapped to a
heatmap ranging from 0-16 degrees. The number under the point cloud is its RMSE.

[8

—

[9

—

(10]
(11]

(12]

(13]
(14]
(15]
[16]

Sensing and Spatial Information Sciences, volume IV-1-W1, pages 91-98, 2017.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Surface reconstruction
from unorganized points. In Proceedings of the 19th Annual Conference on Computer Graphics and
Interactive Techniques, pages 71-78, 1992.

Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung.
SceneNN: A scene meshes dataset with annotations. In 2016 Fourth International Conference on 3D
Vision, pages 92-101. IEEE, 2016.

Xuequan Lu, Scott Schaefer, Jun Luo, Lizhuang Ma, and Ying He. Low rank matrix approximation for 3D
geometry filtering. IEEE Transactions on Visualization and Computer Graphics, 2020.

Jie Zhang, Jun-Jie Cao, Hai-Rui Zhu, Dong-Ming Yan, and Xiu-Ping Liu. Geometry guided deep surface
normal estimation. Computer-Aided Design, 142:103119, 2022.

Haoran Zhou, Honghua Chen, Yingkui Zhang, Mingqiang Wei, Haoran Xie, Jun Wang, Tong Lu, Jing
Qin, and Xiao-Ping Zhang. Refine-Net: Normal refinement neural network for noisy point clouds. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Jun Zhou, Hua Huang, Bin Liu, and Xiuping Liu. Normal estimation for 3D point clouds via local plane
constraint and multi-scale selection. Computer-Aided Design, 129:102916, 2020.

Jun Zhou, Wei Jin, Mingjie Wang, Xiuping Liu, Zhiyang Li, and Zhaobin Liu. Improvement of normal
estimation for point clouds via simplifying surface fitting. arXiv preprint arXiv:2104.10369, 2021.
Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data processing. arXiv
preprint arXiv:1801.09847, 2018.

Runsong Zhu, Yuan Liu, Zhen Dong, Yuan Wang, Tengping Jiang, Wenping Wang, and Bisheng Yang.
AdaFit: Rethinking learning-based normal estimation on point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6118-6127, 2021.

Noise Density
None 0.12% 0.6% 1.2% Stripes Gradient

Figure 7: Ours normal estimation results for different noise levels and density variations of the
PCPNet dataset [6]. The point normal vectors are mapped to RGB.

Noise Density

None 0.12% 0.6% 1.2% Stripes Gradient
9.61 19.66
11.52 19.52 2.08 1.89

&
8.37 22.42

12.40

5.82
2.05 5.34 16.98 i)
4.01 8.5 16.91 26.33 411 3.94

Figure 8: Error visualization for different noise levels and density variations of the PCPNet dataset [6].
The point color is the angular error mapped to a heatmap ranging from 0-40 degrees.

10

	Notations
	Additional Details
	Derivation
	Max-pooling in Eq. (9) of the Main Paper
	Datasets
	Baseline Method

	More Experiments
	Point Weight Visualization
	Additional Visualization Results
	Complexity & Efficiency
	Applications

	Limitation & Broader Impact

