A THEORETICAL MOTIVATION

A.1 REMARKS ON GENERAL LINEAR ODE

Note that by famed Picard-Lindel6f theorem, solutions to (I exist on an interval [to — &, to + €] and
are unique, given that f is continuous in ¢ and Lipschitz-continuous in z. Even then, to get global
existence, which is a desirable property for a forecasting model, is difficult to achieve for a general
vector field. The following example shows that even very well behaved functions can lead to a finite
time blow-up.

Example 1 (Finite time blow up of an ODE). The ODE :i:(t) = z(¢)? with initial condition x(0) =
has the solution z(¢) = 12—, which blows up in finite time ¢ = %

On the contrary, linear ODEs enjoy very generous global existence and uniqueness properties.

Theorem 1 (Existence & Uniqueness of Linear ODEs). If A and b are continuous in t, then the
linear ODE (6) has a unique global solution. [Teschl|(2012)

General linear ODEs are not trivial to work with, hence we will restrict ourselves to linear ODEs
when the system matrix A is constant. In this case, the solution can be expressed as

Lemma 5. Given a linear ODE (@) with A constant, the solution can be expressed as
At
z(t + At) = e8¢ (x(t) + / e A2z (t + As) ds) (12)
0

In the case when b is a polynomial function of ¢, one can get completely rid of the integral using the
so called ¢-functions, related to the exponential integral, which are given recursively as /Al-Mohy &
Higham| (2011)

o) =z ppr1(@) + 5 wolz) =¢" (13)

AAt - k d*~1b(s)
x(t+ At) = e x(t) + Z or(AA)ur At L s

k=1 s=t
Secondly, note that using Saad’s trick, and Al-Mohy and Higham’s extension, the ¢-functions can by
computed through the matrix exponential of a larger block matrix, for instance:

equgl 8]) =le? ¢1(A)] (15)

And similarly (I4) can be computed through the matrix exponential of a (n+p) X (n+p) matrix. This
result further encourages us to only consider the most simplest form of linear differential equation,
the homogeneous case with constant coefficient &(¢t) = A - x(¢), since the polynomial case is covered
by simply embedding into a larger dimensional latent space.

(14)

B PROOFS AND ADDITIONAL MODEL PROPERTIES

Proof of Lemma First, note that if X is skew-symmetric, then eX?tis orthogonal. This is because
in this case X commutes with Y = X T, and so eX™Y = eXeY holds. But then (eX)TeX =

eX X = e XHXT = o= XTHXT = 0 — T Solet Q = C* be orthogonal. Assuming E[z] = 0 and
Cov|z] =T we have
E[Qz] = Q- Elz] = Q-0=0 = E[z]
CovlQz] =Q-Cov[z] - QT =Q-1-Q" =Q-Q" =1 = Covlz]
O
Conjecture 1 (Self stabilizing property of large matrix exponential). We made experimentally the

following observation. Assume A is random n X m matrix with component distributed iid. as
A;j ~ N(0,0?). Then

. S A—AT 1 1
Vi g nlgr;o\/ar[(e)ijl = NG

16

Proof of Self-consistency (I]and Corollary

First, note that by definition the system component represents a dynamical system if and only if

System(0, 2;) = z; and System(At’ + At, z;) = System(At’, System(At, z;)) (16)

Now, assume we have a forecasting model (¢ | D) and we add the prediction of the model
* == g(t* | D) at time t* to the dataset: D = D U {(t*, §*)}.

Let t— = max{t; | t; < t*} such that t~ < ¢* with no other datapoint in-between. Given
9~ = g(t~ | D), it suffices to show that (¢t | {(t 7,y "), (t*,v*)}) = 9t | {(t",y)} for all
t >t

But since the filter is idempotent, the state estimate does not change when observing (¢t*, y*), and if
the encoder is left-inverse to the decoder, also the latent state estimate 2 does not change. Finally, the
dynamical system assumption ensures that simply propagating from ¢~ to ¢ yields the same result as
propagating from ¢~ to ¢t* and then to ¢.

B.1 KALMAN FILTER

In the presence of missing values, i.e. when only a subset of the components of y are measured, the
same formula holds after substituting y; < S -y, H; < S; - H; and Ry < S; - Ry - S,” where S;
is the m; X m projection matrix of the missing values. In this case the equation can be simplifies
towards

B.2 RELATION OF THE FILTER UPDATE TO GRADIENT DESCENT
Proof of Lemma[3|- KalmanCell initialization. We assume the autoregessive case
&« 2y — aBILA(HL, — 29%)

Since €4 and e are initialized with zero, the linear KalmanCell is at the beginning of training
equivalent to

T: a=0

Ao A A bs - bs 5
7 x—aHH(m —xoq) :(1—aH)x+OzH$°9W .%‘;: {xObS: a:l/\xObs;«éNaN

For the case o = 1/2, consider again the classical Kalman Filter:

P =2 -YH O (HZH" + R)"'I(H & — 2°®)

Then, in the special case when the problem is autoregressive (H = I), without missing values (II = I)
and ¥ = R, the formula reduces to:

P= 7Y (S+R)'HE —2°) = & — X0 (D) '1I(& — 2) = & —

N[

Remark 1 (Filter is a Gradient update). Recall that the Kalman filter update, ignoring missing values,
looks like

@y = w¢ = nf (v — 27™) a7

Which is surprisingly similar to a gradient descent update. In fact, we can interpret it as such! Recall
the standard Kalman Filter update

¢’ =x—PH"(HPH" + R)"Y(Hz —y) (18)
d1 1 2
=z =P C|(HPHT + R)™> (Hz - y)| (19)

This was noted for example by Baltieri & Isomural(2021); |Ollivier| (2019)

17

B.3 ROW- AND COLUMN CORRELATION

As an alternative to the effective rank measure, we found that the average row-/column-correlation
allows for similar observations.

Definition 6 (Row and Column correlation). Let X be a real m x n matrix. We define the average
row/column correlation coefficient as

. 1 (X, 1X5,0) _ 1 XTX
col-corr(X) = n(n—1) Z |05 — \|Xi,:||.\|xj‘:|\| = 2= ||In ~ TepXTX)Bding(XTX) Hl L
17 ’
. 1 (Xl X)) | 1 xXxT
row-corr(X) =z D10y — me iyl = mee HH’” T dag(XX) @diag(XX) ’1 1
17 ’

Lemma 6. Let p denote the row-/column-correlation. Then 0 < col-corr(X) < 1, with p(X) =0
ifand only if XX =1, (XX " = 1,,) and p(X) = 1 if and only if all rows/columns of X are
linearly dependent.

C IMPLEMENTATION DETAILS

C.1 ENCODER COMPONENT

The encoding mechanism is responsible for transforming the input in a non-linear way from the
observation space of size dim(x) into the latent space of size dim(z). the dimensionality from the
input size dim(z) to the latent size dim(z). We will assume that dim(z) > dim(z) and split the
component into two parts:

Encoder: x +— ¢(embedding(x)) Embedding: x +— concatenate(x, b) (20a)
Decoder: z +— projection(m(z)) Projection: z—= I 0]z (20b)

Where ¢ and 7 are neural networks mapping R4™(*) — R4i™(2) One option is to use an invertible
architecture such as the invertible Residual Network (iResNet) by Behrmann et al.|(2019)) or the
invertible Attention layer by Zha et al.| (2021)). This would allow the encoder to be left-inverse to the
decoder with in the case dim(z) > dim(z). However we found that in our setup it was sufficient to
use two independent ReZero-ResNets.

For the embedding, we propose to simply concatenate a learnable vector to the input. An alternative
that also works when dim(z) < dim(z) is to multiply by a weight matrix A in the embedding, and
then by the pseudoinverse A™ in the projection.

C.2 PSEUDO-CODE

The following is a close to source pseudo-code of the KalmanCell that works even when x°%
contains NaN values. The trick is to, instead of multiplying my mask matrices II;, to use
where(mask, value, other) operators that select entries from one tensor or the other based on a
condition.

Algorithm 4 Linear KalmanCell

Input: Current State estimate 2, € R"™, observed datapoint 2¢% € (R U {NaN})™
Parameters: Learnable matrices A, B, H, zero-initialized scalars € 4, € g, scalar «, parametriza-
tions Y 4, ¥ g.

Options: If autoregressive, m = n and H = 1,.

my < not-missing ()

% I, +eatpa(A)

B+« 1, +epyp(A)

7 A- where(my, Hi; — 29, 0)

Ax; + BHT - where(my, 7, 0)

Ty Ty — Ay

return Updated state estimate Z}.

18

Algorithm 5 Non-Linear KalmanCell

Input: Current State estimate #; € R", observed datapoint 23* € (R U {NaN})™
Parameters: Learnable matrices A, B, H zero-initialized scalar e, neural network ¢.
Options: If autoregressive, m = n and H = I,,.

m; < not-missing (%)

r¢ + A - where(my, Hi; — 29%,0)
2 < BHT - where(my,r,0)

Axt < ¢(Zf)

flATQ — f%t - EAfﬂt

Return: Updated state estimate ;.

Algorithm 6 Encoder

Input: state estimate
Parameters: zero-initialized scalars ¢, neural network blocks F},

u < [Ty,]
fork=1... K do

U u+eg - Fi(u)
end for
Return: z; '= ug

Algorithm 7 Decoder

Input: latent state estimate 2;
Parameters: zero-initialized scalars ¢, neural network blocks F},

U <— ét

fork=1... K do
U4 u+ ey - Fi(u)

end for

&} « [I, 0Ju

Return: &}

Algorithm 8 Stacked Filter

Input: Current State estimate 2; € R, observed datapoint a:‘t’bs € R™.
Parameters: Filters f;,i=1...m

fori=1...mdo
Ty fz‘(xi’bs,j?t)
end for
Return: Updated state estimate 2.

D FURTHER RELATED WORK

D.1 RNN BASED MODELS

Recurrent Neural Networks (Rumelhart et al., [1986) are one of the oldest architectures used for
sequential data. While the original formulation notoriously suffer from error propagation and
instability, variants such as Long-Short-Term-Memory (LSTM; (Hochreiter & Schmidhuber, |1997)))
and the simplified Gated Recurrent Units (GRU;|Cho et al.|(2014)) were developed in order to facilitate
long-term forecasting. However, nowadays these methods often cannot compete in forecasting tasks
with attention-based methods. In this domain, in particular a GRU variant with decay parameters

19

(GRU-D; |Che et al.|(2018))) laid an important foundation for applying RNNs to irregularly sampled
data. This model can be considered as a special case of a neural ODE (cf. Table[T).

RNNs have been extended to probabilistic forecasting, e.g., Deep State Space Models (DeepState;
Rangapuram et al.|(2018))), and exploit autoregressive characteristics of time series data, e.g., Deep
Autoregressive Recurrent Neural Networks (DeepAR; |Salinas et al.| (2020)).

On the other hand RNNS, still play an important role in time-series imputation, especially for
irregularly sampled time series. This task consists of reconstructing missing values inside an interval
of observed data. For this task, particularly multidirectional recurrent methods have been successful
such as Multidirectional RNN (M-RNN; [Yoon et al.| (2019)) Bidirectional Recurrent Imputation
(BRITS;|Cao et al.| (2018))) and Interpolation-Prediction Networks (IP-Nets; Shukla & Marlin|(2018)).

D.2 ATTENTION BASED MODELS

The attention mechanism (Vaswani et al.,2017)), first introduced in the context of natural language
processing, has been successfully applied in the time series domain. One of the main advantages of
attention is the short path-length for interactions, whereas one of the drawbacks is scalability with
respect to the sequence length, which makes regular transformers not usable for time-series tasks
with large observational horizon.

To counteract that different solutions have been proposed such as using sparse attention variants
such as implemented in the Log-Sparse Transformer (LogTrans;|L1 et al.| (2019)), Adversarial Sparse
Transfomer (AST;|Wu et al.|(2020)) and Informer (Zhou et al.| 2021)) models.

Meanwhile, transformer based models are well established for regular time series tasks. Temporal
Pattern Attention (TPA;|Shih et al.[(2019)) uses 1-D convolutions in order to embed the observations
into a latent state on which feature-wise attention extracts inter-channel dependencies and updates the
latent state accordingly. An LSTM model is used to produce the forecast. Multi-Horizon Temporal
Attention (MHTA; Fan et al.| (2019))) combines an an attention based encoder with a bidirectional
LSTM decoder in order to facilitate probabilistic forecasting on regular time-series data. Topological
Attention (TopAttn; Zeng et al.|(2021))) uses methods from topological data analysis in order to extract
feature embeddings used as input for a transformer model. Temporal Fusion Transformer (TFT; Lim!
et al.|(2021))) combines a variable selection model and a LSTM encoder-decoder architecture with a
latent Multi-Head Attention Mechanism in order to produce Multi-Horizon Quantile forecasts. Multi-
Time Attention (mTAN;[Shukla & Marlin| (2021)) is one of the few transformer models specifically
applied to irregularly sampled time-series, albeit being only used for interpolation and classification.
The model makes use sinusoidal time embeddings, which are used via an attention mechanism in
order to realize a kernel-smoother.

However, to the best of our knowledge none of the attention based models have been used for
irregularly sampled time series forecasting.

D.3 CONVOLUTION BASED MODELS

Time series data, in particular regularly sampled time series data, naturally lends itself the application
of convolutions. Temporal Convolutional Networks (TCN; Bai et al.|(2018a))) apply channel wise
convolutions in order to obtain temporal embeddings.

For classification tasks, Trellis Networks (Bai et al., | 2018b) use stacked, weight-shared temporal
convolutions and achied good results on natural language tasks.

More recently, Continuous Kernel Convolutions (CKConv; [Romero et al.| (2021))) use an MLP in
order to parametrize a continuous convolutional kernel, which allows the convolution to be used with
irregularly sampled data. However, the model is only usable for classification and regression tasks.

D.4 VAE AND GAN BASED MODELS

Partial Bidirectional GAN (P-BiGAN;|Li & Marlin| (2020)) is an encoder-decoder architecture using
continuous convolutions in the encoder and a kernel smoother as the decoder which are trained in a
bidirectional GAN. They evaluate the model on image reconstruction and time series classification
tasks. STRIPE (LE GUEN & THOME, 2020) is a probabilistic time series forecasting model based on

20

a sequence to sequence architecture that utilizes temporal point processes and variants of dynamical
time warping.

D.5 OTHER

Autoregressive Integrated Moving Average (ARIMA; Box et al|(1974), Box et al|(1974) Box et al.
(1974)) is one of the oldest time-series forecasting models. Neural Basis Expansion Analysis for
Time Series (N-BEATS; |Oreshkin et al.|(2019)) and its successor Neural Hierarchical Interpolation
(N-HITS;|Challu et al.|(2022))) are two time series forecasting models based on the idea of combining
pre-defined or learned basis functions with a residual architecture. Set Functions for Time Series
(SetTS; |Horn et al.| (2020)) represent a time series as a set of triplets consisting of observation time,
channel indicator and observed value. This naturally removes any missing and allows them to directly
apply DeepSet-type model (Zaheer et al., 2017). The result is a scalable model for time-series
regression and classification tasks.

Neural Flows (NFLOWS; [Bilos et al.|(2021))) try to directly learn a model representing the solution of
an ODE instead of the modeling the ODE itself, which completely removes the need for an ODE
integrator.

E EXPERIMENT DETAILS
E.1 DATASET STATISTICS

Table 4: Dataset Statistics

USHCN MIMIC-1IT MIMIC-1V

observation horizon 36 hours 36 hours 36 hours
forecasting horizon 3 steps 3 steps 3 steps
data-split (train/val/test)% 72/18/10 72/18/10 68/17/15
cross-validation folds 5 5 5
number of timesteps 350,665 552,327 2,485,769
number of channels 5 96 102
missing percentage 77.9% 94.2% 97.8%

At range (min/median/max) 0.1/0.4/137 1/1/80 1/9/2848

E.2 HYPERPARAMETER CHOICES

Table 5: Hyperparameter Grid

USHCN MIMIC-II MIMIC-IV
max epochs {100} {25} {25}
batch-size {64} {64} {64}
hidden-size {64,128} {64,128} {64,128}
latent-size {128,192} {128,192} {128,192}
kernel-init {skew-symmetric} {skew-symmetric} {skew-symmetric}
encoder 5-block ResNet with 2 RELU pre-activated layers each
filter StackedFilter of 3 KalmanCells, the first is linear
system LinODECell with skew-symmetric initialization
total parameters 97k-357k- 510k-704k 510k-704k
learning-rate {0.001} {0.001} {0.001}
beta-parameters {(0.9,0.999)} {(0.9,0.999)} {(0.9,0.999)}
weight-decay {0.001} {0.001} {0.001}
GPU RTX 3090/ A400 RTX 3090/ A4000 RTX 3090/ A4000

21

	Introduction
	Related Work
	Problem Formulation
	Latent State Space Models
	Latent Linear ODEs with Neural Kalman Filtering (LinODEnet)
	System Component
	Filter Component
	Overall Model Properties

	Empirical Evaluation
	Experiments on Irregular Time Series
	Observations

	Conclusions
	Acknowledgments
	Theoretical Motivation
	Remarks on general linear ODE

	Proofs and Additional Model Properties
	Kalman filter
	Relation of the Filter update to Gradient Descent
	Row- and Column correlation

	Implementation Details
	Encoder Component
	Pseudo-Code

	Further Related Work
	RNN based models
	Attention based models
	Convolution based models
	VAE and GAN based models
	Other

	Experiment Details
	Dataset Statistics
	Hyperparameter choices

