
7 Appendix

7.1 Code Examples

In this section, we illustrate through examples how users can work with Croissant files in their ML
workflows, using the mlcroissant and TFDS libraries.

7.1.1 Loading a Dataset from a Croissant File
1 import mlcroissant as mlc
2 ds = mlc.Dataset("https :// raw.githubusercontent.com/mlcommons/croissant/

main/datasets /1.0/gpt -3/ metadata.json")
3 metadata = ds.metadata.to_json ()
4 print(f"{metadata[’name ’]}:{ metadata[’description ’]}")
5 for x in ds.records(record_set="default"):
6 print(x)

7.1.2 Loading data from a Croissant JSON-LD file in an ML workflow by using TFDS
1 import tensorflow_datasets as tfds
2 builder = tfds.dataset_builders.CroissantBuilder(
3 jsonld="https :// raw.githubusercontent.com/mlcommons/croissant/main/

datasets /0.8/ huggingface -mnist/metadata.json",
4 file_format="array_record",
5)
6 builder.download_and_prepare ()
7 ds = builder.as_data_source ()
8 print(ds["default"][0])

7.1.3 Using Croissant into ML-workflow by loading into TFDS Data loader for HF Datasets
1 # 1. Point to a local or remote Croissant file
2 import mlcroissant as mlc
3 url = "https :// huggingface.co/api/datasets/fashion_mnist/croissant"
4

5 # 2. Inspect metadata
6 print(mlc.Dataset(url).metadata.to_json ())
7

8 # 3. Use Croissant dataset in your ML workload
9 import tensorflow_datasets as tfds

10 builder = tfds.core.dataset_builders.CroissantBuilder(
11 jsonld=url ,
12 record_set_ids =["record_set_fashion_mnist"],
13 file_format="array_record",
14)
15 builder.download_and_prepare ()
16

17 # 4. Split for training/testing
18 train , test = builder.as_data_source(
19 split=["default [:80%]", "default [80%:]"]
20)

7.1.4 Visualizing Bounding Boxes in Croissant using the COCO 2014 dataset
1 # 1. Importing mlcroissant Python package
2 import mlcroissant as mlc
3

17

https://cocodataset.org/

4 # 2. Create a subset of the COCO 2014 dataset which offers bounding box
annotations

5 record_set = "images_with_bounding_box"
6

7 # We download resources from the validation split to download smaller
files.

8 distribution = [
9 mlc.FileObject(

10 id="annotations_trainval2014.zip",
11 name="annotations_trainval2014.zip",
12 description="",
13 content_url =(
14 "http :// images.cocodataset.org/annotations/

annotations_trainval2014.zip",
15),
16 encoding_format="application/zip",
17 sha256="031296

bbc80c45a1d1f76bf9a90ead27e94e99ec629208449507a4917a3bf009",
18),
19 mlc.FileObject(
20 id="annotations",
21 name="annotations",
22 description="",
23 contained_in =["annotations_trainval2014.zip"],
24 content_url="annotations/instances_val2014.json",
25 encoding_format="application/json",
26),
27]
28

29 # The record set has the ‘image_id ‘ and the ‘bbox ‘ (short for bounding
box).

30 record_sets = [
31 mlc.RecordSet(
32 id="images_with_bounding_box",
33 name=record_set ,
34 fields =[
35 mlc.Field(
36 id="images_with_bounding_box/image_id",
37 name="image_id",
38 description="",
39 data_types=mlc.DataType.INTEGER ,
40 source=mlc.Source(
41 file_object="annotations",
42 extract=mlc.Extract(
43 json_path="$.annotations [*]. image_id"
44),
45),
46),
47 mlc.Field(
48 id="images_with_bounding_box/bbox",
49 name="bbox",
50 description="",
51 data_types=mlc.DataType.BOUNDING_BOX ,
52 source=mlc.Source(
53 file_object="annotations",
54 extract=mlc.Extract(
55 json_path="$.annotations [*]. bbox"
56),

18

57),
58),
59],
60),
61]
62

63 metadata = mlc.Metadata(
64 name="COCO2014",
65 url="https :// cocodataset.org",
66 distribution=distribution ,
67 record_sets=record_sets ,
68)
69

70 # 3. Creating the Croissant JSON -LD file
71 jsonld = epath.Path("croissant.json")
72 with jsonld.open("w") as f:
73 f.write(json.dumps(metadata.to_json (), indent =2))
74

75 # 4. Getting the first record from the generated Croissant JSON -LD
76 dataset = mlc.Dataset(jsonld=jsonld)
77 records = dataset.records(record_set=record_set)
78 record = next(iter(records))
79 print("The first record:")
80 print(json.dumps(record , indent =2))
81

82 # 5. Visualizing the bounding box
83 image_id , bbox = record["images_with_bounding_box/image_id"], record["

images_with_bounding_box/bbox"]
84 url = f"http :// images.cocodataset.org/val2014/COCO_val2014_{image_id :012d

}.jpg"
85

86 # Download the image
87 print(f"Downloading {url }...")
88 response = requests.get(url)
89 image = Image.open(io.BytesIO(response.content))
90 draw = ImageDraw.Draw(image)
91

92 # COCO uses the XYWH format. PIL uses the XYXY format.
93 x1 , y1 , w, h = bbox
94 draw.rectangle ((x1 , y1 , x1 + w, y1 + h), outline =(0, 255, 0), width =2)
95 display(image)

7.2 Croissant Health Metrics

Croissant Health is a framework to automatically scrape and compute metrics about Croissant from
online dataset repositories. It has been implemented so far for Hugging Face Datasets and OpenML,
and can be easily extended to new repositories. The metrics are derived from the crawl responses for
hosted datasets and the number of FileObjects, FileSets, RecordSets, and Fields they contain.
More detailed statistics will be added in the future.

7.2.1 Croissant Statistics for Hugging Face Datasets

Figure 9 shows that the number of successfully downloaded Croissant datasets from Hugging Face is
over 100k, and the rate of invalid Croissant files is 25%. These statistics are key to identify issues
with Croissant generation and fix errors. Figure 10 gives an idea of the shape of these datasets: On
average, datasets are small across all dimensions, with less than 10 resources, RecordSets, and
Fields.

19

Croissant Health Metrics Attribute

N
um

be
r o

f D
at

as
et

s

0

25000

50000

75000

100000

125000

Successful
access of HF

datasets

Invalid HF
dataset source

Authentication
issue for HF

dataset source

Timeout (By
mlcroissant)

Timeout (By
huggingface)

Number of Datasets

Figure 9: Scraping results for Croissant files of
Hugging Face Datasets.

Croissant Attributes

V
al

ue

0

20

40

60

Fields # Record sets

mean standard deviation

Figure 10: Illustration showing statistics for mean
and standard deviation for the Croissant files
hosted on Hugging Face datasets.

7.2.2 Croissant Stastistics for OpenML Datasets

Croissant Health Metrics Attribute

N
um

be
r o

f D
at

as
et

s

0

1000

2000

3000

4000

5000

Successful access
of OpenML
datasets

Dataset not
accesible

Timeout (By
mlcroissant)

Timeout (By
openml)

Number of Datasets

Figure 11: Scraping results for Croissant files
hosted on OpenML.

Croissant Attributes

V
al

ue

0

10

20

30

40

Fields # Record sets

mean standard deviation

Figure 12: Illustration showing statistics for mean
and standard deviation for Croissant files hosted
on OpenML datasets.

Figure 11 shows the Croissant adoption for the OpenML datasets and Figure 12 illustrates the statistics
for OpenML datasets. The number of datasets is much smaller overall, at about 4k datasets. The
rate of invalid Croissant files is around 25% due to authentication issues occurring while trying to
access private datasets. We use Croissant Health12 to monitor the health of the Croissant ecosystem
by crawling online JSON-LD files shared across repositories. Currently, Croissant Health performs
this check for Hugging Face and OpenML datasets only, but will be extended in future to further
repositories.13

Figure 12 shows that these datasets are much more complex, with many datasets having a larger
number or FileObjects, RecordSets, and Fields compared to the Hugging Face ones.

7.3 User Study

Figure 13 shows the participants’ confidence in the annotations they provided, on a scale of 1 to
5. The majority of participants picked 4, which shows a high level of confidence in their ability
to create Croissant metadata. It’s interesting to contrast this number with the participants’ level of
understanding of datasets (Figure 14), which varies more broadly between 3 and 5.

Figure 15 gives an overview of how much time participants took for the user study. The majority of
participants took 15-30 minutes to create the Croissant description of a dataset, which seems like a
reasonable amount of time.

Finally, Figures 16, 17, and 18 show the instruction provided to participants for the user study.

12https://github.com/mlcommons/croissant/tree/main/health
13See https://github.com/mlcommons/croissant/blob/main/health/visualizer/report_openml.ipynb

for further details.

20

https://github.com/mlcommons/croissant/tree/main/health
https://github.com/mlcommons/croissant/blob/main/health/visualizer/report_openml.ipynb

Figure 13: Annotators’ confidence in provided
annotations on a Likert scale from one to five.
One indicates no confidence and five very high
confidence in correct annotations.

Figure 14: Annotators’ understanding of datasets
on a Likert scale from one to five. One indicates
that the annotator has no understanding of the
dataset while five means that the annotator under-
stands the dataset, including its purpose, creation,
etc.

Figure 15: Time to create a Croissant description for a dataset.

21

Figure 16: Instruction provided to user study participants for annotating ML datasets with selected
Croissant/Croissant-RAI attributes (1/3).

22

Figure 17: Instruction provided to user study participants for annotating ML datasets with selected
Croissant/Croissant-RAI attributes (2/3).

Figure 18: Instruction provided to user study participants for annotating ML datasets with selected
Croissant/Croissant-RAI attributes (3/3).

23

Figure 19: A visualizer example for exploring semantic similarity between datasets based on Croissant
dataset Transformer and t-SNE embedding.

7.4 Semantic search with Croissant

The unified format of Croissant data makes it possible to scrape them from across the web and then
conveniently embed and project them through a pipeline of your choice for semantic search among
datasets. We provide a starter kit with an example of OpenML data at this address https://github.
com/mlcommons/croissant/tree/main/health/visualizer/explorer where we

1. Scrape Croissant files from the OpenML API following the steps under https://github.
com/mlcommons/croissant/tree/main/health

2. Read all Croissant dataset descriptions from the OpenML crawl (>5k)
3. Extract dataset descriptions and urls from the Croissant files
4. Project dataset descriptions onto an embedding space with a sentence transformer encoder
5. Project embeddings to a three-dimensional space with PCA and t-SNE
6. Explore semantic proximity of datasets in t-SNE embedding space

An example visualizer can be found on https://docs.mlcommons.org/croissant/.

7.5 Croissant Editor for Dataset Authors

The Croissant open-source editor (Figure 20) is a tool for generating Croissant metadata for dataset
publishers. The editor abstracts away the details of the Croissant syntax via a familiar user interface.
Users can drag-and-drop files to start creating a Croissant dataset.

The editor infers the resources and structure definitions from the data, and guides them in filling out
required and optional fields (Figure 21). The editor can be run locally as well as on the Hugging Face
interface and incorporates Croissant Core and Croissant RAI attributes (Figure 21) for generating
Croissant file while hosting a dataset 14.

14https://HuggingFace.co/spaces/MLCommons/croissant-editor

24

https://github.com/mlcommons/croissant/tree/main/health/visualizer/explorer
https://github.com/mlcommons/croissant/tree/main/health/visualizer/explorer
https://github.com/mlcommons/croissant/tree/main/health
https://github.com/mlcommons/croissant/tree/main/health
https://docs.mlcommons.org/croissant/
https://HuggingFace.co/spaces/MLCommons/croissant-editor

Figure 20: The Croissant editor Graphical User Interface (GUI).

25

Figure 21: Illustration of the Croissant editor GUI for filling dataset and Responsible AI (RAI)
attributes.

26

	Introduction
	Related Work
	The Croissant Format
	The Dataset Metadata Layer
	The Resources Layer
	The Structure Layer
	The Semantic Layer
	The Croissant-RAI Extension
	Croissant Tools and Integrations
	The Croissant Working Group

	Croissant Evaluation: A User Study with ML Practitioners
	The User Study Process
	Mapping Evaluation Criteria to Croissant
	Results and Discussion

	Limitations and Future Work
	Conclusion
	Appendix
	Code Examples
	Loading a Dataset from a Croissant File
	Loading data from a Croissant JSON-LD file in an ML workflow by using TFDS
	Using Croissant into ML-workflow by loading into TFDS Data loader for HF Datasets
	Visualizing Bounding Boxes in Croissant using the COCO 2014 dataset

	Croissant Health Metrics
	Croissant Statistics for Hugging Face Datasets
	Croissant Stastistics for OpenML Datasets

	User Study
	Semantic search with Croissant
	Croissant Editor for Dataset Authors

