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A Dataset Details

In this section, we provide the detailed description of the datasets we used to perform all the
experiments for CoMix, namely, (1) UCF-HMDB [3], (2) Jester [13], and (3) Epic-Kitchens [12].

UCF-HMBD Dataset. The UCF-HMDB dataset (assembled by [3]) is derived from the original
UCF101 [15] and HMDB51 [7]. It is constructed by collecting all the relevant and overlapping
action classes or categories from both the datasets as two domains, resulting in 2 transfer tasks
(UCF→HMDB and HMDB→UCF). The dataset possesses 12 action classes, namely, Climb, Fencing,
Golf, Kick_Ball, Pullup, Punch, Pushup, Ride_Bike, Ride_Horse, Shoot_Ball, Shoot_Bow, and Walk.
For some of the cases, multiple action classes from the original dataset are combined to form a
single action super-class for that domain. E.g., RockClimbingIndoor and RopeClimbing classes in
the HMDB51 [7] dataset are combined to form Climb class for the HMDB domain in the UCF-
HMDB dataset. The detailed composition of the action classes is shown in Table 2. The dataset
contains 3, 209 videos in total with 1438 training videos and 571 validation videos from UCF, and
840 training videos and 360 validation videos from HMDB (following the splits by [3]), with a
class-wise distribution shown in Figure 1.

The datasets are publicly available to download at:
https://www.crcv.ucf.edu/data/UCF101.php
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/.

Jester Dataset. The Jester [11] dataset is a large scale fine-grained dataset consisting of videos of
humans performing pre-defined hand gestures. The original dataset consists of 148092 videos from
27 action classes. A cross-domain dataset is constructed (originally by [13]) as a subset of the original
dataset by merging multiple action classes into a single action super-class and then split into source
and target domain. E.g., Swiping Left, Swiping Right, Swiping Up, and Swiping Down are considered

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://cvir.github.io/projects/comix
https://www.crcv.ucf.edu/data/UCF101.php
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/


Table 2: Action classes in UCF-HMDB Dataset. The table shows the action class composition for the UCF-
HMDB dataset from the original datasets (i.e., UCF101 and HMDB51) and their correspondence to each other
for the video domain adaptation setting.

UCF-HMDB HMDB51 UCF101

Climb climb
RockClimbingIndoor

RopeClimbing
Fencing fencing Fencing
Golf golf GolfSwing

Kick_Ball kick_ball SoccerPenalty
Pullup pullup PullUps
Punch punch Punch
Pushup pushup PushUps

Ride_Bike ride_bike Biking
Ride_Horse ride_horse HorseRiding
Shoot_Ball shoot_ball Basketball
Shoot_Bow shoot_bow Archery

Walk walk WalkingWithDog

as a super-class Swiping. Then Swiping Left, Swiping Up are considered to be in the source domain,
while Swiping Right, Swiping Down to be in the target domain. Different sub-actions are put into
different domains in order to maximize the domain discrepancy, as stated by [13]. The resulting
cross-domain dataset possesses 7 action classes, namely, Push and Pull, Rolling Hand, Sliding Two
Fingers, Swiping, Thumps Up and Down, Turning Hand, and Zooming In and Out. For Jester, we
have only a single transfer task i.e. Jester(S)→Jester(T). The detailed composition of the action
classes is shown in Table 3 with a class-wise distribution of videos depicted in Figure 2.

The dataset is publicly available to download at: https://20bn.com/datasets/jester.

Table 3: Action Classes in Jester. The table shows the action class composition for each of the domains (i.e.
Source and Target) in the Jester dataset and their correspondence to each other for the domain adaptation setting.

Jester Jester (S) Jester (T)

Push and Pull
Pushing Hand Away Pulling Hand In

Pushing Two Fingers Away Pulling Two Fingers In
Rolling Hand Rolling Hand Forward Rolling Hand Backward

Sliding Two Fingers
Sliding Two Fingers Left Sliding Two Fingers Right
Sliding Two Fingers Up Sliding Two Fingers Down

Swiping
Swiping Left Swiping Right
Swiping Up Swiping Down

Thumps Up and Down Thumb Up Thumb Down
Turning Hand Turning Hand Counterclockwise Turning Hand Clockwise

Zooming In and Out
Zooming Out With Full Hand Zooming In With Full Hand

Zooming Out With Two Fingers Zooming In With Two Fingers

Epic Kitchens Dataset. The Epic-Kitchens [5] dataset is a challenging egocentric dataset consisting
of videos (action segments) capturing daily activities performed in kitchens. The three largest
kitchens, namely, P01, P22, and P08 form the three domains D1, D2, and D3, respectively. Moreover,
the 8 largest action classes, namely, take, put, open, wash, close, cut, pour, and mix are used to form
the dataset for the domain adaptation setting, following [12]. The dataset has 1543 training videos
and 435 test videos from D1, 2495 training videos and 750 test videos from D2, and 3897 training
videos and 974 test videos from D3. The class-wise distribution is shown in Figure 3. It can be seen
that the dataset possesses high imbalance which makes it even more challenging.

The dataset is publicly available to download at: https://epic-kitchens.github.io/2021.
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Figure 1: Class-wise distribution of videos for UCF-HMDB. The bar chart shows the distribution of videos
across the 12 action classes of the UCF-HMDB dataset. Best viewed in color with zoom.

Figure 2: Class-wise distribution of videos for Jester. The bar chart shows the distribution of videos across
the 7 action classes of the Jester dataset for the source and the target domains. Best viewed in color with zoom.

Figure 3: Class-wise distribution of videos for Epic-Kitchens. The bar chart shows distribution of videos
across 8 action classes of Epic-Kicthens for three domains D1, D2, and D3. Best viewed in color with zoom.
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B Temporal Graph Encoder

In this section, we provide the detailed description of the temporal graph encoder that we used for
representing videos in our contrastive learning framework.

B.1 Graph Convolutional Network

The graph convolutional network (GCN) was originally proposed by [6] for node classification on
graph structured data. Given an input graph X ∈ RN×d with N number of nodes with each node as
a feature-vector of dimension d, the layer-wise propagation rule for a multi-layer GCN is:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (1)

where, H(l) ∈ RN×dl is the activation graph of the lth layer with node feature dimension dl;
H(0) = X . Ã = A + IN is the adjacency matrix of X with added self-connections through the
indentity matrix IN . D̃ii =

∑
j Ãij is the diagonal matrix used for normalization of Ã, and W (l) is

the layer-specific trainable weight matrix. σ(.) denotes the activation function, e.g. ReLU(.).

B.2 Videos as Similarity Graphs

Motivated by the importance of capturing long-range temporal structure in videos for action recogni-
tion and hence in cross-domain adaptation, we adopt a similarity graph to represent a video in our
framework, as in [17]. Given a video Vn = {v1,v2, ...,vn} with n clips, with the corresponding
clip-level feature vector representations as Zn = {z1, z2, ..., zn}, extracted by the feature encoder F ,
each of dimension d. We construct a fully-connected graph X with n nodes from Z by considering
the pairwise similarity or affinity between two feature vectors as:

F (zi, zj) = φ(zi)
>φ′(zj) (2)

where, φ(.) and φ′(.) represent two different transformation functions of the original feature vectors,
defined as φ(z) = wz and φ(z) = w′z. Here, the transformations are parameterized with the
weights w and w′ of dimension d× d each. Using such transformations helps learn the long-range
correlations between the feature vectors to harness the rich temporal information of the video. We
get a similarity matrix Asim of dimension n× n by computing the affinity for all the possible pairs,
using Eq. 2. The matrix is then normalized using a softmax function as:

Asim
ij =

exp(F (zi, zj))
n∑

j=1

exp(F (zi, zj))
(3)

The normalized matrix Asim is now considered as the adjacency matrix for the similarity graph,
allowing us to learn the edge-weights between the nodes through back-propagation, by the help of
the learnable weights w and w′. Hence, the resulting similarity graph convolutional network has the
following propagation rule, similar to Eq. 1:

H(l+1) = σ(Asim(l)H(l)W (l)) (4)

where, H(0) = X , and Asim(l) is the affinity/adjacency matrix computed using the node features of
the lth layer, similar to [17].

B.3 Scalability with Graph Convolutions

The learning strategy for graph representation used in CoMix ensures that the number of learnable
parameters are independent of the number of graph nodes. As described in detail above, we construct
the fully connected graph with the edge weights (pairwise similarity) obtained using two different
transformation functions, and on the clip-level feature vectors (where each feature vector represents a
node). This strategy makes the number of trainable parameters independent of the number of nodes in
a GCN layer and hence, independent of the number of clips used for a video. While fully connected
graph convolutions will increase the computation with longer clip sequences, we can adopt sparse
video sampling [2] or techniques like [18] to tradeoff computation.
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C Additional Implementation Details

In this section, we provide additional implementation details including hyperparameters with a
detailed overview of the model architectures used in our approach.

C.1 Model Architectures

Feature Encoder. Following [4], we use I3D [1] as our feature encoder F for all our experiments.
It takes clips (set of consecutive frames) of videos, of length 8, as input and maps them to the
corresponding clip-level feature vector of length 1024. The layer-wise architectural view of the I3D
feature encoder backbone is shown below:

InceptionI3D:
(Conv3d_1a_7x7): Unit3D ()
(MaxPool3d_2a_3x3): MaxPool3dSamePadding ()
(Conv3d_2b_1x1): Unit3D ()
(Conv3d_2c_3x3): Unit3D ()
(MaxPool3d_3a_3x3): MaxPool3dSamePadding ()
(Mixed_3b): InceptionModule ()
(Mixed_3c): InceptionModule ()
(MaxPool3d_4a_3x3): MaxPool3dSamePadding ()
(Mixed_4b): InceptionModule ()
(Mixed_4c): InceptionModule ()
(Mixed_4d): InceptionModule ()
(Mixed_4e): InceptionModule ()
(Mixed_4f): InceptionModule ()
(MaxPool3d_5a_2x2): MaxPool3dSamePadding ()
(Mixed_5b): InceptionModule ()
(Mixed_5c): InceptionModule ()
(avg_pool): AvgPool3d ()
# Outputs features of length 1024.

Temporal Graph Encoder For the temporal graph encoder G, we use a 3-layer similarity based
graph convolutional neural network, as discussed in Section B. The graph encoder takes the output of
the feature encoder F as input and gives the logits as the output. The layer-wise architectural view of
the temporal graph encoder is shown below:

TemporalGraph:
# Takes the output of InceptionI3d as input.
(gc1): GraphConvolution (1024, 256)
(relu): ReLU()
(dropout): Dropout ()
(gc2): GraphConvolution (256, 256)
(relu): ReLU()
(dropout): Dropout ()
(gc3): GraphConvolution (256, num_classes)
# Outputs the logits.

C.2 Hyperparameters

Below, we provide the exact values of the two loss weights λbgm and λtpl (refer to Eq. 6 in the main
paper) for each of the datasets:

UCF-HMDB: UCF→HMDB: λbgm = 0.1, λtpl = 0.01; HMDB→UCF: λbgm = 0.1, λtpl = 0.1.

Jester: S→T: λbgm = 0.1, λtpl = 0.1.

Epic-Kitchens: λbgm = 0.01, λtpl = 0.01 was used for all the 6 tasks.

For all the experiments, the source-only models were trained for 4000 iterations and then our
framework was trained for an additional 10000 iterations, initialized with the source-only models.
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D Background Extraction Details

In this section, we provide more details about the background extraction including qualitative samples
used in our temporal contrastive learning framework.

Temporal Median Filter. Temporal median filtering (TMF) is one of the most simple, intuitive, and
fast methods for background generation. It has proven to be successful and commonly adopted in
several recent deep learning pipelines [16, 10]. For videos, a pixel-wise temporal median filter is
applied on the sequence of frames to obtain the corresponding background. The method is designed
with the principle that for a given pixel location, in a sequence of frames, the most frequently repeated
intensity along the temporal direction is most likely to be the background value for that pixel [14, 8].
It does so by computing the pixel-wise median values along the temporal direction. We adopt this
method for extracting backgrounds for our framework because of its simplicity and effectiveness. It
must be noted that the CoMix framework is agnostic to the method used for background extraction
and can be incorporated with any other background extraction techniques for videos. Figure 4 shows
some representative video clips randomly sampled from both the domains of the UCF-HMDB along
with the corresponding background frame extracted using temporal median filtering. Note that we
extract a single background frame per video from one domain and then mix it with all the frames of a
video from the other domain to generate synthetic background mixed videos. The addition of a static
background frame to all frames of a video does not hinder the temporal action dynamics (motion
patterns) possessed by the video. We validate this hypothesis by obtaining optical flow for a given
video before and after performing background mixing, and observe no significant change in them.

E Additional Experimental Results

Effect of Source-only Model Initialization. We follow the standard ‘pre-train then adapt’ procedure
used in prior works [3, 4] and train the model with only source data to provide a warmstart before
our approach is trained. However, in order to understand the contribution of source-only model
initialization, we trained the models with the default random initialization keeping all the other
hyperparameters same. The average performance dropped to 86.4% (-3.9%) on UCF-HMDB dataset.
This validates that the source-only initialization plays an important role in providing a proper warm-
start to the models which leads to an effective optimization, in consistent with prior works [3, 4].

Effect of Target Pseudo-label Threshold. In Table 4, we study the sensitivity of the final perfor-
mance with respect to the pseudo label threshold on the UCF-HMDB dataset and notice that the
performance of CoMix is quite stable with respect to this parameter (best performance at threshold
set to 0.7). The slight decrease in performance with PL = 0.9 is understandable since very few target
videos are getting selected as additional positives for the supervised contrastive loss.

Table 4: Effect of Target Pseudo-label
Threshold. Performance on UCF-HMDB.

PL Threshold U→H H→U Average
0.5 85.6 93.5 89.5

0.6 85.6 93.5 89.5

0.7 86.7 93.9 90.3

0.8 86.4 92.5 89.4

0.9 85.6 90.9 88.2

Effect of Mixed Backgrounds. We tried a variant of
background mixing in which the backgrounds from both
the domains are first convexly combined to form a mixed-
background, which sort of represents a generalized back-
ground for both the domains. The obtained mixed-
background is then used for the background mixing com-
ponent and is mixed with the videos from both the domains.
This alternate background mixing strategy provided an av-
erage performance of 89.4% on the UCF-HMDB dataset,
which is 0.9% lower than the cross-domain background
mixing (i.e., adding background from one domain to the
other) used in the proposed approach.

Convergence and Multiple Seeds. The convergence of the proposed approach varies with dataset
and task complexity ranging from 3000 iterations for HMDB→UCF dataset to 7000 iterations for
UCF→HMDB and EpicKitchens datasets. We observe that the convergence is fairly stable across
different seeds and report the average performance over three runs with different random seeds. To
quantify, the standard deviations in performance obtained for UCF-HMDB, Jester and EpicKitchens
datasets are 0.3, 0.1 and 0.2 respectively.
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Original Clip Background using TMF

Sample Clips from the UCF domain of UCF-HMDB dataset

Sample Clips from the HMDB domain of UCF-HMDB dataset

Figure 4: Background Extraction. The figure shows some representative video clips from UCF-HMDB
dataset with corresponding extracted background using temporal median filtering (TMF). Best viewed in color.

F Additional Feature Visualizations

In this section, we provide additional t-SNE [9] plots to visualize the features learned using different
components of our CoMix framework. We choose the Source only model as a vanilla method and add
different components one-by-one to visualize their contributions in learning discriminative features
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Source Only TCL TCL w/ BGM TCL w/ BGM & TPL (CoMix)

Figure 5: Feature Visualizations using t-SNE. Plots show visualization of our approach with different
components on HMDB→UCF task from UCF-HMDB. Blue and red dots represent source and target data
respectively. Features for both target and source domain become progressively discriminative and improve from
left to right by adoption of our novel components within a contrastive learning framework. Best viewed in color.

for video domain adaptation. In the main paper, we have provided the plots for the UCF→HMDB
task from the UCF-HMDB dataset (refer to Figure 5 in main paper). Here we provide the plots for
the HMDB→UCF task in Figure 5. As can be seen from Figure 5, alignment of domains including
discriminability improves as we adopt “TCL” and “BGM” to the vanilla Source only model. The best
results are obtained when all three components “TCL”, “BGM” and “TPL” i.e., CoMix are added and
trained using an unified framework (Eq. 6 in main paper) for unsupervised video domain adaptation.
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