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A THEOREM PROOF

Lemma 1. For the majority group (G1), the performance of the model after FairLoRA fine-tuning
is:
P(Mruiora, Gl) = (1 — FPR) - P(M,G1) 4+ FPR - P(M}ra,G1)

Proof.

Definitions and Notations:

* M: the original model.

* Miora: the model fine-tuned using LoRA.

* MrairLora: the final model after applying FairLoRA fine-tuning.

* Gl: the majority group.

* P(M,G1): performance of model M on group GI.

» FPR: False Positive Rate when predicting G2 for samples from G1.

In the context of FairLoRA fine-tuning, the performance of the model on G1 depends on how sam-
ples from G1 are classified:

* True Negatives (TN): samples from G1 correctly classified as G1.
* False Positives (FP): samples from G1 incorrectly classified as G2.

Calculating the Performance:

Let IV, be the total number of samples in G1.

* Number of True Negatives: TN = (1 — FPR) - Ny.
e Number of False Positives: FP = FPR - V;.

For G1, the FairLoRA model uses:

* The original model M for True Negatives.
¢ The LoRA fine-tuned model M ,ra for False Positives.

Thus, the total performance on Gl is the weighted average:

Performance on TN + Performance on FP
P(Mrairora, Gl) =

Ny
TN - P(M,G1) + FP - P(Moga,G1)
- 5
_[(1 = FPR)N, P(M, G1) + FPRN, P(My,ra, G1)]
- o

= (1 —FPR) - P(M,G1) + FPR - P(Mra,Gl).
Therefore, we have:

P(MrairLora, G1) = (1 — FPR) - P(M,G1) 4+ FPR - P(Mora, Gl).

This completes the proof. O

Lemma 2. For the minority group (G2), the performance of the model after FairLoRA fine-tuning
is:
P(Mrgyiora, G2) = TPR - P(Miora,G2) + (1 — TPR) - P(M,G2)

Proof.

Definitions and Notations:
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* G2: the minority group.
* P(M,G2): performance of model M on group G2.
» TPR: True Positive Rate when correctly predicting G2 for samples from G2.

For samples from G2, their classification can be:

* True Positives (TP): samples from G2 correctly classified as G2.

* False Negatives (FN): samples from G2 incorrectly classified as G1.
Calculating the Performance:
Let NN be the total number of samples in G2.

e Number of True Positives: TP = TPR - 5.
* Number of False Negatives: FN = (1 — TPR) - Ns.

For G2, the FairLoRA model uses:

e The LoRA fine-tuned model Mj ,ra for True Positives.
* The original model M for False Negatives.

Thus, the total performance on G2 is:

Performance on TP + Performance on FN
P(MFairLoRA7 GZ) =

N,
TP P(Myora, G2) + FN - P(M, G2)
— N
_ [TPRN,P(Myopa, G2) + (1 — TPR)N, P(M, G2)]
- ,

= TPR - P(MLora,G2) + (1 — TPR) - P(M, G2).
Therefore, we have:
P(Mrairora, G2) = TPR - P(MroraA,G2) + (1 — TPR) - P(M,G2).
This completes the proof. ]

Theorem 1. To ensure that FairLoRA does not degrade the overall performance of the model, the
ratio of the true positive rate (TPR) to the false positive rate (FPR) must satisfy:
TPR S (1-p) P(M,Gl)— P(Miora,Gl)

FPR = p  P(Miga,G2) — P(M,G2)

Proof.

Definitions and Notations:

*p= Nll-\{-QNQ : proportion of samples from G2.

* (1 — p): proportion of samples from G1.

AP(G1): change in performance on G1.
» AP(G2): change in performance on G2.
* AP: overall change in performance.

Calculating the Change in Performance for G1:

From Theorem 1, the performance change on Gl is:
AP(G1) = P(Mrairora, G1) — P(M,G1)
= [(1 = FPR)P(M,Gl1) + FPRP (M} ra,G1)] — P(M,Gl)
= —FPR - P(M,G1) + FPR - P(Mora,G1)
= FPR - [P(MLora,Gl1) — P(M,G1)].
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Calculating the Change in Performance for G2:
From Theorem 2, the performance change on G2 is:
AP(G2) = P(MruirLora, G2) — P(M,G2)

= [TPRP(Miora, G2) + (1 — TPR)P(M,G2)] — P(M,G2)

= —TPR - P(M,G2) + TPR - P(Mora, G2)

= TPR - [P(Myora, G2) — P(M, G2)].
Calculating the Overall Change in Performance:
The overall change is the weighted sum:

AP =(1-p)-AP(Gl)+p- AP(G2).

Substituting the expressions for AP(G1) and AP(G2):
AP = (1 —p) - FPR[P(Myrora, G1) — P(M,G1)] + p - TPR[P(Mora, G2) — P(M,G2)].
Setting the Condition for No Performance Degradation:

To ensure the overall performance does not degrade (AP > 0), we require:
(1 = p) - FPR[P(MLora,Gl1) — P(M,G1)] 4+ p - TPR[P(Miora,G2) — P(M,G2)] > 0.

Assuming Performance Changes:

o Let APg; = P(Myora,Gl) — P(M,G1) (likely negative).
e Let AP = P(MLORA; G2) — P(M, G2) (positive).

Rewriting the inequality:
(1—p)-FPR-APg +p-TPR - APg > 0.

. TPR .
Solving for zpp:

1. Isolate the positive term:
p-TPR-APs > —(1—p)-FPR- APg.
2. Since APg; < 0, —APg; > 0:
p-TPR-APs > (1—p)-FPR- (—APg).
3. Divide both sides by p - A Pg; (which is positive):
(L—p) FPR-(-APg)
p APg .
4. Divide both sides by FPR (assuming FPR > 0):
TPR S (1-p) . —APg;
FPR = p AP
5. Substitute back the definitions of APg; and APg):
TPR _ (1—p) P(M,Gl)— P(Miora,Gl)

FPR — P P(MLORA7 GZ) — ]D(.ZM-7 GQ.) '

TPR >

Therefore, the ratio of the True Positive Rate to the False Positive Rate must satisfy:
TPR S (1—p) P(M,Gl)— P(Mpora,Gl)

FPR — p P(MLURAa G2) - P(Ma G2)

This condition ensures that the positive impact on G2 outweighs the negative impact on G1, pre-
venting overall performance degradation.

This completes the proof. U
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B IMPLEMENTATION DETAILS OF FAIRLORA

This section provides the implementation details for FairLoRA, focusing on the group discriminator
training, fine-tuning dataset construction, and FairLoRA training configuration. Key components of
the implementation are presented in pseudocode to facilitate understanding and reproducibility.

Group Discriminator Training

To effectively identify sensitive attributes, we trained a group discriminator Dy that takes hidden
layer representations from a pre-trained model as input and outputs the corresponding sensitive
attribute labels. Specifically, we used the penultimate hidden states hg(x) € RT*? as input, where
T represents the sequence length and d is the dimensionality of the hidden states.

To aggregate the sequence representation into a global vector, we employed attention pooling, which
assigns importance weights to different time steps. This allows the model to focus on the most
relevant parts of the sequence when predicting sensitive attributes.

To mitigate bias in predicting sensitive attributes, we employed the worst-group cross-entropy loss:

Lorst = I;IéngE(r,s)wRq M (D¢(hP001(x))7 S)] )

where G represents the set of all groups, P, is the data distribution for group g, s is the sensitive
attribute label, and £(-) denotes the cross-entropy loss function.

The combined pseudocode for the attention pooling mechanism and the group discriminator network
is presented below.

Algorithm 1 Group Discriminator with Attention Pooling

Require: Hidden states h € R7*4
Ensure: Predicted sensitive attribute label §
Attention Pooling:
Initialize learnable parameter vector w € R?
fort =1to 7T do
Compute attention score: a; <— w ' he > Scalar value
end for
Compute attention weights: o + softmax([ay, as, ..., ar])

Compute pooled representation: hpoor <— Zthl aphy

AN AN S ol

8: Group Discriminator Network:

9: Compute hidden layer activation: z <— ReLU(W1 hpool + b1) > W, € Rdxd
10: Compute output logits: 0 - Waz + by > Wy € R2X4
11: Compute predicted probabilities: p < sigmoid(o)

12: Predict sensitive attribute: § <— arg maxp

In this algorithm:

Attention Pooling (Lines 2—7): We compute attention scores for each time step using the learnable
parameter vector w. The attention weights « are obtained by applying the softmax function to the
attention scores. The pooled representation /.0 is then calculated as the weighted sum of the hidden
states.

Group Discriminator Network (Lines 8-12): The pooled representation hyo is fed into a fully
connected layer with ReLU activation to obtain the hidden activation z. A second linear layer
computes the logits o, which are transformed into probabilities p using the sigmoid function. The
predicted sensitive attribute label $ is determined by taking the class with the highest probability.

By combining the attention pooling mechanism with the group discriminator network in a single
algorithm, we provide a clear and concise representation of how the discriminator processes the
input hidden states to predict sensitive attributes.
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Using all available data in these experiments ensures that the discriminators achieve high accuracy,
thereby improving the model’s capacity to debias effectively without compromising performance.
For scenarios with limited sensitive attribute labels, results are presented separately in Table [3]

Partition of dataset

For CelebA and MultiNLI, we used the official splits provided in the respective documentation,
following the standard training and test set divisions. For HateXplain, since the official split is not
provided, we followed the approach of Lu et allLu et al.| (2024), where 50% of the samples were
used as the test set.

FairLoRA Fine-tuning Dataset Construction

The fine-tuning dataset was constructed to ensure class balance through the following steps:

» Data with Sensitive Attribute Labels: We selected samples with a sensitive attribute label
of s = 1 and performed undersampling to balance the classes.

* Data without Sensitive Attribute Labels: A trained discriminator Dy was used to as-
sign pseudo-labels for sensitive attributes. Samples predicted as s = 1 were selected, and
undersampling was applied to balance the class distribution.

FairLoRA Training Configuration

We employed the AdamW optimizer for training, which effectively handles weight decay and im-
proves generalization. The learning rate was set to 1 x 1075 to ensure stable convergence during
fine-tuning. Training was conducted for 2 epochs, as this was sufficient for the model to converge
without overfitting. To maintain consistency, 7 was fixed at 0.5 across all experiments. Addition-
ally, we used five different random seeds (5, 15, 25, 35, 45) for each set of experiments to ensure
robustness. A validation set can also be utilized to guide hyperparameter tuning if needed.

Pseudocode Implementation

During training, all LoRA adjustments are retained to allow the model to fully learn from the Fair-
LoRA fine-tuning dataset. During inference, the discriminator’s output selectively activates the
LoRA adjustments for samples predicted as belonging to sensitive groups. This design ensures that
model adjustments are targeted to reduce bias where needed, while maintaining both efficiency and
overall performance.

FairLoRA can be extended to accommodate multiple sensitive attributes by introducing additional
discriminators and LoRA modules.

Algorithm 2 FairLoRA Forward Pass with Multiple Sensitive Attributes

Require: Input features z, discriminator outputs disj,dissg,...,disg, training mode flag
training
1: Compute base output: ypase ¢ LinearLayer(x)
2: fori =1tokdo
3: Compute LoRA adjustment: yjory; < LoRALayer;(x)
4 Determine if LoRA; should be applied: apply_lora; < dis; > 7
5 if not training then
6: Yiora; [apply_lora,] <— 0
7: end if
8:
9:

end for X
return y < Yoase + 2 ;1 Yora;

This approach enhances the fairness of the model without requiring full access to all sensitive at-
tribute labels, ensuring fairer treatment of underrepresented groups while preserving overall perfor-
mance.
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C COMPREHENSIVE COMPARISON OF EXPERIMENTAL DATA

The evaluation metrics employed in the presented tables are critical for assessing both the perfor-
mance and fairness of the models:

Accuracy (ACC): The overall proportion of correctly predicted instances among all sam-
ples.

Balanced Accuracy (BA): Accounts for class imbalance by computing the average recall
obtained on each class. It is calculated as:

1/ TP TN
BA = +
2 \TP+FN ' TN+ FP

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively.

Worst Group Accuracy (WGA): The lowest accuracy observed among all evaluated
groups (e.g., different genders, races), highlighting the model’s performance on the most
disadvantaged group.

Demographic Parity (DP): Measures the difference in positive prediction rates across dif-
ferent groups. A lower DP indicates more equitable positive prediction distributions among
groups.

Equal Opportunity (EOp): Assesses the disparity in true positive rates (TPR) between
groups. A smaller EOp suggests that the model provides similar chances of correct positive
predictions across groups.

Equalized Odds Difference (EOD): Considers both TPR and false positive rate (FPR)
differences between groups. Lower EOD values indicate more balanced predictive perfor-
mance across groups in terms of both positive and negative classes.

Average Error Rate (AER): The mean error rate across different groups. A lower AER
signifies an overall reduction in model errors.

C.1 COMPARATIVE ANALYSIS OF DEBIASING FOR SINGLE SENSITIVE ATTRIBUTE

The analysis of Table[]involves evaluating the performance and fairness metrics of different models
on the CelebA dataset.

Table 4: Performance and Fairness Metrics of Models on the CelebA Dataset

Model ACCN%) BAN(%) WGAN%) DPL%) EOpl(%) EODJ(%) AERT(%)
ERM 958+0.1 957+00 779426 37.1+06 17529 100£1.7 69.7+3.9
+FL Min. 958+02 958+0.1 82.0+22 373+05 142+24 85+14 687+29
+FL Maj. 959+£0.1 95.6+0.1 772428 369+0.6 17.8+30 100+1.6 67.8+3.0
+FL All 959+0.1 9580.1 813+1.5 37.1+03 146+1.7 8610 703+4.1
GroupDRO 944+05 94404 874+14 351+05 75+12 48206 81.8+67
+ FL Min. 944+05 946+04 888+1.5 354+04 68+13 4705 833+67
+ FL Maj. 947+04 94604 844+1.1 354+03 97+09 5904 72.1+£36
+FL All 947+03 94703 859+16 356+02 90£1.6 5708 751+6.1
DFR 943+14 94810 860+20 37506 11.1+1.6 7.7+08 751+44
+FL Min. 945412 95009 87.8+1.9 374+08 96+13 6908 78.7+8.4
+FL Maj. 95.6+0.1 95700 833+21 372+05 13.1+23 8113 72355
+FL All 954+0.1 95701 860+1.1 373+03 11.0£12 7.1+06 745+6.1
Luetal (2024) 95404 956+04 814+48 368+05 14141 83+20 68.7+53
+FL Min. 955+04 957+03 868+22 367+0.5 98+16 6207 75982
+ FL Maj. 959+03 95703 804+43 367+0.6 148+35 86+17 673+45
+FL All 95.6+£0.3 958202 866+21 367+07 10014 6306 757£9.0

* Bold values indicate the best performance in each category.
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The ERM model achieves high overall accuracy (ACC) and balanced accuracy (BA), with scores
of approximately 95.8% and 95.7%, respectively. However, the model presents fairness concerns
as indicated by the worst-group accuracy (WGA), which is relatively low at 77.9%. This suggests
suboptimal performance for the least advantaged group. Incorporating the FL Min. strategy in-
creases the WGA to 82.0%, demonstrating improved performance on the worst-performing group.
Additionally, there is a reduction in the Equal Opportunity (EOp) metric from 17.5% to 14.2% and
in Equalized Odds Difference (EOD) from 10.0% to 8.5%, indicating a significant decrease in group
disparities and an overall enhancement in fairness.

The GroupDRO model initially performs well with a high WGA of 87.4%, reflecting strong base-
line performance for the worst-performing group. When FL Min. is applied, the WGA further
increases to 88.8%, enhancing the model’s robustness across groups. Moreover, there are decreases
in EOp from 7.5% to 6.8% and in EOD from 4.8% to 4.7%, implying a reduction in group disparities
and improved fairness metrics.

The DFR model attains a WGA of 86.0%, suggesting favorable fairness performance at the baseline
level. With the application of FL Min., the WGA improves to 87.8%, indicating better performance
on the worst-performing group. Concurrently, the EOp decreases from 11.1% to 9.6%, and the EOD
reduces from 7.7% to 6.9%, which enhances fairness by mitigating disparities between different
groups.

The Lu et al. (2024) model starts with a WGA of 81.4%, highlighting room for improvement
in addressing the worst-performing group. Upon incorporating FL. Min., the WGA significantly
increases to 86.8%, indicating substantial improvement for disadvantaged groups. Additionally,
notable reductions are observed in EOp from 14.1% to 9.8%, and in EOD from 8.3% to 6.2%,
demonstrating enhanced fairness by reducing inter-group disparities.

Table 5: Performance comparison across different attributes of CelebA dataset.

Method Heavy Makeup Wearing Lipstick
ACCN(%) WGAT(%) EOD|(%) ACCH(%) WGAN(%) EOD/(%)
ERM 95.8+0.1 454+32 279+19 958+£0.1 574+35 293+£24

+ FL Min. 95.8+0.1 545+31 244+17 958+02 63.0x27 251%2.0

GroupDRO 944+05 654+27 258+£1.6 94405 702+25 25919
+ FL Min. 944+04 70125 227+15 945+x04 743+24 225%19

DFR 943+14 580+x22 270+£18 943+x14 68119 267138
+ FL Min. 945+15 638+x19 241+2.0 944x+x14 73220 223%1.7
Lu et al. 954+04 61425 280+£22 954+x04 678+21 275+1.7

+ FL Min. 95.6+0.5 698+29 232+25 954+04 74123 231%15

We also conducted experiments using other sensitive attributes, such as “Heavy Makeup” and “Wear-
ing Lipstick”. The results, presented in Table[5] are consistent with those in Table ] demonstrating
the robustness of our proposed method.

The analysis of Table [6| which presents the performance and fairness metrics of models on the
MultiNLI dataset, follows a similar structure to that of Table 1. The general observations about
model performance and the impact of incorporating fairness learning strategies (such as FL. Min.,
FL Maj., and FL All) are consistent with the results discussed for the CelebA dataset.

In summary, incorporating the FL Min. strategy across all models for the MultiNLI dataset leads to
similar improvements as observed with the CelebA dataset. The WGA increases, and the fairness
disparities (as indicated by DP, EOp, and EOD) are reduced. These results emphasize that focusing
on disadvantaged groups during model training enhances both the performance for those groups and
overall fairness.
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Table 6: Performance and Fairness Metrics of Models on the MultiNLI Dataset

Model ACCH(%) BAT%) WGAT(%) DPL(%) EOpl(%) EODJ(%) AERN(%)
ERM 82.6+03 82603 673+26 47612 146+1.1 125+1.5 57.1+4.0
+FL Min. 827404 827+04 71.0+15 455+07 122+1.0 10814 602+38
+FL Maj. 82.8+0.2 828202 668+27 477+14 147+12 12715 556+4.1
+FL All 82.8+0.2 82802 705+22 458+1.1 125+1.1 11.0+1.0 59.0+4.0
GroupDRO 80.8+0.6 80.8+03 77212 40.7+04 88+07 59+09 748265
+FL Min. 80.7+£08 80.7+0.8 78314 39.6+07 7.5+06 55+08 77.2x7.1
+ FL Maj. 81.2+£0.5 81205 750£29 425+06 9.1+07 6012 725+56
+FL All 81.2+04 812204 768+1.0 41.6+09 83+08 57209 749+67
DFR 819404 81.9+04 74110 43105 9.1+07 67+08 65152
+FL Min. 819403 81.9+03 76010 42004 8.0+0.6 63+07 67354
+FL Maj. 82.1+£07 821207 73.0+21 439+08 90+1.0 6809 63.4+7.1
+FL All 82.1+£0.5 821205 747+15 429+05 85+07 6607 66.0£6.0
Luetal (2024) 82002 820+02 72.8+07 447+09 10.1+0.6 83+06 647+5.1
+FL Min. 820£02 82.0+02 75006 42608 9.0+05 75+06 66952
+ FL Maj. 825+04 825+04 71.8+15 44812 107+12 8410 627467
+FL All 82.6+0.1 82.6+0.1 747+06 43.1+09 9.1+06 77+06 663+50

C.2 CALCULATION OF CORRELATION COEFFICIENTS

To verify that mitigating a new bias does not interfere with previously achieved fairness improve-
ments, we calculated the Pearson correlation coefficients between performance changes across de-
biasing stages. Specifically, we examined the changes in metrics unrelated to gender bias after
mitigating gender bias, relative to the original ERM model. The following metrics were used for
each model: DP (R) (racial fairness), EOp (R), EOD (R) and ACC (accuracy).

1. Extract Metrics and Compute Changes

The metrics were extracted from Table For each metric M, we calculated the change AM at each
debiasing stage relative to the ERM baseline.

For DistilBERT-base, the changes are:

* Changes at FLoRa Afr. stage: ADP (R),;, = 33.7 — 38.2 = —4.5, AEOp (R),, =
14.2 — 14.9 = —0.7, AEOD (R) ;. = 24.4 — 26.5 = —2.1, AACCpq. = 79.6 — 79.5 =
+0.1.

* Changes at FLoRa Fe. stage: ADP (R)g, = 32.8 —38.2 = —5.4, AEOp (R)g, = 13.1—
14.9 = —1.8, AEOD (R)g, = 23.0 — 26.5 = —3.5, AACCp,. = 79.7 — 79.5 = +0.2.

2. Form Vectors of Changes

We form vectors of the changes for the two debiasing stages: X = [—4.5, —0.7, —2.1, +0.1] (FLoRa
Afr),Y = [-5.4,-1.8,—3.5,+0.2] (FLoRa Fe.).

3. Compute Correlation Coefficient

The Pearson correlation coefficient r between the vectors X and Y was calculated. For DistilBERT-
base, the resulting correlation coefficient is:

r=0.97
4. Results for BERT-base Model

Similarly, for the BERT-base model, we calculated:

* Changes at FLoRa Afr. and FLoRa Fe. stages: X = [—13.1, —4.6, —8.9, —0.2] (FLoRa
Afr), Y = [-14.7,—-5.8,—10.3, —0.1] (FLoRa Fe.).

¢ Correlation Coefficient: » = 0.99.
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Table 7: Performance and fairness comparison during progressive debiasing of sensitive attributes
for DistiIBERT-base and BERT-base.

DistilBERT-base \ BERT-base
ERM FLoRa Afr. FLoRa Fe. \ ERM FLoRa Afr. FLoRa Fe.

Other TPR 752420 75.1+19 77.0+17 | 77.1+1.7 77.0+18 782+16
Afr. TPR  90.1%+17 90.1+1.7 90.1+15 | 90.1+1.1 854+20 85422
Other FPR 18.9+3.1 18727 19.6+25 | 205+40 193+37 209+4.1
Afr. FPR  57.1£27 52429 52420 | 47.6+44 333+36 33329
DP(R),  382+14 33714 328+1.1 | 271209 140+10 124+07
EOp(R), 149%1.1 142+10 13.1+1.0 | 13.0£08 8411  72£1.0
EOD (R)] 265+0.7 24406 23.0+0.6 | 20.1+04 112406 9805
Male TPR 80.5+2.1 805+2.1 80.6+2.0 | 825+21 81.0+1.8 81.0+17
Fe. TPR  67.5+29 675+3.1 78.6+2.8 | 643+20 643+20 742+18
Male FPR  19.7+2.1 19317 20.1+21 |21.0+38 20.1+3.6 21.0+3.7
Fe. FPR  28.6+3.0 28.6+3.1 33.0+29 | 28.6+26 28.6+26 28.6+2.1
DP(G),  74+13  76%1.1 129+22 | 7.6+15 8514  76+10
EOp (G)) 13.0£05 13.0+05 20+21 | 18208 167+04 8814
EOD(G), 113+1.1 112+07 7406 | 129+1.1 12609 8204

ACC?t 79.5+£02 79.6+0.2 797£03 | 79803 79.6+0.5 79.7+0.4

Metric

* Bold values indicate the best performance in each category, while underlined values represent the
second-best results. “R” refers to Race, and “G” refers to Gender.

5. Summary

The high correlation coefficients (0.97 for DistilBERT and 0.99 for BERT) indicate a strong positive
relationship between the changes in metrics across debiasing stages, demonstrating that mitigat-
ing a new bias does not adversely affect previously achieved improvements, effectively preventing
catastrophic forgetting.

C.3 EXPLORING THE IMPACT OF PROCESSING ORDER ON MULTI-SENSITIVE ATTRIBUTES

Table 8: Performance and fairness comparison during progressive debiasing of sensitive attributes
for DistiIBERT-base and BERT-base.

DistilBERT-base \ BERT-base
ERM FLoRa Fe. FLoRa Afr. \ ERM FLoRa Fe. FLoRa Afr.

DP (R)} 382+14 378+1.2 329+12 | 27.1+09 267+09 121+1.0
EOp(R)] 149x1.1 147%1.1 13.2+1.1 13.0+£08 124+1.2 7.0+1.1
EODR)|, 265+0.7 26.0+£0.7 231+0.7 | 20.1+£04 19.7+0.5 9.6 +0.7
DP (G)J 74+13 13.0+2.1 12.8+2.2 7.6+1.5 8012 85+1.0
EOp(G) 13.0£05 5019 37+1.7 182+08 89%£1.5 88+1.2
EOD(G)] 11.3=*1.1 7.3+0.7 7.2+0.6 129+1.1 8.4+0.7 83+0.5

ACCYT 79.5+02 79.6+0.3 79.6£0.2 | 798+03 79.8+0.5 799 £ 0.4

Metric

* Bold values indicate the best performance in each category, while underlined values represent the
second-best results. “R” refers to Race, and “G” refers to Gender.

We conducted additional experiments to investigate the impact of varying the sequence of debiasing
(FairLORA Race first) and addressing multiple biases simultaneously. As shown in Table |8} the
results indicate that the order of debiasing has negligible impact on the final outcomes. This finding
aligns with our theoretical explanation that FairLoRA exhibits a “forgetting-avoidance” property,
whereby corrections for distinct sensitive attributes are encapsulated in independent LoORA modules.
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This design ensures that adjustments made for one attribute do not interfere with those made for
others.

Moreover, as illustrated in Table[9] the results demonstrate that whether biases are mitigated sequen-
tially or simultaneously, the overall outcomes remain largely consistent. This robustness arises from
FairLoRA’s modular architecture, which stores adjustments for each sensitive attribute in separate
LoRA modules, allowing independent corrections without cross-attribute interference.

Table 9: Comparison of Progressive Debiasing and Simultaneous Debiasing Approaches.

DistilBERT-base \ BERT-base
AfrFisrt  Fe.Fisrt  Together | AfrFisrt Fe.Fisrt  Together

DP (R)J 328+1.1 329+12 332+£12 | 124+£07 121£1.0 128+1.1
EOp(R)] 13.1+£1.0 132+1.1 133+1.1 | 72£1.0 7.0+1.1 75+1.2
EODR)|, 23.0+0.6 23.1+0.7 233+x08 | 98+0.5 9.6x0.7 10.0+0.7
DP (G){ 12922 128+22 13.1+23 | 76+x10 8510 80%1.2
EOp (G)] 2.0+2.1 3717 47+22 | 88+x14 88+12 9.0x14
EODG)] 74+06 72%+06 74+£08 | 82x04 83+0.5 85+0.7

ACC?t 79.7+03 79.6£02 79.6+0.3 | 797+£04 799+04 79.7+04

Metric

* Afr.First refers to applying FairLoRA to address bias for African Americans first, while Fe.First
refers to addressing bias for females first, and Together represents simultaneous bias mitigation for
both groups.

D IMPACT OF THRESHOLD ON DISCRIMINATOR TPR AND FPR FOR
DEMOGRAPHIC GROUPS

African American Group Analysis (Left Pair of Plots in Figure |3) The top-left plot illustrates
the variation of True Positive Rate (TPR) and False Positive Rate (FPR) for the “African American”
group as a function of the threshold. As the threshold increases, both TPR and FPR decrease. The
reduction in TPR suggests that a higher threshold leads to stricter classification, reducing the number
of true positives. Meanwhile, the rapid decrease in FPR indicates fewer false positives.

The bottom-left plot shows the TPR/FPR ratio across different thresholds. This ratio peaks at ap-
proximately 0.7-0.8, indicating an optimal balance between TPR and FPR. Beyond this peak, the
ratio declines, suggesting diminishing benefits from further increasing the threshold due to a dispro-
portionate reduction in TPR compared to the decline in FPR. Therefore, this peak threshold can be
used to guide optimal threshold selection, ensuring fairness and maintaining model performance.

Female Group Analysis (Right Pair of Plots in Figure [3) The top-right plot shows the changes in
TPR and FPR for the “Female” group, following a similar pattern to the “African American” group.
As the threshold increases, both TPR and FPR decrease, with higher thresholds making the model
stricter, leading to a reduction in both true positives and false positives.

The bottom-right plot depicts the TPR/FPR ratio, which also peaks around the 0.7-0.8 threshold
range, indicating the threshold range that maximizes classification efficiency for the “Female” group.
After this peak, the ratio starts to decline, suggesting that further increases in the threshold reduce
classification effectiveness. Thus, selecting a threshold near this peak ensures optimal fairness while
retaining classification accuracy.

Summary For both the “African American” and “Female” groups in the HateXplain dataset, the
TPR/FPR ratio reaches its peak around a threshold of 0.7-0.8, indicating that this range provides the
optimal balance between fairness and classification performance. For other datasets, a similar anal-
ysis can be conducted to determine the optimal threshold range that ensures FairLoRA effectively
mitigates biases while maintaining overall model efficacy.
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Figure 3: TPR and FPR Analysis with TPR/FPR Ratio for African American and Female Groups
across Different Thresholds.
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