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A Proof of Theorem

A.1 Notations

We first define some notations in the context of the model (ID Forp > 1and d > 1, define

Apa = { TTlsus) € A| #45 € o] 165, ;] # 0,1]} < d} @)

Jj=1

That is, each rectangle in A, 4 has at most d dimensions that are not the full interval [0, 1]. Note that for a
decision tree with depth d, each leave node represents a rectangle in A, 4. Furthermore, for § € (0, 1), define
values

£1(8) = £.(6,m,d) = % log(2p™(n + 1)21/6)

Pe? d 2d
t2(6) = 120, n, d) := 292 d . log(p (”; 1)™/9) (22)

t(8) =8, n,d) :== t1(8,n,d) V t2(6,n,d)
where @ is the constant in Assumption (7). Note that we have £(6) < O(dlog(np/d)/n).

For two values a,b > 0, we write a < b if there is a universal constant C' > 0 such that a < Cb. We write
a <, bif there is a constant C)- that only depends on r such that a < C.-b.

A.2 Technical lemmas

Now we can introduce the major technical results to establish the error bound.

Lemma A.1 Suppose Assumption|2.1| holds true. Suppose t2(6/12) < 3/4. Then with probability at least
1 — 6, it holds
sup P(X € A))E(f*(xnx €A) - gIA' < 20U/1(6/12) 23)

A€A, 4

The proof of Lemma[A-1]is presented in Section[A4] Note that Lemma[A-T]provides a uniform bound on the
gap between the populational mean E(f*(X)|X € A) and the sample mean gz ,. This is used to derive the
geometric decrease of the bias, using the SID assumption.

Lemma A.2 Suppose Assumptionholds true. Given any 6 € (0,1), suppose t2(6/4) < 3/4. Then with
probability at least 1 — ¢ it holds

sup
AE.Ap’d

VE(X € A) — /Zal/n \ < 5\/(6/4) (24)

The proof of Lemma[A.2]is presented in Section[A-3] Lemma[A-2]provides a uniform deviation gap between the
square root of probability and sample frequency over all sets in .4, 4. Note that this uniform bound is stronger
than a result without a square root (which can be obtained easily via Hoeffding’s inequality and a union bound),
and is useful to prove the final error bound in Theorem@

For any rectangle A € A, j € [p] and b € R, define

AL(45h) = BX € An)(E(f (X)X € A) ~E(f' (X)|X € Ap))
Ar(A,jh) = PB(X € Ap)(E(f" (X)X € 4) —E(/(X)[X € AR))2
Reagn) = Pl g,y
Bu(agt) = Pl g,y

We have the following identity regarding the impurity decrease of each split.

Lemma A.3 For any rectangle A € A, j € [p] and b € R, it holds
A(Aajv b) = AL(A7j7 b) + AR(A7j7 b)

~ i ~ i ~ ] (25)
A(4,5,0) = AL(A,j,b) + Ar(4, ,b)

11



421 Proof. We just present the proof of the second equality. The proof of the first equality can be proved similarly.
422 Note that

3<A7j,b>=% S gz - S eyt 3 (i gz,
i€T4 €4, zeIAR
1 ) g 29
- Z [ = ¥za) *(yz'*Z?IAL)2]+5 > [(yz'*z?IA) *(yz‘*?IAR)]
’LEIAL iEIAR

423 For the first term, we have

1 _ N2 _ 2
o [(yifyzA) = (i = 9z14,) ]
’LEIAL
1 ) _ o o
= [(yi —914)° = (Wi = 924)* = 2(yi — Uz)(Wzs — U4, ) — (24 — Y14, )2] 27)
€T,
T B -~
_| ’:LL'(yzA —9z4,)" = AL(A,4,b)

424 Similarly, we have

=S [ 920 — i - 924, ] = Br(Agb) 28)
zEIAR
425 The proof is complete by combining 26), 27) and (28). O

426 Lemma A.4 Suppose Assumption |2.]| n 1| holds true. Given a constant o > 0. Given any § € (0,1), suppose
427 12(6/36) < 3/4. Then with probability at least 1 — 8, it holds

A(A, ,b) < (1+ a)A(A,4,b) + (1 + 1/a) - 5000U%1(5/36) VA€ Apar,jEp, bER  (29)
428 and
A(A,7,b) < (1+a)A(A, 5,b) + (1 + 1/a) - 5000U%1(5/36) VA€ Apar,jcp, beR  (30)
420 Proof. For A € A, 4-1,j € [p] and a € R, by LemmalA.3|we have
f(AJG b) = fL(AaJ} b) + fR(A,J} b) 3D
A(A,5,0) = AL(A,j,b) + Ar(A, j,b)

430  Define the events & and &s:

& = { sup \/X—EA‘E X)X € A) —yz,

A€A,,

Ey = sup
A€A, 4

431 Then by Lemmas|A.1|and[A.2 we have P(&;) > 1 — §/3 fori = 1,2, so we have P(NZ_, ;) > 1 — §. Below
432 we prove (29) and (30) COIldlthIled on the events £; and &,.

< 20U +/%(5/36) }

VE(X € A) — /[Zal/n ’ < 5\/5(5/12)}

433 Note that

VALA,ja) = VEX € AL)[E(f (X)X € 4) — B(f (X)X € Av)|

< VP(X € A) ’IE FHX)|X € A) —yIA’-s—\/]P’XeAL)‘gZA—gIAL

(32)
+ VP(X € AL)|pza, — E(F (X)X € Au)
=Ji+J2+J3
434 To bound J7, we have
Ji < \/W‘]E X)X € A) —yIA‘ < 20U \/7(5/36) (33)
435 where the second inequality is by event £;. Similarly, to bound .J3, we have
m‘yzAL —E(f*(X)|X € Ap) ‘ < 20U/7(5/36) (34)
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To bound J2, note that

J2 < ‘\/P(X €AL) - \ |IAL‘/n’ |gza — gIAL|+ |IAL‘/n' |?71A _gIAL|

(35
<5VH(0/12) - 2U +\[|Zap|/n - [§za — Tza, |
where the second inequality made use of the event £2. Combining (32) — (33), we have
VAL(A,j,b) <40U+/t(5/36) + 10U~/t(6/12) + |IAL|/n~\QIAfg71AL\
< 50UNE(6/36) +\/|Zapl/n - 19za — Y14, |
which implies (by Young’s inequality)
. - Ta,l, - _
Ar(A,j,a) < (1+1/a)-2500U°%(6/36) 4 (1 + a)%w% —Gz4, |? (36)
By a similar argument, we have
) - Tagl, - _
Ar(d.j.a) < (1+1/a) - 25000%1(6/36) + (1 + o) P22 jgr, gz, 2 a7
Summing up (36) and (37), and by (ZT), we have
A(A,j,a) < (1+1/a)-5000U0%E(5/36) + (1 + a)A(A, §,a)
This completes the proof of 29). The proof of (30) is by a similar argument.
O

Lemmaprovides upper bounds between A(A, j,b) and A(A, J,b), which serves as a link to translate the
population impurity decrease to sample impurity decrease. With all these technical lemmas at hand, we are ready
to present the proof Theorem [2.3] as shown in the next subsection.

A.3 Completing the proof of Theorem 2.3]

Define events

51::{ sup \/X7€A’IE \XGAfyIA’<2OU\/W}

A€A, 4
& = {A(A,j, a) < (1+ a)A(A, j,a) + (1 +1/a) - 5000U%E(5/72) YA€ Apa, j € [pl, a € R}

&5 = {ﬁ (A,j,a) < (14 a)A(A,j,a) + (1 + 1/a) - 5000U%E(8/72) YA E Apa_1, j € [p], a € R}

Then by Lemmas[A-T]and[A.4] and note that from the statement of T heoremn t2(8/72) < 3/4, so we have
P(&1) >1—6/2and P(E2 UE3) > 1 — §/2, which 1mphes P(US_, &) > 1 — 4. In the following, we prove
(T0) using a deterministic argument conditioned on U;_, &;.

For any k € [d] and any leave node ¢ of f(’“) (recall that f(’“) is the decision tree by CART with depth k), let
A,Ek> be the corresponding cube, that is, for any z € RP, z € Agk) if and only if z is routed to ¢ in f(k). Let
L% be the set of all leave nodes of f(k>. Then we have

@)= > Uz o Lpeat®, (38)
tectk '
Define a function _
TP @ = 3 E(f )X e AP ar) 1, At (39)
tec(k)

where X7 is the set of iid random variables {x1, ..., T }, and X is a random variable having the same distribution

as x1 but independent of X7*. In other words, f(k) is a tree with the same splitting structure as f(k) and replaces
the prediction value of each leave node as the populational conditional mean of f*(-).

First, using Cauchy-Schwarz inequality, we have
IF® = 2o < 218" = T2 + 205 = TN G2 x) o= 200(k) +202(k)  (40)
To bound J1 (d), we derive recursive inequalities between Ji (k) and J1(k + 1) forall 0 < k < d — 1. Note that
Jk) =B ((f7(X) = [V 0y |ar)

D P(X € AAT) - Var(f5 (X)X € Ay, A7)
teL(k)

(41
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460 Foreacht € £ let tz, and ¢tx be the two children of ¢, then we have
P(X € A¢]X]") - Var(f*(X)|X € Ay, A7)
=P(X € A |X]") - Var(f*(X)|X € A:,, XT") 42)
+P(X € A |XT) - Var(f" (X )‘XGAtR7X1)+A(At7‘]t,bt)

where . N
(Jt, be) € argmax A(A¢, j,b)
j€[p],bER
Let us define
(je, be) € argmax A(Aq, 7,b)
JE[p],bER
461 Then we have

A7 1 N A7 T
A(Ag, ge,be) > 1+aA(At,jt,bg) — (5000/)Ut(6/72)
> B (Ae i i) — (5000/)UH(5/72) 43)
1 . 2+O{ 2
> A(As, ji, br) — ————5000U#(5/72
= (1+Oé)2 ( ty Jt t) a(1+ ) ( / )

462 where the first inequality is by event &3, the second inequality is by the definition of ( Jt, Bt), and the third
463 inequality is because of event £>. By Assumption 2.2} we have
A(At,jt,bt) = sup A(At,j, b) > A ]P(X S At|X1 )Var( ( )|X € At,Xl ) (44)
JE[p],bER
464 Combining (@2), @3) and (@4}, we have
P(X € Ay |X") - Var(f*(X)|X € Ay, , X)) + P(X € A | X)) - Var(f*(X)|X € Aipp, XT)
24+«

m5000U2 £(6/72)

§(1—(1+%)2)P(X€At|2(1) Var(f*(X)|X € Ae, A7) +

465 Summing up the inequality above for all ¢ € L%*) | we have

)\ k 2+Oﬁ
HN<(l—-—— 2% — 2
T (k + )_( (1+a)2)J1(kz)+ (1 200U 27(5/72)
466 Using the inequality above recursively for k = 0,1, ....,d — 1, we have
d
A d 2+« 27 k—1
Ji(d) < (1 - ——5) Ji(0) + ————=5000U°¢(5/72 2
@ < (1= G5ap) MO+ i e 6123 -
A d * d 24«
<(1-—+—7— X 2¢ . ———— 2
_( (1+a)2) Var(f*(X)) + 2"+ 25550000 27(6/72)

467 To bound J2(d), we have
2
Ba(d) = 37 P(X € A (E(/ (X)X € Ae, ) — iz, )
teL(d) (46)
< 24 400U%#(5/24)
468 where the inequality made use of event &;.

469 Using (@) and ([@6), and recalling @0), we have

179 = 12ae, <2(1— ) Var(r* () + 27
1+«

+ 291 400U(6/24)

24«
2+a 2%(dlog(np) + log(1/6)) o (47
a(l+a) n

< Var(f*(X)) - (1 — A1 +a)®)? + 2%(dlog(np) + log(l/(S))U2

470 This completes the proof of (I0). To prove (TI), by taking o = 1/d and d = [log,(n)/(1 — log,(1 — A))], we

S Var(f7(X)) - (1= 3/ (1+a)*)" +

471 have N 4 N 4
(1—7(”01)2) =(1-) (1+m(1—(1+a)—2)) .
= (1= (1 e —A 2({611%1;1 ) SRR
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Note that for s = log,(n)/(1 — logy(1 — X)) we have (1 — \)® = 2°/n, hence by taking d = [log,(n)/(1 —
log,(1 — A))], we have

d
(1—n?< L <op T rmmuy = 9y~ ¢0), (49)
n
Combining (@#7), @8) and (@9) and note that Var(f* (X)) < M < U, we have
17 = £ 2200 Saw n ™™ (d? log(np) + dlog(1/6))
Sawn”?™ (log? (n) log(np) + log(n) log(1/4))
this completes the proof of (TT).

A.4 Proof of LemmalA.]l

The main idea of proving Lemma@is to find a proper finite net of the set A, 4, control the gap on this net,
and finally prove the result for all A € A,, 4 based on the approximation gap of the net. We need a few auxiliary
results. Let S := {0,1/n,2/n,...,(n — 1)/n, 1}, and define

P
{H Liuj]l € Ap.a

Forany A = [[¥_, [, u;] € Ap,a, define

li,uj € Sforall j € [p]}

p

A" =TT

Jj=1

where ¢} := max{s € S| s < {;},and v} ;= min{s € S|s > u]} Roughly speaking, A’ is the smallest

box with all edges in S that contains A. For any A = [ _1[6], u;] € Ap,d with @; — £; > 2/n forall j € [p],
define

B(A) =4\ [] [Zj + (1/n) - 1z, 20y » U — (1/n) - 1{aj¢1}]-

j=1

and define B, 4 to be the set of all such sets, that is

Bpa = {B(K)

P
A= H[Zj,ﬁj] € .Zp,d with @ 71€~j > 2/7’1,}
j=1

The following lemma can be easily verified from the definitions of .Zp,d and By 4.

Lemma A.5 (1) Forany A € Ay, 4, there exists B € By 4 such that A \ACB.
(2)P(X € B) < 20d/n forall B € By q.
(3) The cardinality

Bp.al < [ Ap.al < (5)(n+1)*" <p(n+1)*

Finally, for any ¢ > 0, we define

Apalt) = {A € Apa | B(X € A) <1}, and Bpalt) = {4 € | P(X € 2) <t}

Lemma A.6 Suppose Assumption 21| holds true. Let 21, ..., zn be i.i.d. bounded random variables with
|z1] <V < oo almost surely. Assume that for each i € [n], z; is independent of {x;} i, but may be dependent
on ;. Given any § € (0, 1), with probability at least 1 — 0, it holds

1 ‘1 . _
_ max —_— | Zil{z,eay —E(z1l{z,ea )‘ < 2Vt ()
AcA, g\A, 4(E1(8) /P(X € A) ”lzzl PoimEA) {m€4)

where U = M + m.
Proof. For each fixed A € A, 4\ Ap.a(f1(6)), note that

‘E((m{wlem - E(zll{meA}))k)‘ <@V)'P(X € A) VE>2

15



496 50 by Lemma|D.1|with t = 2V \/P(X € A)\/11(5), 7> = (2V)*P(X € A) and b = 2V, we have

1 1< _
v (m!n 2 limen) - E(a1limen)| > Wl(‘”)
\/—
. 2exp< 4<4V]P’(X6At1 \ 2VVE(X € A

4V2P(X € A)

D)

= 2exp (—%fl (5)) = 5/(pd(” + 1)2d)

497 where (i) is because P(X € A) > £1(8) (since A € A, 4\ Ap.a(f1(5))). As a result, we have

P max . zilys, 2115 ‘ > 2Vt (5
(AeAp W\ Ay, a(71L(6)) \/X76A Z tmica) ~ Bl ea) ©

1 1 _
< > P (lzzumem (a1l eay)| > zvm>
A€y a\Ap,a(1(5)) P(X e 4)iniH
< | Apa\ Apaf1(8))] - 6/(p (n +1)**) < 6

498 where the last inequality makes use of Lemma[AZ3](3).
499 O

500 Lemma A.7 Let D be a finite collection of measurable subsets of [0, 1] satisfying P(X € D) < & for all
501 D € D (for some constant & € (0, 1)). Given any § € (0,1), if

w(@,8) = (@) v w <3/4

502 then with probability at least 1 — § it holds
< wia
max { o Z Lia, eD}} < w(&,6)
503 Proof. For any fixed D € D, denote o = P(X € D), then by Lemma|[D.2} for any ¢ € (0, 3/4], we have

P(% é liz,eny > t) < exp (% (“Og(t/a) (1 =)o (11—;2)»

exp (—n (tlog(t/a) + (1 — t) log(1 — 1)))
exp (—n (tlog(t/a) + (1 — t)(—t — t2)))
exp (—n (t (log (t/a) —1) +° )

exp (—nt (log(t/a) — 1))

504 where the third inequality makes use of Lemmaand the assumption ¢ < 3/4. Take ¢t = w(@, ), and note
505 that

IAN A

IN

log(w(@, 8)/a) — 1 > log(w(a, d)/a) — 1 > log(e’) —1>1

506 we have
P 71 En 1 > w(@,d) | <exp(—nw(a,d)) <§/|D|
— {z;eB} ) = p ’ =

507 where the last inequality is because of the definition of w(&, §). Taking the union bound we have

P (glgg { - S, ED}} > w(a, 5)> <|D|-8/|D| =6

1=1

508 O

509 Corollary A.8 Under Assumptionand given § € (0, 1), suppose t2(8) < 3/4, then with probability at least
510 1 — 4, it holds
1w _
=5 <
Brgg;)fd {n P 1{%63}} > t2(6)
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Proof. Apply Lemmawith D = B, 4 and & = 20d/n, and note that | B, 4| < (n + 1)2%p? (by Lemma-
(3)) and the definition ¢2(d) = 2922‘1 \% log(p! (n+1)*1/3) a

n

Lemma A.9 Suppose Assumption @ holds true. Let z1, ..., 2n be i.i.d. bounded random variables with
|Z] <V < oo almost surely. Assume that for each i € [n], z; is independent of {x;} ji, but may be dependent
on z;. Given any 6 € (0, 1), suppose t2(0/2) < 3/4, then with probability at least 1 — 6, it holds

2ilimeny — E(z1l(a,en )‘ < 5V \/i(6/2). (50)
AEApd\Apdu(a/z)) VP(X € A) ‘ Z freedh frreal

Proof. Define events &1 and &s:
& {Brggxd{ 21{1 GB}} < t2(5/2)}
& = max ’ zilias aleny)| < VVAG)2
: {Aezp,d\ﬁp,dmwz)) \/ﬁ Z tmiear ~ Blailizieny) 16/ )}

Then by Lemmal[A.6|and Corollary[A.8] we have P(£1) > 1 — §/2 and P(€2) > 1 — /2, hence P(E1 N &) >
1 — 4. Below we prove that when &1 and &2 hold true, inequality (30) holds true.

Note that for any A € Ap.a\ Ap,a(£(5/2)),

\/ﬂ‘ Zzll{z ey~ Blerlmeny)|

n
< — ‘ 2:11{1 €A} — Zil{zieA’}
VP(X € A) z ;

(5D

" \/ﬂ’ Zzll{f exy — Blailgmen)
e i) — Bertonca)|
B E ) (211qzyeay) — E(z11l{z;ea))

=T+ 15+ T3
To bound 77, we have
T = ‘ 2l car ’_ N oy
! m Z frieanA) m( Z{GA\A})
(52)
) < VV/i2(0/2)

Vv _
< \/ﬁmw{ Zl{“ emf < \/m”(m

where the second inequality makes use of Lemma[AZ3|(1), and the third inequality is by &;.
To bound 73, note that

(X e A

F(X € A) \/ﬂ
< %wm

T: =

Z Zil{z,eary — E(21l{a ea'y)
(53)

where the inequality is by event £, and because A’ € A, s and P(X € A') > P(X € A) > 1(6/2) > 11(6/2).
Note that B

20d _ -

TT < B(6/2) SP(X € 4) (54)
where the first inequality is by Lemma- (2) the second inequality is by the definition of £2(5/2) in [22); the
third inequality is because A € A, 4 \ Ap.a(t(6/2)). As a result of (33) and (34), we have

P(X € A'\ A) <

T, < \/P(X < A];(\)‘?);AH;(X €4) 2V /11 (5/2) < 2V2V /11 (6/2) (55)



527

528

529

530

531

532

533
534

535

536

537
538

539

540

541

542

To bound T3, note that
1 Vv /
——— |E(21144, ca < ——PXeA\A
WGA)I (a1l gareanay)| < = \ 4)
VVP(X € AP\ A) < V4/20d/n < V/12(6/2)

The proof is complete by combining inequalities (3T)), (32), (33) and (36), and note that

2V\/12(6/2) + 2vV2V /1. (5/2) < 5V/1(6/2).

T =
(56)

IA

Now we are ready to wrap up the proof of Lemma[A-T]

Completing the proof of Lemma[A.]]

Define events &1 and Es:

" ‘* Lzjeay — X6A|<5\/W
{AGAp d\Ap a(E(5/8)) \/XieA Z
1 1 )
62 . oy 7‘7 yil T4 —E yllx A ‘SE)U t(58
{AeAp a\Ap a(t(6/8)) IP X e A n Z: {z;€A} ( {216 }) m

Then by Lemma with z; = y; and z; = 1 respectively, we know that P(&;) > 1 —¢§/4foralli=1,2. So
we know P(N? S > 1 — 4. Below we prove that inequality (23)) is true when NZ_;&; hold.

Define a := 100£(5/8). Then it holds

sup /B XGA( X)X € A) —yIA‘<2U\f—20U\/ 4/8) (57)

A€A, 4(a)

On the other hand, for any A € A, 4 \ Ap.a(a), by event £1, we have

1
721{16A}>]P’(X6A—5\/t6/8\/IP’X€A) FP(X €4 (58)
where the second inequality is because P(X € A) > a = 100£(d/8). Therefore we know > | 11z, ca3 > 0,
and we can write
. _ E(Wil{zeay) =20 Yilizea
E(f*(X)|X € A) — gz, = 1 it

1
“PX A ( (Y1l{e,eay) — Zyll{z eA})

Z 11/11{35 €A}
B e P(XeA
+2111{x€A}PX€A Z{ JEAY — )
:= Hy(A) + H2(A)
By event &, and note that a > #(§/8), we have

sup VP(X € A)|H1(A)| < 5U+\/t(6/8) (60)

A€A, g\ Ap a(a)

(59

By event &1, and note that a > £(§/8), we have

sup VP(X € A)|Hz(A)| < 5U\#(6/8) 61)

A€A, g\ Ay q(a)

Combining (39), and (61)), we have
sup VP XGA)IE |X€A)—y1A.<10U\/ (6/8)

AeAp,d\Ap.d( )

Combining the inequality above with (57) we have

sup /P(X € A)IIE(f*(X)|X €A - ngA( < 20U\/7(5/8) < 20U\/7(5/12)

A€A, 4
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543 A5 Proof of LemmalA.2]

544 Define a := #(6/4) and b := a + %d. Define events &; and &s:

{ ax Zl{x 4 < (€3) v log(2(n + 1)2dpd/(5)}

A€A, 4(b) T n

&1

Ey =

1 1« _
: sup 7‘1[»()( S 1{Zi6A}‘ < 5\/1(5/4)
{AeAp,d\Ap,dm) VP(X € A) n ;
545 Then by Lemmas[A.7]and[A.9] we know that P(£1) > 1 — 6/2and P(£2) > 1 — /2,50 P(&1 N &) > 1 — 6.
546 Below we prove (24) when & N &; holds.
547 For A € Ap a4, if P(X € A) < a,thenP(4A’) <a-+ 29d = b. So we have
sup liz,eay < sup liz,eary < sup wiEA
AEApda)n; ‘ A€, d<a)"; " Aek, 40) " Z e

log(2(n + 1)2dpd/5) (62)
n

< (625(5/4) + 2626_?d/n) Y
< (2 4+ 1)E(6/4) < 251(5/4)
548 where the third inequality is by event £; and the definition of b; the fourth inequality is because
7(5/4) > £1(5/4) > %log@pd(n—k 124/5) and £(8/4) > F2(5/4) > 2¢20d/n .

549 As aresult, we have

1 n
sup |[VP(X € A) — EZI{WEA}
i=1

A€y, 4(a)
(63)
< sup max P(X € A),
A€y, 4(a)
550 where the second inequality made use of (62).
551 On the other hand,
sup P(X € A) ! Zn: 1
Al {z;€A}
A€Ap a\Ap,a(a) [t
‘]P) X € A) Z?:l l{zzEA}’ (64)
A A\ Apate) VP(X € A) + /5 X1 Laeay
1 1o _
< s [P e A) = Y ey | < 5VEO/)
A€A, a\Ap,a(a) /P(X € A) n ;

552 where the last inequality is by event &».

553 Combining (63) and (64) the proof is complete.
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B Proofs in Section

For any interval E € £ and any univariate function g on [0, 1], let V, (E) be the total variation of g on E. For
the additive model (T4) and a rectangle A = []/_, E; € A, define V- (A) = 3°1_, Vi (E;). Recall that X

is a random variable with the same distribution as z;, and X ) is the 7-th coordinate of X.

B.1 Technical lemmas

Lemma B.1 For any rectangle A C [0,1]?, any j € [p] and any b € R, it holds

P(X € A)
P(X € AL)P(X € AR)

AAG5) = (B (X)) ~ BU (X)X € AP(X € Ag))’
where A, = Ar(j,b) and Ar = Ar(J, ).

Proof. We use the notations v := E(f*(X)|X € A), v :=E(f"(X)|X € Ar) andvg := E(f"(X)|X €
AR). First, note that

E((f*(X) = v)*1ixeany) = E((F(X) —ve +ve —v)*1{xea,))
=E ((/"(X) = ve)"ixea,y) + (vr —v)’P(X € Ar)
Similarly, we have
E((f7(X) = )" 1xeany) = E((F7(X) = vr)*Lixean)) + (vr —v)'P(X € Ar)  (66)
Summing up (63) and (66) we have
(v —v)*P(X € AL) + (vr — v)*P(X € AR)
=E ((f"(X) = )" lixeay) —E((F7(X) = v2)’Lixeary) =~ E((F(X) —vr)’Lixeany) 6D
=A(A,5,b)
Note that

(65)

(1~ w)*P(X € Ar) = (E(/"(X)Ipxen,y) — vE(X € AL))2(]P’(X € ALt

= (=
= (=

VP(X € A) — E(f*(X)Lixean;) — vP(X € AL))Q(IP’(X € AL))!

2 (68)
VP(X € Ar) —E(f*(X)l(xean)) (P(X € AL)!
= (vr — ) 2 (P(X GAR))
P(X € Ar)
Combining (67) and (68) we have
(P(X € Ar))? 2P(X € AR)P(X € A)

A(A,5,b) = (vr — V)2 + (vr — Z/)QP(X € Ar) = (vr—v)

]P)(X S AL)

= (E(/"(X)Lixeany) — vP(X € An))’

(X (S AL)
P(X € A)
P(X € AL)P(X € Ag)

O

Lemma B.2 Suppose Assumption 21| holds true, and f* has the additive structure in (14). Then for any
A =TT5_,165,u5] € [0,1]7, it holds

VP(X € A)Var(f*(X)| X € A
max /A(A,5,0) > € Aver(F(X) X e d)
JE[p],bER \/q(k) (k)( ))dvfk ([€J7t])

where qik)(t) =P(X® <tz € A).

Proof. For a fixed A = [[7_,[{;,u;] C [0,1]”, without loss of generality, assume E(f*(X)|X € A) = 0.
Note that for any 5 € [p],

(69)

S\ a9 )1~ 0 () VAT, 5) dVy: (65, 5)
T VAL 2 .
S\ a0~ () v (15, 5)

20



573
574

575
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578

579

580

582

583
584

585
586

where s the integration variable. Because q(] ) (s) =P(X € AL(4,5))/P(X € A), using Lemmaand recall
that we have assumed E(f*(X)|X € A) = 0, we have

[ VA0 - D 6 VAT G v ()

() Lxean.on)| dVs; (16, 5)

\/ﬂ/
:ﬁ/
\/ﬂ’/ 1{X€A}1{X(J)>5}) df] ( )‘

- m]mu%xxﬁm% — H ) xen)|
1

— m’E(f*(X)f;(X(j))l{XeA})’

where the last equality makes use of the assumption that E(f*(X)|X € A) = 0. Combining the inequality
above with (69), we have

X)l{XeA}l{Xm>s}>] dVy= (65, ])

AAD) > 1 ’E(f*(X)f;(X(j))l{XeA})’
max ,4,0) >
beR \/Wf;;j \/qi,”(s)(l _ qgj)(s)) deJ’f([éj,S])

As a result, we have

- AT 1 T.L ’E £ X)fT‘(X(j))l{XGA})’ 0
JEl ek VEX €A s 1 o ()1 — () AV (165, 5])
By the additive structure (T4) we have
P
> [EG 05 (XD xen)| 2 B (0) Lixen)) = BX € AVar(f (X)X €4) (D)
j=1
Combining (70) and (71)), the proof is complete. O
Lemma B.3 Suppose Assumption holds true, and [* has the additive structure in (14). If for any A =

[15-1 145, us] € [0,1)" and any k € [p| it holds

(/zuk Va0 -0 ) de,:([ék’tD)Q =

Then Assumptionis satisfied with A = 0/ (pt>0).

2

2
kfékl})réfR . \fk() w|” dt (72)

Proof. Given A = []"_,[¢;,u;] C [0, 1]7, without loss of generality, assume E(f*(X)|X € A) = 0. Let

px (+) be the density of X on [0, 1]°. Then we have

soce [ E @ d gt [ 03
P(X € A) /4 bx —IP’(XGA)

I fi(t)dt and ¢ :=

Var(f*(X)|X € A) =

where the second inequality made use of Assumption (). Denote ¢j := — e e
J

P
25— ¢j, then we have

/A(f*(z))2 dz :/A(c"'if;(zj)_Cj)2dz'1d22--~dzp
:/c +Z f] 25) d21d22 ~dzp

(XeA /
>
- 0 et ujfﬂ (75 (¢ d
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587 Combining the inequality above with (73) we have

p
XeA 2 74
Var(f(X)|X € >_6,Zlu]_£/ (55 (0) ~ ) dt 4
588 We use H? to denote the LHS of (72)), then (72) implies
1 b * 2 1 2
“ (1) — ¢ > —H?
uj =4 /zj 50 = sl i > 25 H (75)
580 As aresult of (74) and (73), we have
V. XecA)>= 76
ar(f*(X)| > Z (76)

500 By Lemmal[B2)we have
P(X € A)Var(f*(X)|X € A)?

A(A,7,b) >

sy (A 0. 0) (7, He)?
. 7§1H2 X € A)V: XeA
2 a0 P € AV (1N € 4)
> L _p(x e AyVar(p(X)|X € 4)

591 where the second inequality is by (76), and the last inequality made use of the Cauchy-Schwarz inequality.
592 a

ses B.2  Proof of Proposition[3.1]

se4 Forany A =[T/_,[{;,u;] C [0,1]” and any k € [p] it holds

(/: VaP @ — Pt czvf;([ek,t]))2 < i(/”k YO dt)z
/4 inf / [fa(t) — w]* dt

— ur — b weRr 0

595 where the first inequality is by Cauchy-Schwarz inequality, and the second is because f;; € LRP([0,1], 7).
596 Using Lemma[B3] the proof of complete.

so7 B.3  Proof of Proposition 3.2]

se8  Forany A= []"_,[¢;,u;] C [0,1]” and any k € [p], we prove that

TS g 2 2r6 r*\ max{95° 32+ 5} . /“k . 2
([ Ve oa e @ avs () < max {50, 2R e [ 157 )l
)

509 Then the conclusion follows Lemma|[B.3]

600 For fixed A and k € [p], to simplify the notation, we denote g := f7, a 1= £y, b := uy, q(t) := q ( ) for all
601 t € [y, ux,and t; := t(k) for j = 0,1,...,7. Then (77) can be written as

2 2 b
/ Vat) (1 —q(t)) dvy( at]) < 2r max z ! }max{gg_’gj+ﬁ}ilé%/(g(t)—w)th (78)

4o

602 Forany s € (0,1), define Ag(s) := limy,s4 g(t) — limy—s— g(t). Let j/, 5" € [r] such that t;, 1 < a < t;
603 andtjr_y < b<t;r,anddefiner’ = ;" —j +1,and

20 =a, z1 =tjr, 220 =tjqn, ., Zpr—1 = Ljn_1, Zp = b.
604 Then we have

b 2
( / VA~ a(0) v, (o, 1))
Vat)(1 —q(t)lg' (¢ |dt+i\/ q(z;)(1 = a(z)) AQZ’J) (79)

J1271

<2r2 / Va® i~ @l @) )’ + 267 - 1) j (23))|Ag(z)
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611

612

613

614
615

619
620

621

622

623

624

We have the following 4 claims bounding the terms in the last line of the display above.

Claim B4 For j € {1,r'}, it holds

([ VG —a®lgolar)’ < g% int [ (gle) - w)ar

0(b—a) wer J, |

Proof of Claim We just prove the claim for j = 1. The proof for j = r' follows a similar argument. To
prove the claim for j = 1, we discuss two cases.

(Case 1) g(z1) < 1/2. Then we have 1/q(¢)(1 — ¢(t)) < v/q(21)(1 — q(z1)), hence

(/" v =a@ils ol ar)” < gtz - ae( [ g ola)

2

< q(21)(1 = g(21))
05> . . [ 2
< ——— inf t) — dt
< gty ink [ et —w)
where the second inequality is because g € LRP((a, z1), 8); and the last inequality makes use of the fact
q(z1) < 0(z1 — a)/(0(b — a)).
(Case 2) g(z1) > 1/2. Then we have

Z1 — a weR

inf /zl (g(t) — w)? dt (80)

o a> wq(a) > Q(bzg a) 81
As aresult,
([ vawt=amigwia) < 3([iwwia)’ < 2 mt Mo -w?a
éIBQ 21

< F —w)?
S 00 —a) otk | () —w)mdt

where the first inequality is by Cauchy-Schwarz inequality; the second inequality is because g €
LRP((a,z1),3); the third inequality is by (8T).

Combining (Caes 1) and (Case 2), the proof of Claim@is complete.

Claim B.5 For j € {1,7' — 1}, it holds

)1 = e 1Ag() P < max {3, 3T e [ g00) -y ar

W
0 o b—a weRr J

Proof of Claim We just prove the claim for j = 1. The proof for j = r’ — 1 follows a similar argument. To
prove the claim for j = 1, we discuss two cases.

(Case 1) |[Ag(21)] > 4max{f;1 lg’' ()] dt ,f: |lg'(t)| dt}. Then by Lemma D.6| we have

: = 2 : (Ag(z1))?
1102% . (g(t) —w)” dt > min {21 — 20,22 — 21} e (82)
Note that
min {21 — 20,22 — zl} > min{gq(;l) , %(b — a)} > min {%7 %}(b —a) (83)

So by (82) and (83) we have

0 r 16 #2
2 - . N2
Ag(z)] fmax{gq(zlya}bfa;%% o) —w*ar

As a result,
q(z1)(1 = q(21))|Ag(z1)[?

[ r . =2

< max { 51— q(21)), Zq(e)(1 = q(z) pr— inf [ (g(t) —w)* at
0 r\ 16 . =2

< max{g b=t [ (o) - w)* dr
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632

633

634

635
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637

638

639

640

641

where the second inequality is by Cauchy-Schwarz inequality.

(Case 2) [Ag(z1)| < 4mau<~{fZl lg'(t)| dt fzzf |g'(t)| dt}. Then we have

()1 = a()Bg(e) < daten) (1 —ae)max{ [ Cigwlar, [Ciora)’ e

By the same argument in (80), we have

a1 - ae0)( [ lg@la) < g P [T (gl - w)ar 55

z0 —(b_a) weR J

On the other hand,

z

ta1 - g ( [ gl < ([Tl

< P /Z2(g(t)—w)2 a< T /zz(g(t)—w)th

T 22 — 21 weR | a(b—a) wer |

(86)

where the second inequality is because g € LRP((z1, 22), ); the last inequality is because z2 — z1 > a/r >

(a/7)(b— a). By (84), (B) and (B6), we have
a(21)(1 — g(21))|Ag(21)]* < max{4;, " inf / dt

b—awE]R

Combining (Case 1) and (Case 2), the proof of Claim [B.3]is complete.

Claim B.6 For2 < j <’ — 1, it holds
2z 2 r 2 . Zj
([ vama=amig@lae) <2 int [ (o) - war
zj_1 z

Proof of Claim[B.6} Note that

" V= a@)lg @] dt)”

<3 (7 wona) s e [7 60 - wia

= 4(zj — zj—1) wer [,
2

et IRCCEOR

where the first inequality is by Cauchy-Schwarz inequality; the second inequality is because g €
LRP((zj—1, z;), 8); the last inequality is by the assumption that t; — t;_1 > «/r.

O

Claim B.7 For2 < j <’ — 2, it holds

rmax{3?,4}
a

a() (1~ a(z)|Ag(=)P < t [ (o0 - w ar

Proof of Claim[B-7} We discuss two cases.
(Case 1) [Ag(z;)| > 4max{[[7 [g'(t)]dt, [ |¢'(t)| dt}. Then by Lemma.we have
- J— J

. i+l 2 . Ag(zj a (Ag(z))?
> P . >
1101éf]R o (g(t) —w)” dt min {zJ Zj—1,%j41 — zJ} - 16
As a result,

a1 = a1 < () - a(e)) int [ (gl0) - w) a

4r . Zj+1 2
< — inf t) — dt
<Gt [ew-w)
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642 (Case2) |Ag(z;)| < 4max{fz7 ()] dt fzJ“ |g’(t)| dt}. Then we have
a(2;)(1 = a(z)|Ag(z;)|*
a0 = mas { [ Igwra [l o1ar)

<mac{ [7lg@la, [T @) ar}

Zj—1 %5

2 zj 2 Zj41

< max{ﬁi inf [ (g(t) —w)? dt, _r inf / ’ (g(t) —w)? dt}

Zj = Zj—1 weR Jo. Zj+1 — Zj weR J, .
ﬂZT ) zj 9 ) Zj4+1 5
<=2 _ _
< 2l max { inf (a0 de it [ (o) —w) at}
27“ Zj41 5
<2 —
<= gé%/zﬂ (9(t) —w)” dt

643 where the second inequality is by Cauchy-Schwarz inequality; the third inequality is because g €
644 LRP((zj-1,%;),8) and g € LRP((2j, 2j+1), ).

645 Combining (Case 1) and (Case 2), and note that b — a < 1, the proof of Claimis complete.

646 O

47 Completing the proof of Proposition 3.2]

48 By (79) and note that v’ < r, we have

([ Va@®=atm) avy(fe.1))”
8)
<2rz " Va0 @l 0] de)’ +2rz a() (1~ a(z))|Ag(z)

Zj—1

649 By Claims @and@ we have

— (/i Va®)(1 = q(t))lg' (t)] dt)2

08 B\, [T 2 (88)
< mas {g —ay g ) 2ok [ (00—
é T ﬁz b 2
< —
= max 0’ 4a }bfaulje% (g(t) — w)"dt

650 By Claims[B:3]and[B.7] we have

Z )(1 = a(=))|Ag(z))[*

40 7\ max{8?,4} /ZJ'Jr1 Y
< max{ } - g 1})IéfR o (g(t) —w)” dt 39)
< max {%0 r ma;){{ﬁ 4}21}}%% (g(t) —w)? dt

] b
= max {0 wur [0 -2

651 By (87), (88) and (BI) we have
/ Va(t)(1 —q(t)) dVy([a,t]) )

X 2 2 b
7 4r }ma {gi _3az+ﬁ }wek/ (g(t) —w)* dt

652 Hence (78) is true, and the proof of Proposition[3.2]is complete.

< 2r max
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B.4 Proof of Example[3.1]

Given [ b] C [0, 1], without loss of generality, assume [ ® g(t) = 0 (because the infimum in w is achieved at
w= f g(t)). Let to € [a, b] be the point with g(to) = 0. Smceg (t) > ¢1 > 0, we have

b b 02
[y ae= [t a =5 0w

to to

Similarly,
to to 2
[ ey [Cato-0)dt=F - o)

As a result, we have

/ab(g(t))z dt > gj((b—tof + (to—a)") > 2 (b* a)s _ 44 ay? (90)

On the other hand, since |g’ ()| < c2, we have

(/ab 90 dt)” < B a)? o1

Combining (90) and (OT), we have

([ wona) < 28 [ a

B.5 Proof of Example[3.3]

It suffices to prove that there exists a constant C'. such that for any univariate polynomial with a degree at most 7

and for any a < b,
b 2 C b
’ T 2
([1gwia) <32 [Cawra ©2)

We first prove the conclusion when @ = 0 and b = 1. Let P(r) be the set of all univariate polynomials with
degree at most r. Note that P(r) is a finite-dimensional linear space, and the differential operator ® : g +— ¢’ is
a linear mapping on P(r). As a result, there exists C, such that

/01 g/ ()] dt < ﬁ/ l9()]

forall g € P(r).
For general a < b, given g € P(r), define h(s) := g(a + (b — a)s), then h € P(r). So we have

/0 I (s)| ds < ﬁ/o Ih(s)| ds ©93)

[ weias=0-a [ a+o-a9a= o (04
/|h |d3*/ lgla+ (b—a)s |ds— /|g )| dt (95)

Combining (93), (94) and [@3), we know that
b 2 C b 2 C
/ < T T
([1g@ia) < (2 [Cawia) <52

where the last step is by Cauchy-Schwarz inequality.

Note that

and

B.6 Proof of Example[3.2]

It suffices to prove that for any a, b € [0, 1] with a < b, it holds

/lg |dt<”°L/”/| (1)) dt 96)

Once (96) is proved, the conclusion is true via Jensen’s inequality.
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Below we prove (96). Denote C = L/10. For given a,b € [0, 1], without loss of generality, we assume the
median of g on [a, b] is 0, i.e., ff L{gy>0ydt = f: 1{gty<oydt = (b—a)/2 (otherwise translate by a constant).
We discuss two different cases. We denote m := minse(q,5{|9'(t)|} and M := max;c(a,p){]g’(¢)]}-
(Case 1) m > C(b — a). Since g is L-smooth on [0, 1], we have

M<m+L(b-a)
Hence we have

M

<1+ <1+L/C ©7)

where the second inequality is by the assumption of (Case 1). Since minse(q,5{|g’(t)|} = m > 0, without loss
of generality, we assume that g'(¢) > 0 for all ¢ € [a, b]. Denote to = (a + b)/2. By our assumption that the
median of g on [a, b] is 0, we know that g(to) = 0. Since g is convex, for any ¢ € [a, o], we have

alte) — g(t) > 2= (4(to) — g(a))

L(b—a)

which implies g(t) < fg:é (9(a) — g(t0)) < 0. As zoresucit, we have
[ to01a 2 lgte) - glan2 2 = g R = O o
On the other hand, ’
/b ' (®)] dt < M(b— a) 99)
Combining (98) and (99) we have ’

b M [t b b
o-a [ lg@las 2 Mgl a<saz/o) [Clola=ss [ g0 a
where the second inequality made use of (©7).
(Case 2) m < C(b — a). Then by the L-smoothness of g we have
M < (C+L)b—a)

so we have .

/ lg'(t)] dt < M (b—a) < (C+ L)(b—a) (100)
Define interval [t1,t2] := {t € [a,b] | g(t) < 0}. By our assumption that the median of g on [0, 1] is 0, we
have t> — t1 = (b — a)/2. Denote to = argmin, ¢/, ; g(t). Define function f on [t1, t2]:

to) - (t —t1)/(to—t1) te€lta,t
g

Then 0 > f(t) > g(t) forall ¢t € [t1,t2] (because g is convex). Note that

: f(t)dt = lg(to)(to —t)+ %g(to)(h —t) = %g(to)(tz —t) = %/ ’ g(to) dt 101)

t1 2 t1
As a result,
to to to to to
/ lg(0)] dt > / ()] dt = / fwydi= [ £6) — glto) dt > / o(t) — glto) dt (102)
t1 t1 t1 t1 t1

where the first and last inequalities are because 0 > f(t) > g(t) for all ¢ € [t1, t2]; the second equality is by
(T0T)). Note that for any ¢ € [¢1, t2],
o o
9(t) = g(to) > g (to) (t = to) + 5 (t = t0)” > S (t = to)’ (103)
where the first inequality is because g is o-strongly-convex, and the second is because g is the minimizer of g

on [t1, t2]. By (I02) and (T03), we have

to o [t2 o (ta—t1)/2 o o
tdt>= [ (t—t)?dt>2- - Pdt=—(ta—t1)’ = ——(b—a)’
Jtenaez § [ Ce ez [T a = e -0y = 50— 0)
Since g is convex on [a, b], the median of g on [a, b] is 0, and [t1, t2] = {¢ € [a,b] | g(t) < 0}, it is not hard to
check that

o

b to
[laldaez2 [lawlaz Fe- o (104)
ty

Combining (T00) and (T04) we have
b 1 96(C+L) [° 110(L/o) [°
'tdt<—«7/ tdt<7/ t)| dt
[1golaes g 2 [igo)ae < L [Pig

where the last inequality made use of C' = L/10.

The proof is complete by combining the discussions in (Case 1) and (Case 2).
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C Comparison of Theorem 2.3/ and Theorem 1 of [10]

We first restate Theorem 1 of [10]] in the setting of fitting a single tree (note that [[10] discussed random forest).

Proposition C.1 (Theorem 1 of [10]) Suppose Assumptions and ?? hold true. Let ]/‘\(d) (+) be the tree
estimated by CART with depth d. Fixed constants as > 1,0 < n < 1/8 0 < ¢ < 1/4and 6 > 0 with
2n < § < 1/4. Then there exists constant C' > 0 such that for all n and d satisfying 1 < d < clogy(n), it
holds

E(IFY = £ 72g0) S C(n 7"+ (1= az N +070) (105)
In particular, the RHS of (T03) is lower bounded by
Q(n—n +n—5+c +nclog2(1—k)) (106)

Note that (T06) follows (T03) by the fact 1 < d < clog,(n) and a2 > 1. In the original Assumptions of
Theorem 1 in [10], it was assumed that the noises can be heavy-tailed, which is a weaker assumption than
Assumption 2.1} However, the parameter controlling the tails of the noises did not explicitly enter the error
bound @) and it seems that their proof techniques cannot improve the error bound even under the assumption
that noises are bounded. In addition, the dependence on p was not explicitly stated in the bound (I03), which
seems to be hidden in the constant C'.

To compare our error bound with the error bound in (T08), since the || f'4 — f*|| 72(,.) 1 bounded almost surely,
it is not hard to transform the high-probability bound in (TI)) to an bound in expectation, and we have

E(|FY — f*132() < O(n~*™ log(np) log®(n)) (107)

Below we discuss two different cases.

e (Case 1) A > 1/2. Then it holds

o) = —logy(1—-1) > —log,(1/2)

1—logy(1 =) = 1—1log,(1/2)
So our convergence rate in (T07) is O(n~ /2 log(np) log?(n)), but the rate in (T08) is

=1/2 (108)

Q(n™ "4+ n 70 4 ploB207NY > (1) > Q(n ) (109)
* (Case 2) 0 < A < 1/2. Then it holds
1—logy(1—A) < 1—logy(1/2) =2 (110)

and hence ¢(\) > —log,(1 — \)/2. So our rate in (T07) is O(n'°52*=*/2 1og(np) log?(n)), but
the rate in (T06) is
Q(n—n + n—6+c + nclogQ(l—A)) > Q(nclogQ(l—/\)) > Q(nilogQ(l—)\)) (111)

D Auxiliary results

Lemma D.1 (Bernstein’s inequality) Let Zi,....,Zy, be iid. random variables satisfying |E((Z1 —
E(Z1)")| < (1/2)k!Y*b"2 for some constants v, b > 0 and for all k > 2. Then for any t > 0,

]P’(‘TlliziE(Z) ) <2exp( 4(52 /\%))

Lemma D.2 (Binomial tail bound) Let Z1, ..., Zy be i.i.d. random variables with P(Z; = 1) = « and
P(Z; =0) =1 — o Then forany t € (0,1),

P (ii}z > t) < exp (—n {“Og (é) +({1—t)log (%)D

LemmaD.3 Foranyt € (0,3/4), log(1 —t) > —t — t*.

Proof. Fort € (0,3/4),

> t? 3
= - _" s
kg 2 6(1—1)

@\H

lo (1—t)+t+t2—ﬁ—§:ﬁ>t—
& T2 &k T2
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Lemma D.4 Suppose Z is a random variable satisfying E(ekz) < Ao /2 forall A € R, where o > Oisa

constant; then

E(|1Z)") < 90" k!

Proof. By Chernoff inequality it holds P(|Z| > t) < 2exp(—t*/(20?)) for all t > 0. As a result,

B2/ (k")) < B/ = [ eB(21/0 > 1) de

g/OOOQeXp (t—g) dt = Zﬁ/owexp(—(t—l)Q/Q) dt

< 2\/6/ exp(—t*/2) dt = 2v/2me <9

Lemma D.5 For any integer k > 2 it holds 1%2 ~ i < (k+11)2‘

Proof. For any k > 2 it holds

4

2k+1)(k+1 1 1
@RV D g e <o+l
Multiplying 2/(k + 1)? in the display above, we have
2k+1 4
k2(k+1)2 = (k+1)3
The proof is complete by noting that % = 1%2 - ﬁ

1
4

)

1
14+ =
+2

) <2

d

Lemma D.6 Let [a,b] be a sub-interval of [0,1], and ¢ € (a,b). Let h be a function on [a,b] such that
h is differentiable on (a,c) and (c,b), but can be discontinuous at c¢. Denote Ah(c) := lim¢—c4 h(t) —

lim¢—c— h(t). Suppose

Ah(c) > 4max{/ac |n' ()| dt, /Cb |R ()] dt}

Then it holds .

inf [ (h(t) —w)®dt > min{c —a,b— c}(Ah(c))*/16

weR J

(112)

Proof. We assume that h is not continuous at ¢, since otherwise, the conclusion holds true trivially. We
use the notation h(c+) := lims—cq h(¢) and h(c—) := lim;—.— h(t). Without loss of generality, assume

h(c+) > h(c—).

For w > (1/2)(h(c+) 4+ h(c—)), it holds w — h(c—) > (1/2)Ah(c). By ([I2), we know that for any

t € (a,c),

h(0) ~ (e < [ W] dr < {ahe)

Hence for all ¢ € (a, ),

w = h(t) = w — h(c—) + h(e=) — h(t) > %Ah(c) - iAh(c)

As a result,

_1
T4

Ah(c)

b c
/ (h(t) —w)* dt > / (h(t) = w)* dt > (c — a)(Ah(c))*/16

For w < (1/2)(h(c+) + h(c—)), similarly, we can prove

b
[ 00 =0y ae > - ean(e) /16

The proof is complete by combining (T13) and (I14).
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