
Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

Haozhe Ma 1 Kuankuan Sima 2 Thanh Vinh Vo 1 Di Fu 1 Tze-Yun Leong 1

Abstract
Reward shaping is a promising approach to tackle
the sparse-reward challenge of reinforcement
learning by reconstructing more informative and
dense rewards. This paper introduces a novel dual-
agent reward shaping framework, composed of
two synergistic agents: a policy agent to learn the
optimal behavior and a reward agent to generate
auxiliary reward signals. The proposed method
operates as a self-learning approach, without re-
liance on expert knowledge or hand-crafted func-
tions. By restructuring the rewards to capture
future-oriented information, our framework effec-
tively enhances the sample efficiency and conver-
gence stability. Furthermore, the auxiliary reward
signals facilitate the exploration of the environ-
ment in the early stage and the exploitation of the
policy agent in the late stage, achieving a self-
adaptive balance. We evaluate our framework on
continuous control tasks with sparse and delayed
rewards, demonstrating its robustness and superi-
ority over existing methods.

1. Introduction
Model-free reinforcement learning (RL) has achieved no-
table advancements across various domains. However, chal-
lenges persist in environments with sparse and delayed re-
wards, especially in long-horizon tasks like robotic control
and video games. The lack of immediate or rich feedback
hinders the agent’s ability to discriminate the values of dif-
ferent actions. Effective exploration strategies become cru-
cial in this context, as they determine whether an agent
can promptly find a beneficial trajectory. Efficient early-
stage exploration helps the agent gather numerous positive
samples, minimizing sampling costs and hastening learning

1School of Computing, National University of Singa-
pore, Singapore 2College of Design and Engineering, Na-
tional University of Singapore, Singapore. Correspondence
to: Haozhe Ma <haozhe.ma@u.nus.edu>, Tze-Yun Leong
<leongty@nus.edu.sg>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

progression (Ladosz et al., 2022). Additionally, the distribu-
tion of sparse rewards, typically characterized by a binary
step function, poses difficulties for gradient-based learning
methods. These issues highlight the promise of develop-
ing auxiliary informative rewards, potentially derived from
external expertise or the agent’s own accumulated experi-
ences, while ensuring the agent retains its original optimal
policy (Singh et al., 2010; Sorg et al., 2010b;a).

Reward shaping (RS) has proven to be effective in address-
ing the sparse-reward challenge. It supplements environ-
mental rewards with detailed, dense signals, thereby (a) pro-
viding fine-grained, meaningful, and informative insights,
(b) offering immediate feedback without waiting for the
end of long trajectories, and (c) typically presenting the
most direct objectives for agents at each interaction with
the environment (Gupta et al., 2022; Ng et al., 1999). How-
ever, RS methods face certain limitations. One branch uses
manually crafted reward functions or learns from expert
demonstrations (Bıyık et al., 2022; Cheng et al., 2021; Wu
et al., 2021a), but this relies heavily on prior knowledge,
which is often limited and expensive to acquire, and may in-
troduce human biases that could degrade agent performance.
Alternatively, another branch seeks to autonomously learn
intrinsic rewards by uncovering hidden features, such as
incorporating exploration bonuses (Devidze et al., 2022;
Ostrovski et al., 2017; Tang et al., 2017), driving agent
by curiosity (Pathak et al., 2017), or rewarding for novel
states (Burda et al., 2018). These strategies often set ad-
ditional criteria to motivate the agent to simultaneously
optimize extra goals. Without careful balance, agents risk
becoming trapped in local optima, deviating from the origi-
nal optimal policy.

To address the challenge of sparse and delayed rewards
and the limitations of current methods, we propose a novel
framework, Reinforcement Learning with an Assistant
Reward Agent (ReLara). This framework automatically
learns a dense assistant reward function without requiring
external human knowledge or introducing additional objec-
tives. It also effectively maintains a self-adaptive balance
between exploration and exploitation, as well as between
intrinsic and extrinsic rewards, thereby ensuring the consis-
tency of the learned optimal policies and avoiding the risk of
local optima. ReLara consists of two agents that cooperate
with each other: a Reward Agent and a Policy Agent. The

1

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

Reward Agent learns a dense reward function to reshape the
environmental reward signals. The Policy Agent learns the
optimal control policy to be actually applied by maximizing
the cumulative reshaped rewards. The two agents jointly
interact with the environment, but each of them presents a
self-contained RL problem, which can be flexibly solved by
independent RL algorithms, making ReLara easy to imple-
ment. We summarize the main contributions as follows:

• We propose ReLara1, a self-learning reward-shaping
framework that requires no domain knowledge or hu-
man intervention. By considering the future-oriented
and trajectory-contextual values, as well as transform-
ing sparse rewards into gradient-friendly denser rewards,
ReLara improves data efficiency, learning stability, and
convergence speed while maintaining the consistency of
the optimal policy.

• ReLara introduces a new self-adaptive approach to bal-
ancing exploration and exploitation. Initially, the reward
agent provides random rewards, enriching the diversity
of directions for the policy agent to optimize and encour-
aging exploration. As the reward function evolves, it
subsequently provides more informative signals to guide
the policy agent towards better exploitation.

• We evaluate ReLara on various continuous control tasks in
the MuJoCo (Todorov et al., 2012), arm robot (de Lazcano
et al., 2023) and physical control (Towers et al., 2023)
domains, where the extrinsic rewards are sparse binary
signals indicating only the task completion. We compare
ReLara with state-of-the-art baselines and demonstrate its
superior performance and robustness.

2. Preliminaries
Markov Decision Process (MDP) mathematically models
the interaction between an agent and the environment in
sequential decision-making under uncertainty. An MDP is
represented as ⟨S,A, T,R, γ⟩, where S is the state space; A
is the action space; T : S ×A× S → [0, 1] is the transition
function, specifying the probability of transitioning from
one state to another given an action; R : S × A → R
is the reward function indicating the logic to give envi-
ronmental rewards; γ ∈ [0, 1] is the discount factor to
weight the importance of future rewards. A stochastic
policy π : S × A → [0, 1] is a probability distribution
over state-action pairs, where π(a|s) is the probability of
taking action a ∈ A in state s ∈ S. The objective of
RL algorithms is to find an optimal policy π∗ that max-
imizes the expected cumulative rewards over time, i.e.,
π∗ = argmaxπ E[

∑∞
t=0 γ

tR(st, at)|π], where st and at
are the state and action at time step t, respectively.

1The source code is accessible at: https://github.com/
mahaozhe/ReLara

Soft Actor-Critic (SAC) is a state-of-the-art model-free
RL algorithm that combines the advantages of actor-
critic architecture, off-policy learning, and maximum en-
tropy (Haarnoja et al., 2018a;b). The actor-critic method
involves separate policy and value networks, which are up-
dated by alternating between policy evaluation and policy
improvement (Sutton & Barto, 2018). The off-policy ap-
proach allows the agent to learn from past experiences, im-
proving sample efficiency; the introduced maximum entropy
term encourages the policy to explore more diverse actions.
The objective function of the policy network is defined as

J(π) =

∞∑
t=0

Eat∼π(·|st)
[
γtR(st, at) + αH(π(·|st))

]
,

where H(π(·|st)) is the entropy of the policy distribution
π(·|st), and α is a temperature parameter that controls the
relative importance of the entropy term.

3. Methodology
Our proposed ReLara framework integrates reinforcement
learning agents with an assistant reward agent. Figure 1
illustrates the overall framework, where two agents collabo-
rate to accomplish a given task. In ReLara, the conventional
agent in RL is denoted as the policy agentAP , which learns
a policy to be actually applied. We introduce an additional
reward agent AR, whose goal is to generate a dense reward
signal to enhance the initial sparse reward. The shaped
rewards are added to the original environmental rewards
adjusted by a weight factor β ∈ (0, 1], forming the final
augmented rewards for the policy agent.

3.1. Assistant Reward Agent

The objective of the reward agentAR is to generate a shaped
reward signal that assists the policy agent AP . We define
a reward spaceR that constrains the generated reward to a
range of real numbers,R = [Rmin, Rmax] ⊆ R. The state
space and the action space of the environment E are denoted
as SE and AE , respectively. In this case, the reward agent
AR learns a policy to generate a suggested reward given
the current state st from the environment and the action
at from the policy agent: πAR : SE × AE → R. The
suggested reward is denoted as rSt , which will be provided
to the policy agent AP as an additional reward alongside
the environmental reward, denoted as rEt . We also explore a
variant where the reward agent’s policy πAR : SE → R is
independent of the policy agent’s action. This variant will
be discussed in detail in Section 4.3. Our primary focus,
however, remains on the original definition.

The reward agent AR does not directly interact with the en-
vironment E but operates through the policy agent AP . The
suggested reward guidesAP in taking actions, subsequently

2

https://github.com/mahaozhe/ReLara
https://github.com/mahaozhe/ReLara

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

Figure 1: The overview of the Reinforcement Learning with an Assistant Reward Agent (ReLara) framework.

influencing E . As a result, AR receives the corresponding
environmental reward. To simplify the process, we can
regard E and AP as a combined entity, forming a new en-
vironment ⟨E ,AP ⟩ that interacts with AR directly. The
policy agent acts as a post-process that adopts the suggested
reward from AR. We denote the behavior policy of AP as
πAP , and Θ denotes its parameter space. Then the direct
interaction between AR and ⟨E ,AP ⟩ is formulated as a Par-
tially Observable MDP (POMDP), defined by the following
components:

• The state space SAR = SE ×AE ×Θ, where SE and AE

are environmental state and action spaces, respectively,
while Θ denotes the parameter space of policy πAP .

• The action space for the reward agent AR is defined as
the suggested reward spaceR.

• The transition function is TAR(sAR
t+1|s

AR
t , rSt) =

T E(st+1|st, at)πAP (at+1|st+1; θt+1)P (θt+1|θt; rSt),
where T E is the environmental transition function,
P (θt+1|θt; rSt) is the parameter updating distribution
given the suggested reward rSt , while sAR

t = (st, at, θt)
and sAR

t+1 = (st+1, at+1, θt+1), respectively.
• The reward function RAR(sAR) = RE(s, a) remains the

same as the environmental reward function, but only eval-
uates the state-action pair, ensuring thatAR optimizes the
extrinsic reward only.

• The observation space is defined as ΩAR = SE × AE ,
since the reward agent only observes the (s, a) pair from
the environment ⟨E,AP ⟩. Although the parameter θ is
not directly observed byAR, it can be implied from the ob-
served (s, a) pair, because we have s

θ→ a, which means
the action is dependent on the corresponding parameter θ.

Given the aforementioned POMDP model, AR can be
treated as a conventional RL agent tasked with learning
a policy to propose continuous reward signals and, conse-
quently, can be optimized using a general RL algorithm. In
our framework, we employ an actor-critic approach to man-
age the continuous reward space. This approach involves
two separate neural networks: a policy network denoted
as πAR

ζ and a Q-network denoted as QAR
η , as described

by Konda & Tsitsiklis (1999). The policy network maps the

state-action pair sAR
t = (st, at) as an observation to a sug-

gested reward rSt , while the Q-value for the pair (sAR
t , rSt)

estimates the expected cumulative environmental rewards
resulting from the indirect interaction process between AR

and the environment.

The Q-function is optimized by minimizing the mean
squared error (MSE) between the predicted Q-value and
the temporal difference target (TD-target) yAR

t :

L(η) =
(
QAR

η (sAR
t , rSt)− yAR

t

)2
, (1)

where yAR
t is computed with a secondary frozen target net-

work to maintain a fixed objective (Mnih et al., 2015):

yAR
t = rEt + γQAR

η′ (sAR
t+1, r

S
t+1),

where η′ is the set of parameters of the target network which
is updated by a soft update rule (Lillicrap et al., 2015).

The objective function to optimize the policy network is
defined as the expected Q-value:

L(ζ) = −E
rSt ∼πζ(·|s

AR
t)

[
QAR

η (sAR
t , rSt)

]
. (2)

3.2. Policy Agent with Suggested Rewards

The policy agentAP interacts with the environment E by ex-
ecuting actions a ∈ AE and receiving two types of rewards:
the reward rE from E and the suggested reward rS from
AR. The augmented reward for the policy agent is given by:
rAP = rE + βrS , where β ∈ (0, 1] is a scaling weight fac-
tor. We can model the interaction between the policy agent
and the environment as an MDP: ⟨SE , AE , T E , RAP ⟩. The
state space, action space, and transition function remain the
same as the environmental MDP, while the reward function
for the policy agent is modified as

RAP (s, a) = RE(s, a)+βrS , rS ∼ πAR(·|s, a), (3)

where the suggested reward is generated from the policy net-
work of the reward agent. The conventional reward function
can be recovered in the limit as β → 0.

We adopt the soft actor-critic (SAC) (Haarnoja et al.,
2018a;b) algorithm as the backbone for the policy agent,

3

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

where the policy network and the Q-network are parame-
terized as πAP

θ and QAP

ϕ , respectively. The Q-function is
optimized by minimizing the MSE loss:

L(ϕ) =
(
QAP

ϕ (st, at)− yAP
t

)2
, (4)

where yAP is computed with a target network QAP

ϕ′ using
the augmented reward:

yAP
t = rEt + βrSt + γQAP

ϕ′ (st+1, at+1), (5)

where rSt ∼ πAR(·|s, a). The policy network is optimized
by maximizing the expected Q-value and the entropy of the
policyH

(
πAP (·|st)

)
. The objective function is defined as:

L(θ) = E
at∼π

AP
θ

(·|st)

[
−QAP

ϕ (st, at)+log πAP
θ (at|st)

]
. (6)

3.3. The ReLara Algorithm

The ReLara algorithm employs an off-policy approach to
simultaneously train the policy agent AP and the reward
agent AR. Two distinct replay buffers, DP and DR, are
initialized for each agent, respectively. At each interaction
with the environment, the policy agent collects a transition
{st, at, st+1, r

E
t }, while the reward agent collects a transi-

tion {sAR
t , rSt , s

AR
t+1, r

E
t }. During the agent updating steps,

both agents sample batches of transitions from their corre-
sponding replay buffers and calculate the losses. Note that
the suggested reward in Equation 5 is obtained from the
most recently updated reward agent. In our implementa-
tion, we adopt a common strategy to parameterize double
Q-functions for both AP and AR, using the minimum of
the two Q-values for the value gradient and policy gradient,
following the approach proposed by Fujimoto et al. (2018).
We summarize ReLara in Algorithm 1.

The policy agent and the reward agent are independently
optimized by their respective RL algorithms. This allows
for adaptability and context-specific customization, demon-
strating generalization capabilities. Moreover, given their
cooperative nature, the convergence of the overall ReLara
framework is supported by the convergence of the two sub-
agents. If the backbone algorithms, such as SAC, converge
within their respective RL settings, then the alternating op-
timization of the two sub-agents should ensure the conver-
gence of the entire framework, as they are mutually reinforc-
ing. Nevertheless, achieving overall convergence in general
remains challenging due to the inherent complexities such
as exploration-exploitation balance, stochastic gradient de-
scent updates in neural networks, and the stochastic policies
and environments involved. Consequently, while empiri-
cal results indicate that ReLara can achieve convergence
in practice, a formal proof is not yet available. Addressing
these theoretical aspects and proving the convergence of
ReLara will be a focus of future research.

Algorithm 1 RL with an Assistant Reward Agent (ReLara)

Require: Environment E .
Require: Suggested reward spaceR.
Require: Policy agent AP with actor πθ and critic Qϕ.
Require: Reward agent AR with actor πζ and critic Qη .
Require: Experience replay buffers DP and DR.

1: for each iteration do
2: for each environment step do
3: st ∼ E
4: at ∼ πθ(·|st)
5: rSt ∼ πζ(·|sAR

t) ▷ where sAR
t = (st, at)

6: st+1, r
E
t ∼ E(at)

7: at+1 ∼ πθ(·|st+1) ▷ get sAR
t+1 = (st+1, at+1)

8: DP ← DP ∪ {st, at, st+1, r
E
t }

9: DR ← DR ∪ {sAR
t , rSt , s

AR
t+1, r

E
t }

10: end for
11: for each gradient step do
12: {st, at, st+1, r

E
t }i ∼ DP

13: rSt ∼ πζ(·|s, a) ▷ sample the shaped rewards
14: ϕ← ϕ− αϕ∇ϕL(ϕ) ▷ Update critic Qϕ of AP

15: θ ← θ − αθ∇θL(θ) ▷ Update actor πθ of AP

16: {sAR
t , rSt , s

AR
t+1, r

E
t }i ∼ DR

17: η ← η − αη∇ηL(η) ▷ Update critic Qη of AR

18: ζ ← ζ − αζ∇ζL(ζ) ▷ Update actor πζ of AR

19: end for
20: end for

We summarize the advantages of ReLara from three perspec-
tives. First, our reward agent provides insightful long-term
information by involving cumulative environmental signals
in one-step rewards, without introducing any additional ob-
jectives, which ensures the optimized policy remains consis-
tent with the original task target. Second, ReLara manages
the exploration-exploitation trade-off in an adaptive manner.
At the initial learning stage, unlike conventional off-policy
RL algorithms, where the transitions stored in the replay
buffer predominantly consist of 0s with occasional 1s, the
transitions collected for ReLara contain random specifically
valued rewards, emitted by the initial reward agent. Al-
though lacking in meaningful information, these random
rewards allow the policy agent to be optimized in various di-
rections in fractional steps. This process effectively expands
its exploration range, improving the likelihood of encounter-
ing positive samples. As learning progresses and the reward
agent approaches an optimal policy, it begins to generate
informative rewards. These evolved rewards encourage the
policy agent to shift its focus toward exploitation. (Refer
to Section 4.2 for supporting experimental results). Third,
the reshaped dense reward signals can enhance the gradient-
based learning methods of AP . Previous studies (Mohtasib
et al., 2021; Wu et al., 2021b) have shown that dense re-
wards can improve the convergence stability and efficiency
of neural networks compared to sparse rewards.

4

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

(a) AntStand (b) AntSpeed (c) AntFar (d) AntVeryFar (e) WalkerKeep (f) HumanKeep (g) HumanStand (h) RobotReach (i) RobotPush (j) MountainCar

Figure 2: Environments used in our experiments. The agent receives a reward of 1 only upon completing the corresponding
targets, which are given as follows: (a) AntStand: the ant robot stands up and keeps its center of gravity above a threshold;
(b) AntSpeed: the ant robot crawls at a given speed; (c) AntFar and (d) AntVeryFar: both require the ant to crawl beyond
a certain distance, while AntVeryFar aims for a greater distance; (e) WalkerKeep: the bipedal robot keeps its center of
gravity height above a threshold; (f) HumanKeep: the humanoid robot keeps its center of gravity height above a threshold;
(g) HumanStand: the humanoid robot stands up from lying down and raises its center of gravity above a threshold; (h)
RobotReach: the end of the robot arm touches a randomly set goal point; (i) RobotPush: push the cube to the target point; (j)
MountainCar: the car reachs the flag.

0 200 400 600 800 1000

Steps (in thousands)

0

20

40

60

80

100

120

Ep
is

od
e

re
tu

rn
s

AntStand

0 200 400 600 800 1000
1

0

1

2

3

AntSpeed

0 200 400 600 800 1000

0

50

100

AntFar

0 200 400 600 800 1000
25

0

25

50

75

100

125

AntVeryFar

0 200 400 600 800 1000

0

50

100

150

200

WalkerKeep

0 200 400 600 800 1000

Steps (in thousands)

0

50

100

150

200

Ep
is

od
e

re
tu

rn
s

HumanKeep

0 200 400 600 800 1000

20

40

60

80

HumanStand

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

0 50 100 150 200 250 300

1.0

0.5

0.0

0.5

1.0

MountainCar

ReLara ROSA ExploRS SAC TD3 RND PPO

Figure 3: Comparison of the learning performance of ReLara with the baselines.

4. Experiments
We conduct experiments in continuous control tasks with
challenging sparse and delayed rewards, including Mu-
JoCo (Todorov et al., 2012), arm robot (de Lazcano et al.,
2023) and physical control (Towers et al., 2023) domains.
In these tasks, the agent receives a reward of 1 only if it ac-
complishes the final objective within the allowed maximum
number of steps, and receives 0 for all other states. Figure 2
illustrates the tasks used in our experiments.

4.1. Comparative Evaluation

We compare ReLara with six state-of-the-art baselines: (a)
The RL Optimizing Shaping Algorithm (ROSA) (Mguni
et al., 2023), a reward-shaping algorithm maintaining an
auxiliary agent through a two-player Markov game, which
shares the same structure as ours. (b) The Exploration-
Guided Reward Shaping (ExploRS) algorithm (Devidze
et al., 2022), learning an intrinsic reward function in combi-
nation with exploration-based bonuses. Both ROSA and Ex-
ploRS are reward shaping algorithms, dedicated to address-
ing the sparse-reward challenge. (c) The Soft Actor-Critic

(SAC) (Haarnoja et al., 2018a), an advanced off-policy
stochastic policy algorithm that uses maximum entropy to
enhance exploration. Here, we compare with the improved
version with automatic entropy adjustment (Haarnoja et al.,
2018b). (d) The twin delayed deep deterministic policy
gradient (TD3) (Fujimoto et al., 2018), a representative de-
terministic policy algorithm that largely improved from the
deep deterministic policy gradient (DDPG) (Lillicrap et al.,
2015). (e) Random Network Distillation (RND) (Burda
et al., 2018), an algorithm to utilize a fixed auxiliary net-
work to encourage exploration, which aimed to solve sparse-
reward environments. (f) Proximal Policy Optimization
(PPO) (Schulman et al., 2017), a stable and effective on-
policy algorithm. We use the CleanRL library (Huang et al.,
2022) or the author-provided codes for the implementation
of these baselines.

For our implementation of ReLara, we use the same hyper-
parameters and network structures across all experiments,
the details are provided in Appendix B. We train ReLara
with burn-in phases for the reward agent and the policy
agent, respectively, during which, the agents randomly sam-
ple from their action spaces. We find that having the reward

5

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

Table 1: The average episodic returns and standard errors of ReLara and the baselines.

Environments ReLara ROSA ExploRS SAC TD3 RND PPO

AntStand 28.66 ± 1.82 3.80 ± 0.03 4.52 ± 0.04 15.93 ± 0.69 0.00 ± 0.00 4.23 ± 0.03 4.54 ± 0.04
AntSpeed 0.33 ± 0.02 0.02 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00
AntFar 67.77 ± 4.30 4.71 ± 0.28 5.42 ± 0.22 9.64 ± 0.57 0.81 ± 0.02 6.66 ± 0.25 6.33 ± 0.24

AntVeryFar 64.07 ± 4.17 0.64 ± 0.07 1.67 ± 0.10 20.73 ± 2.87 0.81 ± 0.02 1.00 ± 0.09 1.80 ± 0.11
WalkerKeep 77.14 ± 8.77 32.14 ± 1.19 2.47 ± 0.13 70.96 ± 8.10 18.62 ± 0.75 44.78 ± 1.39 33.77 ± 1.11
HumanKeep 160.31 ± 7.30 152.38 ± 4.98 158.09 ± 4.42 4.59 ± 0.84 0.55 ± 0.03 159.79 ± 4.27 138.13 ± 12.64
HumanStand 29.72 ± 1.85 8.55 ± 0.03 8.63 ± 0.03 9.31 ± 0.05 5.72 ± 0.04 8.67 ± 0.03 8.36 ± 0.03
RobotReach 103.56 ± 7.18 0.27 ± 0.03 0.79 ± 0.04 45.03 ± 4.92 0.00 ± 0.00 28.18 ± 2.53 110.44 ± 15.00
RobotPush 58.71 ± 6.98 0.00 ± 0.00 0.20 ± 0.08 0.55 ± 0.21 0.00 ± 0.00 0.04 ± 0.04 0.00 ± 0.00

MountainCar 0.89 ± 0.01 −0.90 ± 0.02 −0.99 ± 0.02 −0.05 ± 0.02 0.00 ± 0.00 0.94 ± 0.00 0.93 ± 0.00

Figure 4: Distribution of the suggested rewards over the car positions in the MountainCar task, along the training process.

agent end the burn-in phase earlier than the policy agent
achieves better learning performance.

We train multiple instances with different random seeds for
each task. Figure 3 and Table 1 present the average episodic
returns and standard errors throughout training. We ob-
serve that ReLara outperforms the baselines in terms of
sample efficiency, convergence speed, and learning stability.
Although in the RobotReach and MountainCar environ-
ments, the initial burn-in stage causes ReLara to reach the
optimal policy slower than PPO and RND, which do not
include burn-in phases, after the initial period, ReLara’s
convergence rate is comparable to or surpasses that of PPO
and RND, achieving close overall average episodic returns.
The primary challenge in these environments is the delayed,
sparse rewards coupled with extremely long horizons, where
the agent receives no feedback until it completes the task at
least once. Therefore, the policy’s update critically depends
on the exploration ability to obtain successful trajectories.
This challenge is particularly salient in tasks AntFar, Hu-
manStand, and RobotPush, where all baselines failed to
learn effective policies. Although approaches like ROSA,
ExploRS, RND, and SAC have advanced agent exploration
strategies in sparse reward contexts, these methodologies
predominantly reward new actions or states by introducing
extra objectives. The emphasis on novelty, while neglecting

their intrinsic values, can lead to indiscriminate exploration,
which often results in getting stuck in local optima.

In contrast, ReLara effectively tackles sparse rewards
without incorporating extraneous objectives. Its reward
agent combines immediate environmental feedback with
trajectory-contextual suggested rewards for each state-action
pair, assessing the intrinsic quality and future potential. This
approach not only empowers the policy agent to evaluate
action implications more precisely but also mitigates the
risks of local optima and domination of external rewards,
ensuring focus on the primary optimization goals. Addition-
ally, the rewards densification and smoothing improve the
efficiency of the policy agent’s gradient descent. ReLara
also promotes exploration by initially injecting random re-
ward signals and progressively shifts the agent’s focus from
exploration to exploitation by evolving into meaningful re-
ward values. Detailed experiments and discussions on this
mechanism are elaborated in Section 4.2. Collectively, these
strategies significantly enhance ReLara’s effectiveness and
robustness in long-horizon tasks with sparse rewards.

4.2. Self-Adaptive Exploration-Exploitation Balance

ReLara achieves a self-adaptive trade-off between explo-
ration and exploitation through the cooperation of the re-

6

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

0 200 400 600 800 1000

Steps (in thousands)

0

20

40

60

80

100

120

Ep
is

od
e

re
tu

rn
s

AntStand

0 200 400 600 800 1000
1

0

1

2

3

AntSpeed

0 200 400 600 800 1000

0

50

100

150
AntFar

0 200 400 600 800 1000

0

25

50

75

100

125

AntVeryFar

0 200 400 600 800 1000

0

50

100

150

200

WalkerKeep

0 200 400 600 800 1000

Steps (in thousands)

0

50

100

150

200

Ep
is

od
e

re
tu

rn
s

HumanKeep

0 200 400 600 800 1000

20

40

60

80

HumanStand

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

0 50 100 150 200 250 300

0.5

0.0

0.5

1.0

MountainCar

ReLara-R(s,a) ReLara-R(s)

Figure 5: Comparison of ReLara with the state-action-dependent function R(s, a) and state-dependent function R(s).

0 200 400 600 800 1000

Steps (in thousands)

0

20

40

60

80

100

120

Ep
is

od
e

re
tu

rn
s

AntStand

0 200 400 600 800 1000

1

0

1

2

3

AntSpeed

0 200 400 600 800 1000

0

50

100

150

AntFar

0 200 400 600 800 1000

0

50

100

150
AntVeryFar

0 200 400 600 800 1000

0

50

100

150

200

WalkerKeep

0 200 400 600 800 1000

Steps (in thousands)

0

50

100

150

200

Ep
is

od
e

re
tu

rn
s

HumanKeep

0 200 400 600 800 1000

0

20

40

60

80

100

HumanStand

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

0 50 100 150 200 250 300

0.5

0.0

0.5

1.0

MountainCar

ReLara ReLara (only pre-stage) ReLara (only post-stage)

Figure 6: The comparison of ReLara with the reward agent is only involved in the first- or second-half stages.

ward and policy agents. To better illustrate, we use the
MountainCar task with its one-dimensional state space to
visualize the suggested rewards for different car positions
in Figure 4. The lower part of the figure is the convergence
curve, while the upper five plots display the evolving distri-
butions of the suggested rewards across the state space at
different learning stages. We set the action dimension to 0
so that the reward agent only considers the car’s position.

In the reward agent burn-in stage (<50,000th step), the sug-
gested rewards act as a random and uniform perturbation
to the environmental rewards. As mentioned earlier, un-
like conventional off-policy methods, which predominantly
store transitions with sparse rewards in their replay buffers,
ReLara stores transitions with specifically valued rewards.
Although the rewards are not meaningful initially, they still
optimize the policy agent in multiple directions for small
steps, as each state has an even potential to be highly re-
warding, making it worthwhile for the policy agent to have
a try. This strategy encourages extensive exploration, in-
creasing the likelihood of gathering positive samples. As

training progresses, the reward agent learns a more infor-
mative reward function. For instance, at the 100,000th step,
states near the flag are assigned higher rewards, offering
essential guidance to the policy agent in its initial learn-
ing phase, thus improving sample efficiency. Ultimately,
as the reward agent converges to a meaningful suggested
reward function, it encourages the policy agent towards
exploitation, reinforcing actions to reach the flag consis-
tently. Lastly, the convergence of the reward agent is also
dependent on the policy agent’s learning, creating a mutu-
ally beneficial relationship and enabling the self-adaptive
exploration-exploitation balance mechanism.

4.3. Ablation Studies

We perform ablation studies to understand the effects of (1)
the policy agent’s actions as part of the input for the reward
agent, (2) the role the reward agent plays during pre- and
post-training stages, and (3) different scales of the suggested
rewards controlled by the hyperparameter β.

7

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

0 200 400 600 800 1000

Steps (in thousands)

0

25

50

75

100

125

Ep
is

od
e

re
tu

rn
s

AntStand

0 200 400 600 800 1000

2

0

2

4

6

AntSpeed

0 200 400 600 800 1000

0

50

100

150
AntFar

0 200 400 600 800 1000
25

0

25

50

75

100

125

AntVeryFar

0 200 400 600 800 1000

0

50

100

150

200

WalkerKeep

0 200 400 600 800 1000

Steps (in thousands)

0

50

100

150

200

Ep
is

od
e

re
tu

rn
s

HumanKeep

0 200 400 600 800 1000
0

50

100

150

HumanStand

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

0 50 100 150 200 250 300
1.0

0.5

0.0

0.5

1.0

MountainCar

= 0.1 = 0.2 = 0.3 = 0.4 = 0.5

Figure 7: The comparison of different suggested reward weight factor β in ReLara.

Reward function R(s, a) vs. R(s). We compare Re-
Lara that learns a state-action dependent reward function
R(s, a) : S × A → R with a variant that learns a state-
dependent function R(s) : S → R. Figure 5 shows the
episodic returns along training, the detailed data is provided
in Appendix A.1. ReLara−R(s, a) generally outperforms
or matches ReLara−R(s) across tasks. This suggests that
incorporating the actions from the policy agent enables the
reward agent to learn a more informative reward function,
which also assesses the quality of the selected actions. In
relatively simpler tasks, like WalkerKeep and HumanKeep,
where the state information largely outweighs the action
information, including actions shows limited improvement.

Reward agent involvement in first vs. second-half stages.
We investigate how the reward agent affects the learning
process at different stages. We compare two scenarios: one
with the augmented reward function (Equation 3) applied
only in the first half of training, followed by only the envi-
ronmental rewards in the latter half, and another with the
reverse order. The results are shown in Figure 6, and the
detailed data is provided in Appendix A.2. We observe that
the reward agent AR is essential in both phases, but it has a
stronger impact on the agent’s early exploration stage. The
absence of AR in the initial training delays optimal policy
achievement. Furthermore, learning without the AR in the
later phase exhibits more oscillation.

Suggested reward weight factor β. We examine the influ-
ence of different scales of the suggested rewards, controlled
by the hyperparameter β, as shown in Figure 7, and detailed
data is provided in the Appendix A.3. Our findings indicate
that ReLara’s performance is generally robust to changes in
β, although larger values can introduce higher variance. No-
tably, optimal results are frequently achieved with suggested
rewards at immediate values, particularly when β = 0.2 or
β = 0.3. Too small a suggested reward fails to effectively
reshape the original reward, while too large a reward can

overwhelm the environmental feedback, causing excessive
perturbation and potentially hindering the policy agent’s
convergence.

5. Related Work
Our work is mostly motivated by Reward Shaping (RS) ap-
proaches due to their proven effectiveness in sparse-reward
environments. We review previous reward shaping works in
the following three categories.

Demonstration-Based RS extracts instructive rewards from
human demonstrations. Inverse reinforcement learning stud-
ies to extract reward functions from observed optimal be-
havior of expert actings, which is a front-loaded, isolation
task, with minimal consideration given to subsequent appli-
cations of the extracted reward functions (Arora & Doshi,
2021; Hadfield-Menell et al., 2016; Ziebart et al., 2008;
Ramachandran & Amir, 2007). Brys et al. (2015) utilized
a potential-based approach to bias the RL process, Ellis
et al. (2021); Bıyık et al. (2022) used Bayesian reward infer-
ence to integrate multiple sources of human feedback, while
Cheng et al. (2021) constructed heuristics from offline data
to reshape the reward and shorten the horizon of the original
problem. Another line of works combined with imitation
learning. Wu et al. (2021a) utilized state-action potentials
trained from generative models, while Brown et al. (2020)
used pairwise comparisons of expert demonstrations to elicit
the posterior distribution over reward functions. The man-
ual knowledge engineering required by these methods is
often expensive, and the ability to transform into out-of-
distribution tasks is limited.

Intrinsic-Motivation-Based RS studies self-supervised ap-
proaches free from human knowledge to excavate the intrin-
sic rewards. The potential functions based RS algorithms
guarantee that the induced optimal policy is also optimal un-
der the extrinsic reward function (Ng et al., 1999; Wiewiora,

8

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

2003; Asmuth et al., 2008; Devlin & Kudenko, 2012). An-
other branch of RS algorithms leverages the exploration
bonuses to measure the novelty of the states to encourage
exploring the environment (Devidze et al., 2022; Sun et al.,
2022; Bellemare et al., 2016; Ostrovski et al., 2017; Tang
et al., 2017). However, these exploration-based rewards
usually dominate environmental rewards to trap the agent
in distractive zones. Curiosity-driven methods alleviated
this limitation by rewarding the appearance of surprising
unanticipated states. Pathak et al. (2017) generated intrinsic
rewards based on the error in predicting the consequences
of its own actions in a learned feature space. Burda et al.
(2018) computed the error by mimicking a fixed randomly
initialized neural network. Additionally, Zheng et al. (2018)
followed the idea of minimizing the KL-divergence between
the intrinsic and extrinsic reward distributions. Trott et al.
(2019) involved distance-to-goal shaped rewards. Devidze
et al. (2021) investigated discrete optimization to design
explicable reward functions. Memarian et al. (2021) used
a classifier to infer rewards by ranking trajectories that the
agent observed. Mezghani et al. (2023) learned from the
pre-collected data to understand the structure and dynamics
of the environment through hindsight relabelling. However,
these algorithms may fail in environments with extremely
sparse extrinsic rewards. ReLara addresses these limitations
by achieving a self-adaptive exploration-exploitation and
intrinsic-extrinsic balance.

Multi-Module-Based RS typically involves multiple agents
or policies. Mguni et al. (2023) introduced the RL Op-
timizing Shaping Algorithm (ROSA), in which a Shaper
dynamically switched shaped rewards for the Controller
through a two-player Markov game. ReLara shares the
same two-agent structure as ROSA, but the difference is
that ROSA plays a zero-sum game where agents compete
against each other, while ReLara is a cooperative framework
where agents collaborate to complete the task. Besides, Guo
et al. (2018) introduced Generative Adversarial Networks
to encourage the agent to move closer to its previous ben-
eficial experiences, while based on which, Altmann et al.
(2023) trained a policy to discriminate between the current
trajectory and previously generated beneficial trajectories.
Establishing hierarchical structures is also a popular ap-
proach. Yi et al. (2022) trained a high-level policy to share
rewards with neighboring low-level agents in a networked
multi-agent RL setting. Gupta et al. (2024) used a bi-level
objective to learn behavior alignment reward functions. Hu
et al. (2020) proposed a framework where a high-level pol-
icy optimized the shaped weight function, while a low-level
policy maximized the modified reward function. Stadie et al.
(2020) used Self-Tuning Networks to learn the response
function that mapped intrinsic reward function parameters
to optimal policy parameters. Ma et al. (2024) incorporated
Markov random field to formalize a Bayesian approach.

However, hierarchical approaches usually train multiple
agents alternately, in contrast, ReLara optimizes both agents
concurrently, resulting in a more efficient process.

6. Discussion and Conclusion
We present ReLara, a framework that integrates reward shap-
ing with a dual-agent cooperative system, consisting of a
policy-learning agent and a reward-suggesting agent. Re-
Lara integrates future-oriented dense rewards with sparse en-
vironmental rewards, providing informative and fine-grained
insights for the policy agent to effectively discern among
states. A distinctive feature of ReLara is the initial injec-
tion of random rewards, which are progressively evolved
into optimized signals, adaptively regulating the exploration-
exploitation balance. This strategy significantly improves
learning efficiency and stability. Tested on long-horizon con-
tinuous control tasks with sparse rewards, ReLara demon-
strates its robustness and superior performance.

We acknowledge that the advantages of ReLara rely on the
premise that the environment offers sparse and delayed re-
wards. In scenarios where the environments provide dense
and informative rewards, the auxiliary agent may be re-
dundant or even counterproductive. For instance, in the
HumanStand task, if the environmental reward is defined
by the robot’s center of gravity height – a direct and per-
tinent objective, introducing supplementary rewards could
potentially hinder early training. Moreover, optimizing two
agents presents more complexity than a single agent. Hence,
adapting ReLara in dense-reward tasks and minimizing al-
gorithmic complexity are important future directions.

Acknowledgments
This research is supported by an Academic Research Grant
No. MOE-T2EP20121-0015 from the Ministry of Education
in Singapore.

Impact Statement
This paper introduces the ReLara framework, which sig-
nificantly enhances reinforcement learning algorithms in
sparse-reward environments. These environments are very
common in real-world scenarios where defining informa-
tive and dense rewards is often impractical and resource-
consuming. ReLara improves sample efficiency, requiring
fewer interactions to achieve optimal results. This is par-
ticularly crucial in domains such as robotics, autonomous
driving, and other fields where agent-environment interac-
tions are costly or potentially hazardous. By optimizing
learning processes in these contexts, ReLara contributes to
safer, more efficient, and effective applications, ultimately
advancing the field of Machine Learning.

9

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

References
Altmann, P., Phan, T., Ritz, F., Gabor, T., and Linnhoff-

Popien, C. Direct: Learning from sparse and shifting
rewards using discriminative reward co-training. arXiv
preprint arXiv:2301.07421, 2023.

Arora, S. and Doshi, P. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial
Intelligence, 297:103500, 2021.

Asmuth, J., Littman, M. L., and Zinkov, R. Potential-based
shaping in model-based reinforcement learning. In AAAI
Conference on Artificial Intelligence, pp. 604–609, 2008.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. Advances in Neural
Information Processing Systems, 29, 2016.

Bıyık, E., Losey, D. P., Palan, M., Landolfi, N. C., Shevchuk,
G., and Sadigh, D. Learning reward functions from di-
verse sources of human feedback: Optimally integrating
demonstrations and preferences. The International Jour-
nal of Robotics Research, 41(1):45–67, 2022.

Brown, D., Coleman, R., Srinivasan, R., and Niekum, S.
Safe imitation learning via fast bayesian reward infer-
ence from preferences. In International Conference on
Machine Learning, pp. 1165–1177. PMLR, 2020.

Brys, T., Harutyunyan, A., Suay, H. B., Chernova, S., Tay-
lor, M. E., and Nowé, A. Reinforcement learning from
demonstration through shaping. In Twenty-fourth inter-
national joint conference on artificial intelligence, 2015.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Explo-
ration by random network distillation. In International
Conference on Learning Representations, 2018.

Cheng, C.-A., Kolobov, A., and Swaminathan, A. Heuristic-
guided reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 34:13550–13563, 2021.

de Lazcano, R., Andreas, K., Tai, J. J., Lee, S. R.,
and Terry, J. Gymnasium robotics, 2023. URL
http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Devidze, R., Radanovic, G., Kamalaruban, P., and Singla,
A. Explicable reward design for reinforcement learn-
ing agents. Advances in Neural Information Processing
Systems, 34:20118–20131, 2021.

Devidze, R., Kamalaruban, P., and Singla, A. Exploration-
guided reward shaping for reinforcement learning under
sparse rewards. Advances in Neural Information Process-
ing Systems, 35:5829–5842, 2022.

Devlin, S. M. and Kudenko, D. Dynamic potential-based
reward shaping. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 433–440. IFAAMAS, 2012.

Ellis, C., Wigness, M., Rogers, J., Lennon, C., and Fiondella,
L. Risk averse bayesian reward learning for autonomous
navigation from human demonstration. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
pp. 8928–8935. IEEE, 2021.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1587–1596.
PMLR, 2018.

Guo, Y., Oh, J., Singh, S., and Lee, H. Genera-
tive adversarial self-imitation learning. arXiv preprint
arXiv:1812.00950, 2018.

Gupta, A., Pacchiano, A., Zhai, Y., Kakade, S., and Levine,
S. Unpacking reward shaping: Understanding the benefits
of reward engineering on sample complexity. Advances
in Neural Information Processing Systems, 35:15281–
15295, 2022.

Gupta, D., Chandak, Y., Jordan, S., Thomas, P. S., and
C da Silva, B. Behavior alignment via reward function
optimization. Advances in Neural Information Processing
Systems, 36, 2024.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Con-
ference on Machine Learning, pp. 1861–1870. PMLR,
2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan,
A. Cooperative inverse reinforcement learning. Advances
in Neural Information Processing Systems, 29, 2016.

Hu, Y., Wang, W., Jia, H., Wang, Y., Chen, Y., Hao, J., Wu,
F., and Fan, C. Learning to utilize shaping rewards: A
new approach of reward shaping. Advances in Neural
Information Processing Systems, 33:15931–15941, 2020.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty,
D., Mehta, K., and AraÃšjo, J. G. Cleanrl: High-quality
single-file implementations of deep reinforcement learn-
ing algorithms. Journal of Machine Learning Research,
23(274):1–18, 2022.

10

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

Konda, V. and Tsitsiklis, J. Actor-critic algorithms. Ad-
vances in Neural Information Processing Systems, 12,
1999.

Ladosz, P., Weng, L., Kim, M., and Oh, H. Exploration
in deep reinforcement learning: A survey. Information
Fusion, 85:1–22, 2022.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Ma, H., Vo, T. V., and Leong, T.-Y. Mixed-initiative
bayesian sub-goal optimization in hierarchical reinforce-
ment learning. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 1328–1336, 2024.

Memarian, F., Goo, W., Lioutikov, R., Niekum, S., and
Topcu, U. Self-supervised online reward shaping in
sparse-reward environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2369–
2375. IEEE, 2021.

Mezghani, L., Sukhbaatar, S., Bojanowski, P., Lazaric, A.,
and Alahari, K. Learning goal-conditioned policies of-
fline with self-supervised reward shaping. In Conference
on Robot Learning, pp. 1401–1410. PMLR, 2023.

Mguni, D., Jafferjee, T., Wang, J., Perez-Nieves, N., Song,
W., Tong, F., Taylor, M., Yang, T., Dai, Z., Chen, H., et al.
Learning to shape rewards using a game of two partners.
In AAAI Conference on Artificial Intelligence, volume 37,
pp. 11604–11612, 2023.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mohtasib, A., Neumann, G., and Cuayáhuitl, H. A study on
dense and sparse (visual) rewards in robot policy learning.
In Towards Autonomous Robotic Systems: 22nd Annual
Conference, TAROS 2021, Lincoln, UK, September 8–10,
2021, Proceedings 22, pp. 3–13. Springer, 2021.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In International Conference on Machine
Learning, volume 99, pp. 278–287. Citeseer, 1999.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos,
R. Count-based exploration with neural density models.
In International Conference on Machine Learning, pp.
2721–2730. PMLR, 2017.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning,
pp. 2778–2787. PMLR, 2017.

Ramachandran, D. and Amir, E. Bayesian inverse rein-
forcement learning. In International Joint Conference on
Artificial Intelligence, volume 7, pp. 2586–2591, 2007.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Singh, S., Lewis, R. L., Barto, A. G., and Sorg, J. Intrinsi-
cally motivated reinforcement learning: An evolutionary
perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010.

Sorg, J., Lewis, R. L., and Singh, S. Reward design via
online gradient ascent. Advances in Neural Information
Processing Systems, 23, 2010a.

Sorg, J., Singh, S. P., and Lewis, R. L. Internal rewards
mitigate agent boundedness. In International Conference
on Machine Learning, pp. 1007–1014, 2010b.

Stadie, B., Zhang, L., and Ba, J. Learning intrinsic rewards
as a bi-level optimization problem. In Conference on Un-
certainty in Artificial Intelligence, pp. 111–120. PMLR,
2020.

Sun, H., Han, L., Yang, R., Ma, X., Guo, J., and Zhou, B.
Exploit reward shifting in value-based deep-rl: Optimistic
curiosity-based exploration and conservative exploitation
via linear reward shaping. Advances in Neural Informa-
tion Processing Systems, 35:37719–37734, 2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O.,
Duan, Y., Schulman, J., DeTurck, F., and Abbeel, P. #
exploration: A study of count-based exploration for deep
reinforcement learning. Advances in Neural Information
Processing Systems, 30, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp.
5026–5033. IEEE, 2012.

Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U.,
Cola, G. d., Deleu, T., Goulão, M., Kallinteris, A., KG,
A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff,
S., Tai, J. J., Shen, A. T. J., and Younis, O. G. Gymna-
sium, March 2023. URL https://zenodo.org/
record/8127025.

11

https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

Trott, A., Zheng, S., Xiong, C., and Socher, R. Keeping
your distance: Solving sparse reward tasks using self-
balancing shaped rewards. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Wiewiora, E. Potential-based shaping and q-value initial-
ization are equivalent. Journal of Artificial Intelligence
Research, 19:205–208, 2003.

Wu, Y., Mozifian, M., and Shkurti, F. Shaping rewards
for reinforcement learning with imperfect demonstrations
using generative models. In IEEE International Confer-
ence on Robotics and Automation, pp. 6628–6634. IEEE,
2021a.

Wu, Z., Lian, W., Unhelkar, V., Tomizuka, M., and Schaal,
S. Learning dense rewards for contact-rich manipulation
tasks. In IEEE International Conference on Robotics and
Automation, pp. 6214–6221. IEEE, 2021b.

Yi, Y., Li, G., Wang, Y., and Lu, Z. Learning to share in
networked multi-agent reinforcement learning. Advances
in Neural Information Processing Systems, 35:15119–
15131, 2022.

Zheng, Z., Oh, J., and Singh, S. On learning intrinsic
rewards for policy gradient methods. Advances in Neural
Information Processing Systems, 31, 2018.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
AAAI Conference on Artificial Intelligence, volume 8, pp.
1433–1438. Chicago, IL, USA, 2008.

12

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

A. Supplementary Experimental Results
A.1. Ablation Study – Comparison of Reward Functions R(s, a) and R(s)

The detailed average episodic returns and standard errors of the two variants of the ReLara algorithm, one to learn the reward
function R(s, a) and another to learn R(s), is presented in Table 2. Combining the results in Figure 5, both variants achieve
similar performance in most environments, except in the two robot tasks, where the R(s, a) variant outperforms the R(s)
variant significantly because the actions taken by the agent play a more critical role in evaluating the reward values in these
tasks, thus incorporating them into the reward shaping provides better insights.

Table 2: The average episodic returns and standard errors of ReLara with two different reward functions.

Environments ReLara-R(s, a) ReLara-R(s)

AntStand 28.66± 1.82 25.87± 1.47
AntSpeed 0.33± 0.02 0.00± 0.00
AntFar 67.77± 4.30 56.12± 3.50

AntVeryFar 64.07± 4.17 41.95± 3.23
WalkerKeep 77.14± 8.77 79.27± 6.38
HumanKeep 160.31± 7.30 108.89± 7.95
HumanStand 29.72± 1.85 31.89± 1.89
RobotReach 103.56± 7.18 48.42± 6.43
RobotPush 58.71± 6.98 2.22± 0.68

MountainCar 0.89± 0.01 0.78± 0.04

A.2. Ablation Study – The Reward Agent is Only Involved in the First or Second Half Stages

The detailed average episodic returns and standard errors of the comparison of the ReLara algorithm with the reward agent
only involved in the first or second half stages are shown in Table 3.

Table 3: The average episodic returns and standard errors of ReLara with two variants that the reward agent is only involved
in the first or second half stages.

Environments ReLara ReLara (AR only pre-stage) ReLara (AR only post-stage)

AntStand 28.66± 1.82 24.72± 1.64 19.74± 0.97
AntSpeed 0.33± 0.02 0.01± 0.00 0.00± 0.00
AntFar 67.77± 4.30 40.94± 3.98 26.49± 2.99

AntVeryFar 64.07± 4.17 34.60± 3.85 28.69± 3.03
WalkerKeep 77.14± 8.77 69.28± 5.63 68.63± 6.37
HumanKeep 160.31± 7.30 156.93± 7.42 146.64± 8.01
HumanStand 29.72± 1.85 18.22± 1.51 10.26± 0.36
RobotReach 103.56± 7.18 52.52± 6.25 49.39± 5.45
RobotPush 58.71± 6.98 40.04± 5.31 12.27± 2.64

MountainCar 0.89± 0.01 0.77± 0.04 0.66± 0.05

A.3. Ablation Study – Comparison of Different Suggested Reward Weight Factor

We present the detailed average episodic returns and standard errors of the ReLara algorithm with different β values, the
factor that controls the scale of the suggested reward in Table 4. Generally speaking, when the scale of the suggested reward
is around half of the original environmental reward, it can achieve better performance, while too large or too small scales
will have relatively negative effects.

13

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

Table 4: The average episodic returns and standard errors with different suggested reward weight factor β in ReLara.

Environments β = 0.1 β = 0.2 (default) β = 0.3 β = 0.4 β = 0.5

AntStand 18.76± 0.90 28.66± 1.82 29.75± 1.68 28.39± 1.83 41.23± 2.79
AntSpeed 0.48± 0.03 0.33± 0.02 0.00± 0.00 0.01± 0.00 1.43± 0.06
AntFar 56.00± 3.54 67.77± 4.30 37.20± 2.70 49.17± 3.27 37.32± 2.57

AntVeryFar 5.41± 0.49 64.07± 4.17 39.06± 3.69 1.51± 0.21 13.93± 1.88
WalkerKeep 75.48± 6.02 77.14± 8.77 78.76± 6.30 73.45± 5.92 71.50± 5.91
HumanKeep 150.38± 7.60 160.31± 7.30 147.79± 7.72 156.46± 7.51 153.67± 7.45
HumanStand 15.66± 0.96 29.72± 1.85 36.95± 3.01 23.85± 2.59 17.36± 1.08
RobotReach 92.92± 7.16 103.56± 7.18 49.72± 5.34 68.49± 7.26 66.64± 7.72
RobotPush 0.31± 0.11 58.71± 6.98 5.58± 0.88 0.41± 0.19 0.11± 0.06

MountainCar 0.88± 0.02 0.89± 0.01 0.82± 0.02 0.89± 0.02 0.78± 0.03

Figure 8: The network structures of the policy agent and the reward agent.

Table 5: The hyperparameters used in the ReLara algorithm.

Hyperparameters For Reward Agent AR For Policy Agent AP

batch size 256 256
actor module learning rate 3× 10−4 3× 10−4

critic module learning rate 1× 10−3 1× 10−3

maximum entropy term False True
entropy term factor α learning rate - 1× 10−4

policy networks update frequency (steps) 2 2
target networks update frequency (steps) 1 1
target networks soft update weight τ 0.005 0.005
burn-in steps 5, 000 10, 000

B. Network Structures and Hyperparameters
B.1. Network Structures

Figure 8 illustrates the structures of the policy networks and Q-networks for the policy agent and reward agent, respectively.
The reward agent employs three additional residual blocks in its networks to prevent gradient vanishing or exploding, while
the policy agent adopts simple multilayer perceptron (MLP) models in its networks. Since we use stochastic policies, the

14

Reward Shaping for Reinforcement Learning with An Assistant Reward Agent

policy networks have distinct heads to produce the means and standard errors of the inferred normal distributions, which are
subsequently used to sample actions (and suggested rewards) from the corresponding distributions.

B.2. Hyperparameters

We have observed that ReLara demonstrated high robustness and was not sensitive to hyperparameter choices. Table 5
shows the set of hyperparameters that we used in all of our experiments. The reward agent and the policy agent had the
same hyperparameters except that the policy agent incorporated an extra maximum entropy term. We have observed that
setting a longer burn-in phase for the policy agent than the reward agent leads to better learning performance.

15

