
Under review as a conference paper at ICLR 2022

FASTER NO-REGRET LEARNING DYNAMICS FOR
EXTENSIVE-FORM CORRELATED EQUILIBRIUM

Anonymous authors
Paper under double-blind review

ABSTRACT

A recent emerging trend in the literature on learning in games has been concerned
with providing accelerated learning dynamics for correlated and coarse correlated
equilibria in normal-form games. Much less is known about the significantly
more challenging setting of extensive-form games, which can capture sequential
and simultaneous moves, as well as imperfect information. In this paper, we de-
velop faster no-regret learning dynamics for extensive-form correlated equilibrium
(EFCE) in multiplayer general-sum imperfect-information extensive-form games.
When all agents play T repetitions of the game according to the accelerated dy-
namics, the correlated distribution of play is an O(T−3/4)-approximate EFCE.
This significantly improves over the best prior rate of O(T−1/2). One of our
conceptual contributions is to connect predictive (that is, optimistic) regret mini-
mization with the framework of Φ-regret. One of our main technical contributions
is to characterize the stability of certain fixed point strategies through a refined
perturbation analysis of a structured Markov chain, which may be of independent
interest. Finally, experiments on standard benchmarks corroborate our findings.

1 INTRODUCTION

Game-theoretic solution concepts describe how agents should rationally act in games. Over the
last two decades there has been tremendous progress in imperfect-information game solving and
algorithms based on game-theoretic solution concepts have become the state of the art. Prominent
milestones of this were an optimal strategy for Rhode Island hold’em poker (Gilpin & Sandholm,
2007), a near-optimal strategy for limit Texas hold’em (Bowling et al., 2015), and a superhuman
strategy for no-limit Texas hold’em (Brown & Sandholm, 2017). In particular, these advances rely
on algorithms that approximate Nash equilibria (NE) of two-player zero-sum extensive-form games
(EFGs). EFGs are a broad class of games that capture sequential and simultaneous interaction,
and imperfect information. For two-player zero-sum EFGs, it is by now well-understood how to
compute a Nash equilibrium at scale: in theory this can be achieved using accelerated uncoupled no-
regret learning dynamics, for example by having each player use an optimistic regret minimizer and
leveraging suitable distance-generating functions (Hoda et al., 2010; Kroer et al., 2020; Farina et al.,
2021c) for the EFG decision space. Such a setup converges to an equilibrium at a rate of O(T−1).
In practice, modern variants of the counterfactual regret minimization (CFR) framework typically
lead to better performance, although the worst-case convergence rate is O(T−1/2) (Zinkevich et al.,
2007). CFR is also an uncoupled no-regret learning dynamic.

However, many real-world applications are not two-player zero-sum games, but instead have
general-sum utilities and often more than two players. In such settings, Nash equilibrium suffers
from several drawbacks when used as a prescriptive tool. First, there can be multiple equilibria,
and an equilibrium strategy may perform very poorly when played against the “wrong” equilibrium
strategies of the other player(s). Thus, the players effectively would need to communicate in order
to find an equilibrium, or hope to converge to it via some sort of learning dynamics. Second, find-
ing a Nash equilibrium is computationally hard both in theory (Daskalakis et al., 2006; Etessami &
Yannakakis, 2007) and in practice (Berg & Sandholm, 2017). This effectively squashes any hope of
developing efficient learning dynamics that converge to general-sum Nash equilibria.

A competing notion of rationality proposed by Aumann (1974) is that of correlated equilibrium
(CE), typically modeled via a trusted mediator who privately recommends actions to the players.
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Unlike NE, it is known that the latter can be computed in polynomial time and, perhaps even more
importantly, it can be attained through uncoupled learning dynamics, where the players only need
to reason about their own observed utilities. This overcomes the often unreasonable presumption
that players have knowledge about the other players’ utilities. At the same time, uncoupled learning
algorithms have proven to be a remarkably scalable approach for computing equilibria in large-scale
games, as described above. The basic CE notion is defined for normal-form games, and there it has
long been known that uncoupled no-regret learning dynamics can converge to CE or the coarse
correlated equilibrium (CCE) variant at a rate of O(T−1/2) (Hart & Mas-Colell, 2000; Celli et al.,
2019). More recently, it was shown that accelerated uncoupled no-regret learning dynamics can
compute CCE and CE at a rate of O(T−3/4) (Syrgkanis et al., 2015; Chen & Peng, 2020).

In the context of EFGs, the idea of correlation is much more intricate, and there are several no-
tions of correlated equilibrium, based on when the mediator gives recommendations and how the
mediator reacts to players who disregard the advice. One of the most compelling notions for EFGs
is the extensive-form correlated equilibrium (henceforth EFCE) (von Stengel & Forges, 2008) for
extensive-form games with perfect recall. Because of the sequential nature, the presence of private
information in the game, and the gradual revelation of recommendations, the constraints associated
with EFCE are significantly more complex than for normal-form games. For these reasons, the
question of whether uncoupled learning dynamics can converge to an EFCE was only very recently
resolved by Celli et al. (2020). Moreover, in a follow-up work they also established an explicit
rate of convergence of O(T−1/2) (Farina et al., 2021a). Our paper is concerned with the following
fundamental question: Can one develop faster uncoupled no-regret learning dynamics for EFCE?

Contributions. Our primary contribution is to answer this question in the positive:

Theorem 1.1. On any finite perfect-recall general-sum multiplayer extensive-form game, the un-
coupled no-regret learning dynamics described in this paper lead to a correlated distribution of
play that is an O(T−3/4)-approximate EFCE, where the O(·) notation suppresses game-specific
parameters polynomial in the size of the game.

We achieve this result using the framework of predictive (also known as optimistic) regret mini-
mization (Chiang et al., 2012; Rakhlin & Sridharan, 2013b). One of our conceptual contributions
is to connect this line of work with the framework of Φ-regret minimization of Greenwald & Jafari
(2003); Gordon et al. (2008), by providing a general template for stable-predictive Φ-regret min-
imization. The importance of Φ-regret is that it leads to substantially more powerful notions of
hindsight rationality, beyond the usual external regret (Gordon et al., 2008), including the powerful
notion of swap regret (Blum & Mansour, 2007). Moreover, one of the primary insights behind the re-
sult of Farina et al. (2021a) is to cast convergence to an EFCE as a Φ-regret minimization problem.
Given these prior connections, we believe that our stable-predictive Φ template is of independent
interest, and could lead to further applications in the future.

Theorem 1.1 extends and strengthens several prior papers in the literature, including the seminal
work of Syrgkanis et al. (2015) that provides accelerated dynamics for coarse correlated equilib-
rium in normal-form games, as well as the more recent result of Chen & Peng (2020) which showed
O(T−3/4) convergence to a correlated equilibrium in normal-form games. For the more challeng-
ing class of extensive-form games, accelerated rates were previously known only for finding a Nash
equilibrium in the special case of two-player zero-sum games, where anO(T−3/4) rate was achieved
via a stable-predictive CFR setup (Farina et al., 2019a) and an O(T−1) rate was achieved via opti-
mistic regret minimizers coupled with good distance-generating functions (Farina et al., 2019c).

From a technical standpoint, in order to apply our generic template for accelerated Φ-regret mini-
mization, we establish two separate ingredients. First, we develop a stable-predictive external regret
minimizer for the set of transformations Φ associated with EFCE. This differs from the construction
by Farina et al. (2021a) in that we have to additionally guarantee and preserve the stability—and sub-
sequently the predictivity—throughout the construction. The second component consists of sharply
characterizing the stability of fixed points of trigger deviation functions. This turns out to be par-
ticularly challenging, and direct extensions of prior techniques appear to only give a bound that is
exponential in the size of the game. In this context, one of our key technical contributions is to pro-
vide a refined perturbation analysis for a Markov chain consisting of a rank-one stochastic matrix,
employing tools that have not been used before in this line of work, and substantially extending the
techniques of Chen & Peng (2020). This leads to a rate of convergence that depends polynomially
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on the description of the game, which is crucial for the applicability of the accelerated dynamics.
Finally, we support our theoretical findings with experiments on several general-sum benchmarks.

Further Related Work. The line of work on accelerated no-regret learning for Nash equilibrium
was pioneered by Daskalakis et al. (2015), showing that one can bypass the adversarial Ω(T−1/2)
barrier for the incurred average regret if both players in a zero-sum game employ an uncoupled vari-
ant of the excessive gap technique (Nesterov, 2005), leading to a near-optimal rate of O(log T/T ).
Subsequently, Rakhlin & Sridharan (2013a) showed that the optimal rate ofO(1/T ) can be obtained
with a remarkably simple variant of Online Mirror Descent which incorporates a prediction term in
the update step. While these results only hold for zero-sum games, Syrgkanis et al. (2015) showed
that O(T−3/4) rate can be obtained for multiplayer general-sum normal-form games. In a recent
result, Chen & Peng (2020) strengthened the regret bounds of Syrgkanis et al. (2015) from external
to swap regret using the celebrated construction of Blum & Mansour (2007). We also acknowledge
a recent result of Daskalakis et al. (2021) which establishes a near-optimal rate of convergence of
Õ(1/T ) to a coarse correlated equilibrium when all players employ the Optimistic Multiplicative
Weights Update (OMWU) algorithm in a normal-form game. Extending their result to extensive-
form games presents considerable technical challenges since their analysis crucially hinges on the
closed-form softmax-type structure of OMWU on the simplex.

Correlated equilibrium in extensive-form games is much less understood than Nash equilibrium.A
feasible EFCE can also be computed efficiently through a variant of the Ellipsoid algorithm (Pa-
padimitriou & Roughgarden, 2008; Jiang & Leyton-Brown, 2015), and an alternative sampling-
based approach was given by Dudík & Gordon (2009). However, those approaches perform poorly
in large-scale problems, and do not allow the players to arrive at EFCE via distributed learning.
Celli et al. (2019) devised variants of the CFR algorithm that provably convergence to normal-form
coarse correlated equilibria, a solution concept much less appealing than EFCE in extensive-form
games Gordon et al. (2008). Finally, Morrill et al. (2021a;b) characterize hindsight rationality no-
tions and associate a set of solution concepts with suitable O(T−1/2) no-regret learning dynamics.

2 PRELIMINARIES

Extensive-form Games. An extensive-form game is abstracted on a directed and rooted game tree
T . The set of nodes of T is denoted with H; non-terminal nodes are referred as decision nodes,
and are associated with a player who acts by selecting an action from a set of possible actionsA(h),
where h ∈ H represents the decision node. By convention, the set of players [n] ∪ {c} includes a
fictitious agent c who “selects” actions according to fixed probability distributions dictated by the
nature of the game (e.g., the roll of a dice); this intends to model external stochastic phenomena
occurring during the game. For a player i ∈ [n] ∪ {c}, we let H(i) ⊆ H be the subset of decision
nodes wherein a player i makes a decision. The set of leaves Z ⊆ H, or equivalently the terminal
nodes, correspond to different outcomes; once the game transitions to a terminal node z ∈ Z , payoffs
are assigned to each player based on a set of normalized utility functions {u(i) : Z → [−1, 1]}i∈[n].
It will also be convenient to represent with p(c)(z) the product of probabilities of “chance” moves
encountered in the path from the root until the terminal node z ∈ Z .

Imperfect Information. To model imperfect information, the set of decision nodes H(i) of player
i are partitioned into a collection of sets J (i), which are called information sets. Each information
set j ∈ J (i) groups nodes which cannot be distinguished by i. Thus, for any nodes h, h′ ∈ j we
have A(h) = A(h′). As usual, we assume that the game satisfies perfect recall: players never
forget information once acquired. We will also define a partial order ≺ on J (i), so that j ≺ j′, for
j, j′ ∈ J (i), if there exist nodes h ∈ j and h′ ∈ j′ such that the path from the root to h′ passes
through h. If j ≺ j′, we will say that j is an ancestor of j′, or equivalently, j is a descendant of j′.

Sequence-form Strategies. For a player i ∈ [n], an information set j ∈ J (i), and an action
a ∈ A(j), we will denote with σ = (j, a) the sequence of i’s actions encountered on the path from
the root of the game until (and included) action a. For notational convenience, we will use the special
symbol ∅ to denote the empty sequence. Then, i’s set of sequences is defined as Σ(i) := {(j, a) : j ∈
J (i), a ∈ A(j)} ∪ {∅}; we will also use the notation Σ

(i)
∗ := Σ(i) \ {∅}. For a given information

set j ∈ J (i) we will use σ(i)(j) ∈ Σ(i) to represent the parent sequence; i.e. the last sequence
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encountered by player i before reaching any node in the information set j, assuming that it exists.
Otherwise, we let σ(i)(j) = ∅, and we say that j is the root information set of player i. A strategy
for a player specifies a probability distribution for every possible information set encountered in the
game tree. For perfect-recall EFGs, strategies can be equivalently represented in sequence-form:
Definition 2.1 (Sequence-form Polytope). The sequence-form strategy polytope for player i ∈ [n]
is defined as the following (convex) polytope:

Q(i) :=

{
q ∈ R|Σ

(i)|
≥0 : q[∅] = 1, q[σ(i)(j)] =

∑
a∈A(j)

q[(j, a)], ∀j ∈ J (i)

}
. (1)

Analogously, one can define the sequence-form strategy polytope for the subtree of the partially
ordered set (J (i),≺) rooted at j ∈ J ((i), which will be denoted as Q(i)

j . Moreover, the set of

deterministic sequence-form strategies for player i ∈ [n] is the set Π(i) = Q(i) ∩ {0, 1}|Σ(i)|, and
similarly for Π

(i)
j . The joint set of deterministic sequence-form strategies of the players will be

represented with Π :=×i∈[n]
Π(i). As such, an element π ∈ Π is an n-tuple (π(1), . . . ,π(n))

specifying a deterministic sequence-form strategy for every player i ∈ [n]. Finally, the utility of
player i ∈ [n] under a profile π ∈ Π can be expressed as

u(i)(π) :=
∑
z∈Z

p(c)(z)u(i)(z)1{π(k)[σ(k)(z)] = 1,∀k ∈ [n]}. (2)

We summarized in Table 1 the EFG notation that we will be using most often throughout the paper.

An Illustrative Example. To clarify some of the concepts we have introduced, we illustrate a simple
two-player EFG in Figure 1. Black nodes belong to player 1, white round nodes to player 2, square
nodes are terminal nodes (aka leaves), and the crossed node is a chance node. Player 2 has two
information sets, J (2) := {C,D}, each containing two nodes. This captures the lack of knowledge
regarding the action played by player 1. In contrast, the outcome of the chance move is observed by
both players. At the information set C, player 2 has two possible actions, A(C) := {5,6}. Thus,
one possible sequence for player 2 is the pair σ = (C,5) ∈ Σ(2).

1

5
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56 6
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7

4

78 8

A B

C D

Figure 1: Example of a two-player EFG.

Description
J (i) Information sets of player i
A(j) Actions at information set j
Σ(i) Set of sequences of player i
Q(i)
j Sequence-form strategies rooted at j ∈ J (i)

D(i) Maximum depth of any j ∈ J (i)

Table 1: Summary of the basic notation.

Regret, Φ-Regret and Optimistic Regret Minimization. Consider a convex and compact setX ⊆
Rd representing the space of strategies of some agent. In the online decision making framework,
a regret minimizer R can be thought of as a black-box device which interacts with the external
environment via the following two basic subroutines:

• R.NEXTSTRATEGY(): The regret minimizer returns the strategy xt ∈ X at time t;
• R.OBSERVEUTILITY(`t): The regret minimizer receives as feedback a linear utility function
`t : X 3 x 7→ 〈`t,x〉, and may alter its internal state accordingly.

The decision making is online in the sense that the regret minimizer can adapt to previously received
information, but no information about future utilities is available. The error of a regret minimizer is
typically measured in terms of external regret, defined, for a time horizon T , as follows:

RT := max
x∗∈X

T∑
t=1

〈x∗, `t〉 −
T∑
t=1

〈xt, `t〉, (3)
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That is, the performance of the online algorithm is compared with the best fixed strategy in hindsight.

Φ-Regret. A conceptual generalization of the concept of external regret is the so-called Φ-regret.
Specifically, in this framework the performance of the learning algorithm is measured based on a set
of transformations Φ : X → X , leading to the notion of cumulative Φ-regret:

RT := max
φ∗∈Φ

T∑
t=1

〈φ∗(xt), `t〉 −
T∑
t=1

〈xt, `t〉. (4)

When the set of transformations Φ coincides with the set of constant functions, one recovers the
notion of external regret given in Equation (3). However, Φ-regret is substantially more expressive
and yields a more appealing notion of hindsight rationality (Gordon et al., 2008), incorporating the
notion of swap regret (Blum & Mansour, 2007).

We will employ the following definition, which is a slight modification of the RVU property intro-
duced by (Syrgkanis et al., 2015, Definition 3).
Definition 2.2 (Stable-predictivity). Let R be a regert minimizer and let ‖ · ‖ be a norm. R is said
to be κ-stable with respect to ‖ · ‖ if for all t ≥ 2, the strategies output byR satisfy

‖xt − xt−1‖ ≤ κ, (5)

Moreover, it is said to be (α, β)-predictive with respect to ‖ · ‖ if for all t ≥ 1 its regret RT satisfies

RT ≤ α(T ) + β

T∑
t=2

‖`t − `t−1‖2∗, (6)

no matter the sequence of utility vectors `1, . . . , `T , where ‖ · ‖∗ is the dual norm of ‖ · ‖.

Optimistic Follow the Regularized Leader. Let d be a 1-strongly convex function with respect to
some norm ‖ · ‖, and η > 0 the learning rate. OFTRL’s update rule takes the following form:

xt := arg max
x∈X

{〈
x, 2`t−1 +

t−2∑
τ=1

`τ

〉
− d(x)

η

}
, (OFTRL)

where x1 := arg minx∈X d(x). Syrgkanis et al. (2015) established the following property:
Lemma 2.3. (OFTRL) is 2η-stable and (Ωd/η, η)-predictive with respect to any norm ‖·‖ for which
d is 1-strongly convex, where Ωd is the range of d on X , that is, Ωd := maxx,x′∈X {d(x)− d(x′)}.

In this paper, we consider the entropic regularizer with respect to the simplex d(x) :=∑d
i=1 xi logxi, which is 1-strongly convex with respect to the `1 norm. The pair of dual norms

in the predictivity bound will therefore be (‖ · ‖1, ‖ · ‖∞). We call this OFTRL setup Optimistic
Multiplicative Weights Updates (OMWU).

Extensive-Form Correlated Equilibrium. We will work with the definition of EFCE due to
Farina et al. (2019e), which is equivalent to that of von Stengel & Forges (2008). First, let us
introduce the concept of a trigger deviation function.

Definition 2.4. Consider some player i ∈ [n], a sequence σ̂ = (j, a) ∈ Σ
(i)
∗ , and joint sequence-

form strategies π ∈ Π
(i)
j . A trigger deviation function with respect to a trigger sequence σ̂ and

continuation strategy π̂ is any linear function f : R|Σ(i)| → R|Σ(i)| with the following properties.

• Any strategy π ∈ Π(i) which does not prescribe the sequence σ̂ remains invariant. That is,
f(π) = π for any π ∈ Π(i) such that π[σ̂] = 0;

• Otherwise, the prescribed sequence σ̂ = (j, a) is modified so that the behavior at j, as well as
all its descendants is replaced by the behavior specified by the continuation strategy:

f(π)[σ] =

{
π[σ] if σ 6� j;
π̂[σ] if σ � j, (7)

for all σ ∈ Σ(i) and π ∈ Π(i) such that π[σ̂] = 1.
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We will let Ψ(i) := {φ(i)
σ̂→π̂ : σ̂ = (j, a) ∈ Σ

(i)
∗ , π̂ ∈ Π

(i)
j } be the set of all possible linear mappings

defining trigger deviation functions for player i. We are ready to introduce the concept of EFCE.

Definition 2.5 (EFCE). For ε ≥ 0, a probability distribution µ ∈ ∆|Π| is an ε-approximate EFCE
if for every player i ∈ [n] and every trigger deviation function φ(i)

σ̂→π̂ ∈ Ψ(i), it holds that

Eπ∼µ
[
u(i)

(
φ

(i)
σ̂→π̂(π(i)),π(−i)

)
− u(i)(π)

]
≤ ε, (8)

where π = (π1, . . . ,πn) ∈ Π. A probability distribution µ ∈ ∆|Π| is an EFCE if it is a 0-EFCE.

Theorem 2.6 (Farina et al. (2021a)). For every player i ∈ [n], let π(i),1, . . . ,π(i),T ∈ Π(i) be
a sequence of deterministic sequence-form strategies whose cumulative Ψ(i)-regret is R(i),T with
respect to the sequence of linear utility functions

`(i),t : Π(i) 3 π(i) 7→ u(i)
(
π(i),π(−i),t

)
. (9)

Then, the empirical frequency of play µ ∈ ∆|Π| is an ε-EFCE, where ε := 1
T maxi∈[n]R

(i),T .

3 ACCELERATING Φ-REGRET MINIMIZATION VIA OPTIMISM

In this section we develop a general template for accelerated Φ-regret minimization for general sets,
and then we instantiate the template for dynamics for EFCE. Our approach combines a framework of
Gordon et al. (2008) with the framework of stable-predictive (aka. optimistic) regret minimization.
As in Gordon et al. (2008), in our template we combine 1) a regret minimizer that outputs a linear
transformation φt ∈ Φ at every time t, and 2) a fixed-point oracle for each φt ∈ Φ. However, in our
framework, we further require that 2) is stable (in the sense of Definition 2.2). To achieve this, we
will focus on regret minimizers that have the following property:
Definition 3.1. Consider a set of functions Φ such that φ(X ) ⊆ X for all φ ∈ Φ, and a no-regret
algorithmRΦ for the set of transformations Φ which returns a sequence φt ∈ Φ. We say thatRΦ is
fixed point G-stable, for G ≥ 0, if the following conditions hold:

• Every φt admits a fixed point. That is, there exists xt ∈ X such that φt(xt) = xt.
• For any xt such that xt = φt(xt), there exists xt+1 with xt+1 = φt+1(xt+1) such that
‖xt+1 − xt‖ ≤ G.

We will show how to construct an accelerated Φ-regret minimizer starting from the following:

1. RΦ: A κ-stable (α, β)-predictive fixed point G-stable regret minimizer for Φ;
2. STABLEFPORACLE(φ; x̃, G, ε): A stable fixed point oracle which returns a point x ∈ X such

that (i) ‖φ(x)−x‖ ≤ ε, and (ii) ‖x−x̃‖ ≤ G (the existence of such a fixed point is guaranteed
by the fixed point G-stability assumption for the regret minimizer).

Given these two components, our next theorem builds a stable-predictive Φ-regret minimizer.
Theorem 3.2 (Accelerated Φ-Regret Minimization). Consider a κ-stable (α, β)-predictive regret
minimizer RΦ for a set of linear transformations Φ, with respect to the `1 norm ‖ · ‖1. More-
over, assume that RΦ is fixed point G-stable with respect to Φ. Then, if we have access to a
STABLEFPORACLE, we can construct a G-stable algorithm with Φ-regret RT bounded as

RT ≤ α(T ) + 2βD2
`κ

2T + 2β

T∑
t=2

‖`t − `t−1‖2∞ +D`

T∑
t=1

εt, (10)

where εt is the error of STABLEFPORACLE at time t, and D` is an upper bound on the `∞ norm of
`t’s. It is also assumed that ‖x‖∞ ≤ 1 for all x ∈ X .

The proof is similar to that of Gordon et al. (2008), and is included in Appendix B.

3.1 CONSTRUCTING A STABLE-PREDICTIVE REGRET MINIMIZER FOR Ψ(i)

Here we develop a regret minimizer for the set co Ψ(i), the convex hull of the set of trigger deviation
functions. Given that co Ψ(i) ⊇ Ψ(i), this will immediately imply a regret minimizer for the set
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CFR
(OMWU)

CFR
(OMWU)

R(i)
∆

R(i)
1 (Proposition 3.3)

R(i)
m (Proposition 3.3)

`(i), t L(i), t φ(i),t
x(i),t

R(i)
Ψ (Theorem 3.4)

Ψ(i)-Regret Minimizer for Q(i)

x(i),t

φ
(i)

1→qt1

φ
(i)
m→qtm

Fixed
point

Figure 2: An overview of the overall construction. For notational convenience we have let Σ
(i)
∗ :=

{1,2, . . . ,m}. The symbol ⊗ in the figure denotes a multilinear transformation of the inputs. We
also note that blue corresponds to the iterates, while red corresponds to the utilities.

Ψ(i). An overview of the algorithm is given in Figure 2. Farina et al. (2021a) observed that the
set co Ψ(i) can be evaluated in two stages. First, for a fixed sequence σ̂ = (j, a) ∈ Σ

(i)
∗ we define

the set Ψ
(i)
σ̂ := co

{
φσ̂→π̂ : π̂ ∈ Π

(i)
j

}
; then, we take the convex hull of all Ψ

(i)
σ̂ , that is, co Ψ(i) =

co{Ψ(i)
σ̂ : σ̂ ∈ Σ

(i)
∗ }. Correspondingly, we first develop a stable-predictive regret minimizer for the

set Ψ
(i)
σ̂ , for any σ̂ ∈ Σ

(i)
∗ , and these individual regret minimizers are then combined using a regret

circuit to conclude the construction in Theorem 3.4. All the omitted poofs and pseudocode for this
section are included in Appendix B.1.

Stable-Predictive Regret Minimizer for the set Ψ
(i)
σ̂ . Consider a sequence σ̂ ∈ Σ

(i)
∗ . Farina et al.

(2021a) observed that the set of transformations Ψ
(i)
σ̂ := co

{
φσ̂→π̂ : π̂ ∈ Π

(i)
j

}
is the image of

Q(i)
j under the affine mapping h(i)

σ̂ : q 7→ φ
(i)
σ̂→q . Hence, it is well-known that a regret minimizer for

Ψ
(i)
σ̂ can be constructed starting from a regret minimizer for Q(i)

j . We now show that the same can
be said if one restricts to stable-predictive regret minimizers. In particular, we have the following.

Proposition 3.3. Consider a player i ∈ [n] and any trigger sequence σ̂ = (j, a) ∈ Σ
(i)
∗ . There

exists an algorithm which constructs a deterministic regret minimizerR(i)
σ̂ with access to aK-stable

(AT , B)-predictive deterministic regret minimizer R(i)
Q for the set Q(i)

j , such that R(i)
σ̂ is K-stable

and (AT , B)-predictive.

In Appendix A we describe a stable-predictive variant of CFR for the set Q(i)
j , for each j ∈ J (i),

following the construction of Farina et al. (2019a).

Stable-Predictive Regret Minimizer for co Ψ(i). The next step consists of combining the regret
minimizers Ψ

(i)
σ̂ , for all σ̂ ∈ Σ

(i)
∗ , to a composite regret minimizer for the set co Ψ(i). To this end,

we employ regret circuits (Farina et al., 2019d), leading to the main result of this section:

Theorem 3.4. Consider a κ-stable (α, β)-predictive regret minimizer R(i)
∆ for the the simplex

∆|Σ
(i)
∗ |, and K-stable (A,B)-predictive regret minimizers R(i)

σ̂ for each σ̂ ∈ Σ
(i)
∗ , all with re-

spect to the pair of norms (‖ · ‖1, ‖ · ‖∞). Then, there exists an algorithm which constructs a regret
minimizer R(i)

Ψ for the set co Ψ(i) such that (i) R(i)
Ψ is O(K + |Σ(i)|κ)-stable, and (ii) under any

sequence of linear utility functions L1, . . . , LT the regret incurred can be bounded as

RTΨ ≤ O(α(T ) +A(T ) + βD2
LK

2T ) +O(B + β|Σ(i)|2)

T∑
t=2

‖Lt − Lt−1‖2∞, (11)

where ‖Lt‖∞ ≤ DL.
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3.2 STABILITY OF THE FIXED POINTS

In this subsection we complete the construction of the Ψ(i)-regret minimizer by establishing a stable
fixed point oracle for any φ ∈ co Ψ(i). All of the proofs of this section are included in Appendix B.2.

Multiplicative Stability. A sequence {zt}, with zt ∈ Rd≥0, is said to be κ-multiplicative-stable
if (1 − κ)zt−1

i ≤ zti ≤ (1 + κ)zt−1
i , for any i ∈ [d], and for all t ≥ 2. Importantly, this notion of

multiplicative stability is guaranteed by OMWU (see Lemma B.2). Thus, if D(i) is the depth of i’s
actions and D(i)

x is an upper bound on the `1 norm in the treeplex, we can show the following:

Lemma 3.5. When each regret minimizer R(i)
σ̂ is constructed using predictive CFR instantiated

with OMWU with learning rate η (Theorem A.4) such that for all σ̂ ∈ Σ
(i)
∗ , the output sequence is

O(η(D(i))2D
(i)
x D`)-multiplicatively-stable. Moreover, if the regret minimizerR(i)

∆ is realized using
OMWU with learning rate η, it will output an O(η|Σ(i)|D`)-multiplicatively-stable sequence.

This characterization will be crucial for establishing the stability of the fixed points. In particular,
following the approach of Farina et al. (2021a), let us introduce the following definitions:
Definition 3.6. Consider a player i ∈ [n] and let J ⊆ J (i) be a subset of i’s information sets. We
say than J is a trunk of J (i) if, for every j ∈ J , all predecessors of j are also in J .

Definition 3.7. Consider a player i ∈ [n], a trunk J ⊆ J (i), and φ ∈ co Ψ(i). A vector x ∈ R|Σ
(i)|

≥0

is a J-partial fixed point of φ if the following conditions hold:

• x[∅] = 1 and x[σ(i)(j)] =
∑
a∈A(j) x[(j, a)], for all j ∈ J ;

• φ(x)[∅] = x[∅] = 1, and φ(x)[(j, a)] = x[(j, a)], for all j ∈ J , and a ∈ A(j).

An important property is that a J-partial fixed point can be efficiently “promoted” to a J ∪ {j∗}-
partial fixed point by computing the stationary distribution of a certain Markov chain. However, a
significant concern is whether this fixed point operation can potentially cause a substantial degrada-
tion in terms of stability. One of our key results is that the associated Markov chain has a particular
structure, which enables us to substantially improve the stability bound and thereby obtain a poly-
nomial degradation in stability. More precisely, this boils down to the following technical lemma.
Lemma 3.8. Let M and M′ be transition matrices of m-state Markov chains such that M =
v1> + C and M′ = v′1> + C′, where C,C′,v,v′ have strictly positive entries. Moreover, let π
and π′ be the (unique) stationary distributions of M and M′ respectively. Then, if (i) the entries
of the matrices C and C′ are κ-multiplicatively-close, (ii) the entries of the vectors v and v′ are
γ-multiplicatively-close, and (iii) the sum of the entries of v and v′ are κ-multiplicatively-close,
then π and π′ are (γ +O(κm))-multiplicatively-close, for a sufficiently small κ = O(1/m).

Using a slightly more general result (Corollary B.10), we manage to obtain the following:

Proposition 3.9. Consider a player i ∈ [n], and let φ =
∑
σ̂∈Σ

(i)
∗
λ[σ̂]φ

(i)
σ̂→qσ̂ be a transformation

in co Ψ(i) such that the sequence of λt’s and qtσ̂’s is κ-multiplicatively-stable, for all σ̂ ∈ Σ
(i)
∗ . If xt

is a γ-multiplicatively-stable J-partial fixed point sequence, there is an algorithm which computes
a (J ∪ {j∗})-partial fixed point (xt)′ of φ such that the sequence of (x′)t’s is (γ + O(κ|A(j∗)|))-
multiplicatively-stable, for any sufficiently small κ = O(1/|A(j∗)|).

Thus, using our technical lemma, we manage to bypass the substantial overhead of the term
γ|A(j∗)|, which would follow using techniques similar to Chen & Peng (2020). This turns out to be
crucial for obtaining a polynomial dependence on the size of the game. Finally, we can inductively
employ this proposition to show the overall stability of the fixed points:

Theorem 3.10. Consider a player i ∈ [n], and let φ =
∑
σ̂∈Σ

(i)
∗
λ[σ̂]φ

(i)
σ̂→qσ̂ be a transformation in

co Ψ(i) such that the sequence of λt’s and qtσ̂’s is κ-multiplicatively-stable, for all σ̂ ∈ Σ
(i)
∗ . Then,

there exists an algorithm which computes a fixed point qt ∈ Q(i) of φ such that the sequence of qt’s
is O(κ|A(i)|D(i))-multiplicatively-stable, where |A(i)| := maxj∈J (i) |A(j)|, and for a sufficiently
small κ = O(1/(|A(i)|D(i))).

Finally, if we use the stability values derived in Lemma 3.5, we arrive at the following conclusion:

8



Under review as a conference paper at ICLR 2022

Corollary 3.11. For κ = O((D
(i)
x (D(i))2 + |Σ(i)|)|A(i)|D(i)D`), the sequence of fixed points will

be (ηκ)-multiplicatively-stable, for any sufficiently small η = O(1/κ).

Putting Everything Together. Finally, having established these ingredients, we can use the template
of Theorem 3.2 to obtain Theorem 1.1, as we formally show in Appendix B.3.

4 EXPERIMENTS

In this section we experimentally investigate the performance of our stable-predictive algorithm
compared to two other popular approaches based on a CFR-style decomposition of regrets into lo-
cal regret-minimization problems: the existing algorithm by Farina et al. (2021a) instantiated with
(i) regret matching+ (RM+) (Tammelin, 2014) for each simplex (in place of regret matching), and
(ii) using the vanilla MWU algorithm for each simplex. In accordance to the theoretical predic-
tions, the stepsize for OMWU is set as ηt = τ · t−1/4 (cf. Corollary B.13), and for MWU it is set
as ηt = τ · t−1/2, where the parameter τ is chosen by picking the best-performing value among
{0.01, 0.1, 1, 10, 100}. In particular, we evaluate their performance based on the following popular
benchmark games: (i) a three-player variant of Kuhn poker (Kuhn, 1950); (ii) a two-player bargain-
ing game known as Sheriff (Farina et al., 2019e)—a benchmark game introduced specifically for the
study of correlated equilibria; and (iii) a three-player version of Liar’s dice (Lisý et al., 2015). A
detailed description of each of the three game instances is available in Appendix D.

0 5000 10000
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0 5000 10000
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0 500 1000
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Figure 3: The performance of MWU, OMWU, and RM+ on three general-sum EFGs.

Figure 3 shows the performance of each of the three learning dynamics for computing EFCE. On
the x-axis we plot the number of iterations performed by each algorithm, and on the y-axis we plot
the EFCE gap, defined as the maximum advantage that any player can gain by defecting optimally
from the mediator’s recommendations. It should be noted that one iteration costs the same for every
algorithm, up to constant factors. We see that on every game, OMWU performs better than or on
par with RM+ and MWU. On Sheriff, OMWU performs significantly better than both RM+ and
MWU, by about an order of magnitude. One caveat to these results is that we did not use two tricks
that help CFR+ in two-player zero-sum EFG solving: alternation and linear averaging. These tricks
are known to retain convergence guarantees in that context (Tammelin et al., 2015; Farina et al.,
2019b; Burch et al., 2019), but it is unclear if they still guarantee convergence in the EFCE setting.

5 CONCLUSIONS

We described uncoupled no-regret learning dynamics so that if all agents play T repetitions of the
game according to the dynamics, the correlated distribution of play is an O(T−3/4)-approximate
EFCE. This substantially improves over the prior best rate of O(T−1/2). One of our conceptual
contributions is to connect the line of work on optimistic regret minimization with the framework
of Φ-regret. One of our main technical contributions is to characterize the stability of the fixed
points associated with trigger deviation functions through a refined perturbation analysis of a certain
structured Markov chain, which may be of independent interest. Finally, experiments conducted on
standard benchmarks corroborated our theoretical findings.
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A SEQUENTIAL DECISION MAKING AND STABLE-PREDICTIVE CFR

In this section we introduce the basic setting of sequential decision making, and we subsequently
provide a stable-predictive variant of CFR following the construction of Farina et al. (2019a). In
particular, the main result is captured in Theorem A.4.

A sequential decision process can be represented using a tree consisting of two types of nodes:
decision nodes and observation nodes. The set of all decision nodes will be denoted with J , while
the set of observation nodes with K. At every decision node j ∈ J the agent has to select a strategy
in the form of a probability distribution over all possible actions A(j). On the other hand, the agent
receives some type of feedback at each observation point k ∈ K. More precisely, it is assumed that
the agent may receive a signal from a set S(k).

Now at each decision point j ∈ J of the sequential decision process, the strategy xj ∈ ∆|A(j)| ob-
tains a (linear) utility of the form 〈`j ,xj〉, for some utility vector `j . The expected utility throughout
the entire decision process can be expressed as

∑
j∈J πj〈`j ,xj〉, where πj is the probability that the

agent reaches the decision point j. Before we proceed with the representation of the strategies, it is
important to point out that in all extensive-form games of perfect recall the agents face a sequential
decision process.

Decomposition of Sequence-Form Representation. Our construction will rely on the following
recursive decomposition of the sequence-form space X4:

• Consider an observation node k ∈ K, and let Ck be the children decision points of k. Then,
X4k can be decomposed as the following Cartesian product:

X4k :=×
j∈Ck
X4j ; (12)

• Consider a decision point j ∈ J , and let Cj = {k1, . . . , knj} be the children observation
points of j, with nj = |A(j)|. Then, X4j can be decomposed as follows:

X4j :=





λ1

...
λnj
λ1x1

...
λnjxnj


: (λ1, . . . , λnj ) ∈ ∆nj ,x1 ∈ X4k1 , . . . ,xnj ∈ X

4
knj


. (13)

In view of this decomposition, our regret minimizer for the sequence-form strategy spaceX4 will be
established based on localized regret minimizers. Specifically, the basic ingredients for the overall
construction are given in Proposition A.1 and Proposition A.2. We should note that the stable-
predictive property will be tacitly considered with respect to the pair of norms (‖ · ‖1, ‖ · ‖∞).

Proposition A.1. Consider an observation node k ∈ K, and assume access to a κj-multiplicatively-
stable (αj , βj)-predictive regret minimizerR4j over the sequence-form strategy space X4j , for each
j ∈ Ck. Then, we can construct a κ-multiplicatively-stable (A,B)-predictive regret minimizer R4k
for the sequence-form strategy space X4k , where A =

∑
j∈Ck αj and B =

∑
j∈Ck βj .

Proof. Given the decomposition of Equation (12), the composite regret minimizer can be con-
structed based on the regret circuit for the Cartesian product given by Farina et al. (2019d). In
particular, it is direct to verify that R4,Tk =

∑
j∈Ck R

4,T
j , where R4,Tk is the regret accumulated by

the composite regret minimizer, andR4,Tj the cumulative regret of each individual regret minimizer.
In particular, by assumption we know that

R4,Tj ≤ αj + βj

T∑
t=2

‖`4,tj + `4,t−1
j ‖2∞.
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As a result, we can conclude that

R4,Tk ≤

∑
j∈Ck

αj

+

∑
j∈Ck

βj

 T∑
t=2

‖`4,tk − `4,t−1
k ‖2∞,

where we used that ‖`4,tj − `4,t−1
j ‖∞ ≤ ‖`4,tk − `4,t−1

k ‖∞. Finally, the κ-multiplicative-stability
ofR4k follows directly from the κ-multiplicative-stability of eachR4j .

Proposition A.2. Consider a decision node j ∈ J , and assume access to a K-multiplicatively-
stable (αk, βk)-predictive regret minimizerR4k over the sequence-form strategy spaceX4k , for each
k ∈ Cj . Moreover, assume access to a κ-multiplicatively-stable (α, β)-predictive regret minimizer
R∆ over the simplex ∆|A(j)|. Then, for a sufficiently small constant κ, we can construct an (2κ +

K)-multiplicatively-stable (A,B)-predictive regret minimizer R4j for the sequence-form strategy
space X4j , where

A(T ) = α+ max
k∈Cj
{αk}+ 2βD2

`D
2
xK

2T ;

B = max
k∈Cj
{βk}+ 2βD2

x,
(14)

with D` being an upper bound on the `∞ norm of the sequence of `t’s, and Dx an upper bound on
the `1 norm of all x ∈ X4.

Proof. For this construction we will use the regret circuit for the convex hull, presented in Propo-
sition B.1. In particular, first note that by assumption the regret R4,Tk accumulated by each regret
minimizerR4k can be bounded as

R4,Tk ≤ αk + βk

T∑
t=2

‖`4,Tk − `4,t−1
k ‖2∞.

Moreover, by construction each regret minimizer R4k receives the same utility as R4j ; this, along
with the guarantee of Proposition B.1, imply that

R4,Tj ≤ α+ max
k∈Cj
{αk}+ max

k∈Cj
{βk}

T∑
t=2

‖`4,tj − `4,t−1
j ‖2∞ + β

T∑
t=2

‖Λt −Λt−1‖2∞, (15)

where Λt represents the utility function received as input by R∆. Next, similarly to the analysis of
Theorem 3.4 we can deduce that for some k ∈ Cj ,

‖Λt −Λt−1‖2∞ ≤ 2‖`t − `t−1‖2∞‖xtk‖21 + 2‖`t−1‖2∞‖xtk − xt−1
k ‖

2
1

≤ 2D2
x‖`t − `t−1‖2∞ + 2D2

`D
2
xK

2,

where we used that ‖xtk‖1 ≤ Dx, and the fact that ‖xtk − x
t−1
k ‖1 ≤ K‖xt−1

k ‖1 ≤ KDx by K-
multiplicative-stability of the sequence of xtk’s. As a result, if we plug-in this bound to Equation (15)
we can conclude that

R4,Tj ≤
(
α+ max

k∈Cj
{αk}+ 2βD2

`D
2
xK

2T

)
+

(
max
k∈Cj
{βk}+ 2βD2

x

) T∑
t=2

‖`4,tj − `4,t−1
j ‖2∞.

Finally, the (2κ+K)-multiplicative-stability ofR4j can be directly verified from the decomposition
given in Equation (13).

Remark A.3. Given the decomposition provided in Equation (13), the regret circuit for the convex
hull should operate on the appropriate “lifted” subspace for each X4k , which does not essentially
alter the argument since the augmented entries remain invariant; see (Farina et al., 2019d, Figure 7).

Finally, we can inductively combine Proposition A.1 and Proposition A.2 in order to establish a
stable-predictive variant of CFR:

14



Under review as a conference paper at ICLR 2022

Theorem A.4 (Optimistic CFR). If every local regret minimizerR4j is updated using OMWU with
learning rate η, for each j ∈ J , we can construct anO(ηDD2

xD`)-stable (AT , B)-predictive regret
minimizerR4 for the space of sequence-form strategies X4, such that

AT = O

(
log |A|
η
|J |+ η3D4

`D
6
xD

2T |J |
)

;

B = O(ηD2
x|J |),

(16)

where |A| := maxj∈J |A(j)|, D` is an upper bound on the `∞ norm of the utility functions, Dx is
an upper bound on the `1 norm of all x ∈ X4, and D is the depth of the decision process. Moreover,
R4 is O(ηDDxD`)-multiplicatively-stable.

Proof. First of all, it is easy to see that all the (localized) counterfactual losses have `∞ norm
bounded by O(DxD`), where recall that Dx is an upper bound on the `1 norm of all x ∈ X4. As a
result, we know from Lemma B.2 that the output of each local regret minimizerR4j under OMWU
with learning rate η is O(ηDxD`)-multiplicatively-stable. Along with Proposition A.2, we can
inductively infer that the output ofR is O(ηDDxD`)-multiplicatively-stable, where D is the depth
of the decision process. Moreover, we can conclude from this property that R is O(ηDD2

xD`)-
stable (in the additive sense of Definition 2.2) given that the `1 norm of x ∈ X4 is bounded by
Dx.

For the predictivity bound, first note that the range of the entropic regularizer on the m-dimensional
simplex is logm. Thus, by Lemma 2.3 we know that each local regret minimizer at the informa-
tion set j ∈ J instantiated with OMWU with learning rate η will be (log(|Aj |/η, η)-predictive.
Moreover, we previously argued that the stability parameter K appearing in the regret bound of
Proposition A.2 will be bounded by O(ηDD2

xD`). As a result, our predictivity bound follows di-
rectly from Proposition A.2.

Naturally, the same bounds apply for constructing a regret minimizer for the subspace X4j , for any
j ∈ J , as required in Proposition 3.3.

B PROOFS

In this section we include all of the omitted proofs. First, let us introduce some additional useful
notation. In particular, it will be convenient to instantiate a trigger deviation function in the form of
a linear mapping φ(i)

σ̂→π̂ : R|Σ(i)| 3 x 7→M
(i)
σ̂→π̂x, where M

(i)
σ̂→π̂ is such that for any σr, σc ∈ Σ(i),

M
(i)
σ̂→π̂[σr, σc] =


1 if σc 6� σ̂ & σr = σc;

π̂[σr] if σc = σ̂ & σr � j;
0 otherwise,

(17)

where σ̂ = (j, a) ∈ Σ
(i)
∗ . It is not hard to show that the linear mapping described in Equation (17)

is indeed a trigger deviation function in the sense of Definition 2.4. We will also sometimes use the
notation x⊗ y = xy> to denote the outer product of the vectors x and y. Moreover, we will write
(M)[ to represent the vectorization of the matrix M.

Proof of Theorem 3.2. Fix some iteration t ≥ 2. The first step is to determine the next strategy of
RΦ: φt = RΦ.NEXTSTRATEGY(). Then, our regret minimizer R will simply output the strategy
xt such that xt = STABLEFPORACLE(φt;xt−1, G, εt).1 By assumption (recall Definition 3.1) we
know that this is indeed well-defined, and xt will be such that (i) ‖φt(xt) − xt‖ ≤ εt, and (ii)
‖xt − xt−1‖ ≤ G. This immediately implies thatR will be G-stable.

Afterwards, we receive feedback from the environment in the form of a utility vector `t. This vector
is used to construct the utility function Lt : φ 7→ 〈`t, φ(xt)〉, with Lt being the corresponding
canonical vector of this linear mapping. Then, this function is given as feedback to RΦ; that is, we

1For t = 1 it suffices to return any xt such that x1 = φ1(x1).
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invoke the subroutine RΦ.OBSERVEUTILITY(Lt). As a result, the (external) regret of RΦ can be
expressed as

RTΦ = max
φ∗∈Φ

T∑
t=1

〈`t, φ∗(xt)〉 −
T∑
t=1

〈`t, φt(xt)〉. (18)

In particular, if RT is the Φ-regret ofR, we have that

RT −RTΦ =

T∑
t=1

〈`t, φt(xt)〉 −
T∑
t=1

〈`t,xt〉 =

T∑
t=1

〈`t, φt(xt)− xt〉

≤
T∑
t=1

‖`t‖∗‖φt(xt)− xt‖ ≤ D`
T∑
t=1

εt, (19)

where we used the Cauchy-Schwarz inequality, as well as the fact that ‖φt(xt) − xt‖ ≤ εt. Next,
we will bound the factor ‖Lt −Lt−1‖∞ arising from the stable-predictive bound on RTΦ in terms of
‖`t − `t−1‖∞. In particular, it follows that

‖Lt − Lt−1‖2∞ = ‖(`t ⊗ xt)[ − (`t−1 ⊗ xt−1)[‖2∞
= ‖(`t ⊗ xt)[ − (`t−1 ⊗ xt)[ + (`t−1 ⊗ xt)[ − (`t−1 ⊗ xt−1)[‖2∞
= ‖((`t − `t−1)⊗ xt)[ + (`t−1 ⊗ (xt − xt−1))[‖2∞
≤ 2‖((`t − `t−1)⊗ xt)[‖2∞ + 2‖(`t−1 ⊗ (xt − xt−1))[‖2∞ (20)

= 2‖`t − `t−1‖2∞‖xt‖2∞ + 2‖`t−1‖2∞‖xt − xt−1‖2∞ (21)

≤ 2‖`t − `t−1‖2∞ + 2D2
`κ

2, (22)

where we used the triangle inequality together with Young’s inequality in (20), the property that
‖(w⊗z)[‖∞ = ‖w‖∞‖x‖∞ in (21), and the stability property ‖xt−xt−1‖∞ ≤ ‖xt−xt−1‖1 ≤ κ
in (22). As a result, if we plug in the derived bound in Equation (19) we can conclude that

RT ≤ αT +D`

T∑
t=1

εt + β

T∑
t=1

(
2‖`t − `t−1‖2∞ + 2D2

`κ
2
)

= αT + 2βD2
`κ

2T +D`

T∑
t=1

εt + 2β

T∑
t=1

‖`t − `t−1‖2∞,

concluding the proof.

B.1 PROOFS FOR SECTION 3.1

In this section we present all the omitted proofs from Section 3.1. Specifically, we commence with
the proof of Proposition 3.3, established via Algorithm 2. We note that a similar construction appears
in (Farina et al., 2021a).

Proof of Proposition 3.3. As suggested in Algorithm 1, let us consider the linear function g(i),t
σ̂ :

R|Σ
(i)
j | 3 x 7→ Lt(h

(i)
σ̂ (x)) − L(h

(i)
σ̂ (0)), with gtσ̂ ∈ R|Σ

(i)
j | being the corresponding canonical

vector. In Algorithm 1 the observed utility function Lt at time t is used to construct g(i),t
σ̂ , and the

latter linear function is given as input toR(i)
Q . As a result, it follows that

sup
φ∗∈Ψ

(i)
σ̂

T∑
t=1

Lt(φ∗)−
T∑
t=1

Lt
(
φ

(i)

σ̂→qtσ̂

)
= sup
q∗σ̂∈Q

(i)
j

T∑
t=1

g
(i),t
σ̂ (q∗σ̂)−

T∑
t=1

g
(i),t
σ̂ (qtσ̂). (23)

That is, the cumulative regret incurred by R(i)
σ̂ under the sequence of utility functions L1, . . . , LT

is equal to the regret incurred by R(i)
Q under the sequence of utility functions g(i),t

σ̂ . As a result, if
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we invoke the (AT , B)-predictive assumption for the regret minimizer R(i)
Q , we can infer that the

cumulative regret RT ofR(i)
σ̂ can be bounded as

RT ≤ AT +B

T∑
t=2

‖g(i),t
σ̂ − g(i),t−1

σ̂ ‖2∞ ≤ AT +B

T∑
t=2

‖Lt − Lt−1‖2∞, (24)

where the bound follows from the fact that g(i),t
σ̂ = (Lt[σr, σ̂])σr�j . It is also direct to verify that

the stability is preserved since ‖(M(i)

σ̂→qtσ̂
)[− (M

(i)

σ̂→qt−1
σ̂

)[‖1 = ‖qtσ̂−q
t−1
σ̂ ‖1 ≤ K, by K-stability

of R(i)
Q . Finally, the claim regarding the complexity of Algorithm 1 follows directly given that we

can store the vector g(i),t
σ̂ in O(|Σ(i)

j |) time.

Algorithm 1: Stable-Predictive Regret MinimizerR(i)
σ̂ for the set Ψ

(i)
σ̂

Input:
• Player i ∈ [n]

• A trigger sequence σ̂ = (j, a) ∈ Σ
(i)
∗

• A (deterministic) K-stable (AT , B)-predictive regret minimizerR(i)
Q for Q(i)

j

1 function NEXTSTRATEGY():
2 qtσ̂ ← R

(i)
Q .NEXTSTRATEGY()

3 return φ(i)

σ̂←qtσ̂

4 function OBSERVEUTILITY(Lt):
5 Construct the linear function g(i),t

σ̂ : R|Σ
(i)
j | 3 x 7→ Lt(h

(i)
σ̂ (x))− Lt(h(i)

σ̂ (0))

6 R(i)
Q .OBSERVEUTILITY(g

(i),t
σ̂ )

Next, we conclude the construction by combining the individual regret minimizers via a regret circuit
for the convex hull; to be more precise, we will employ the following guarantee.

Proposition B.1 (Farina et al. (2019d)). Consider a collection of sets X1, . . . ,Xm, and let Ri be a
regret minimizer for the set Xi, for each i ∈ [m]. Moreover, let R∆ be a regret minimizer for the
m-simplex ∆m. A regret minimizerRco for the set co{X1, . . . ,Xm} can be constructed as follows:

• Rco.NEXTSTRATEGY obtains the next strategy xti of each regret minimizerRi, as well as the
next strategy λt = (λt1, . . . , λ

t
m) ∈ ∆m ofR∆, and returns the strategy λt1x

t
1 + · · ·+ λtmx

t
m.

• Rco.OBSERVEUTILITY(Lt) forwards the function Lt to each of the regret minimizers
R1, . . . ,Rm, while it also forwards the utility (λ1, . . . , λm) 7→ λ1L

t(xt1) + · · ·+λmL
t(xtm).

Then, ifRT1 , . . . , R
T
m is the regret accumulated by the regret minimizersR1, . . . ,Rm, andRT∆ is the

regret ofR∆, then the cumulative regret of the composite regret minmizersRco can be bounded as

RTco ≤ RT∆ + max{RT1 , . . . , RTm}. (25)

In our setting, this proposition can be cast in the form of Algorithm 2, and the stable-predictive
properties of the induced regret minimizer are analyzed in the following prof.

Proof of Theorem 3.4. First of all, Proposition B.1 implies that the accumulated regret of the regret
circuit for the convex hull can be bounded as

RTΨ ≤ α+AT +B

T∑
t=2

‖Lt − Lt−1‖2∞ + β

T∑
t=2

‖Λt −Λt−1‖2∞, (26)

where we used the fact that each regret minimizer R(i)
σ̂ obtains as input the same utility function as

R(i)
Ψ , while we also used the notation λt ∈ R|Σ(i)

∗ | to represent the utility function given to R(i)
∆ , as
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predicted by Proposition B.1. Next, let us focus on bounding the norm ‖Λt−Λt−1‖2∞; in particular,
it follows that for some index s ∈ {1, . . . , |Σ(i)

∗ |},

‖Λt −Λt−1‖2∞ =
(
〈Lt,xts〉 − 〈Lt−1,xt−1

s 〉
)2

(27)

=
(
〈Lt,xts〉 − 〈Lt−1,xts〉+ 〈Lt−1,xts〉 − 〈Lt−1,xt−1

s 〉
)2

=
(
〈Lt − Lt−1,xts〉+ 〈Lt−1,xts − xt−1

s 〉
)2

≤ 2
(
〈Lt − Lt−1,xts〉

)2
+ 2

(
〈Lt−1,xts − xt−1

s 〉
)2

(28)

≤ 2‖Lt − Lt−1‖2∞‖xts‖21 + 2‖Lt−1‖2∞‖xts − xt−1
s ‖21 (29)

≤ 2D2
x‖Lt − Lt−1‖2∞ + 2D2

LK
2, (30)

where (27) follows from the definition of the `∞ norm, (28) by Young’s inequality, and (29) by
Cauchy-Schwarz. Note that we also used the notation Dx to represent an upper bound for the `1
norm of ‖xts‖. As a result, if we plug the bound of Equation (30) to (26) we can conclude that

RTΨ ≤ α+AT + (B + 2βD2
x)

T∑
t=2

‖Lt − Lt−1‖2∞ + 2βD2
LK

2T. (31)

Moreover, regarding the stability of the composite regret minimizer we observe that

∥∥∥∥∥∥
|Σ(i)
∗ |∑

k=1

λtkx
t
k −

|Σ(i)
∗ |∑

k=1

λt−1
k xt−1

k

∥∥∥∥∥∥
1

≤
|Σ(i)
∗ |∑

k=1

‖λtkxtk − λt−1
k xt−1

k ‖1

≤
|Σ(i)
∗ |∑

k=1

‖λtkxtk − λtkxt−1
k + λtkx

t−1
k − λt−1

k xt−1
k ‖1 (32)

≤
|Σ(i)
∗ |∑

k=1

(
‖λtkxtk − λtkxt−1

k ‖1 + ‖λtkxt−1
k − λt−1

k xt−1
k ‖1

)
≤
|Σ(i)
∗ |∑

k=1

λtk‖xtk − xt−1
k ‖1 +

|Σ(i)
∗ |∑

k=1

‖xt−1
k ‖1|λ

t
k − λt−1

k |

≤ K +Dx‖λt − λt−1‖1 (33)
≤ K +Dxκ, (34)

where we used the triangle inequality in (32), the `1 stability of xtk’s in (33), and the `1 stability of
λt’s in (34). Given that Dx = O(|Σ(i)|), this verifies our claim about the stability and the predic-
tivity of R(i)

Ψ . Finally, the complexity analysis for the NEXTSTRATEGY function follows directly
since the NEXTSTRATEGY operation of each individual regret minimizer runs in O(|Σ(i)|), while
the analysis of the OBSERVEUTILITY routine follows similarly to (Farina et al., 2021a, Theorem
4.6), and it is therefore omitted.

B.2 PROOFS FOR SECTION 3.2

We commence this section with the proof that OMWU guarantees multiplicative-stability.
Lemma B.2 (Multiplicative Stability of OMWU on the Simplex). Consider the OMWU algorithm
R∆ on the m-dimensional simplex with learning rate η > 0. If all the utility functions `t ∈ Rm
are such that ‖`t‖∞ ≤ L, and η < 1/(12L), then the sequence of xt’s produced by OMWU is
O(ηL)-multiplicatively-stable.

Proof. It is well-known that the update rule of OMWU on the simplex has the following form:

xti =
e2η`t−1

i −η`t−2
i∑m

k=1 e
2η`t−1

k −η`t−2
k xt−1

k

xt−1
i . (35)
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Algorithm 2: Stable-Predictive Regret MinimizerR(i)
Ψ for the set co Ψ(i)

Input:
• Player i ∈ [n]

• A K-stable (AT , B)-predictive regret minimizerR(i)
σ̂ for Ψ

(i)
σ̂ , for each σ̂ ∈ Σ

(i)
∗

• A deterministic κ-stable (α, β)-predictive regret minimizerR(i)
∆ for ∆|Σ

(i)
∗ |

1 Function NEXTSTRATEGY():
2 λt ← R(i)

∆ .NEXTSTRATEGY()

3 for σ̂ ∈ Σ
(i)
∗ do

4 φσ̂→qtσ̂ ← R
(i)
σ̂ .NEXTSTRATEGY()

5 return
∑
σ̂∈Σ

(i)
∗
λt[σ̂]φσ̂→qtσ̂ represented implicitly as {λt[σ̂], qtσ̂}σ̂∈Σ

(i)
∗

6 Function OBSERVEUTILITY(Lt):
7 for σ̂ ∈ Σ

(i)
∗ do

8 R(i)
σ̂ .OBSERVEUTILITY(Lt)

9 Construct the linear function `tλ : λ 7→
∑
σ̂∈Σ

(i)
∗
λ[σ̂]Lt

(
φσ̂→qtσ̂

)
10 R(i)

∆ .OBSERVEUTILITY(`tλ)

As a result, it follows that

xti ≤
e3ηL∑m

k=1 e
−3ηLxt−1

k

xt−1
i = e6ηLxt−1

i ≤ (1 + 12ηL)xt−1
i ,

where we used that `ti ∈ [−L,L], the fact that xt−1 ∈ ∆m, and that ex ≤ 1+2x, for all x ∈ [0, 1/2].
Similarly, we have that

xti ≥
e−3ηL∑m

k=1 e
3ηLxt−1

k

xt−1
i = e−6ηLxt−1

i ≥ (1− 6ηL)xt−1
i .

Proof of Lemma 3.5. Let us start with the regret minimizerR(i)
∆ . By Lemma B.2 it suffices to bound

the `∞ norm of the utility vectors. In particular, if Λ is the associated utility vector predicted from
Proposition B.1, it follows that ‖Λ‖∞ = |〈L,xk〉| ≤ ‖L‖∞‖xk‖1 = O(DL|Σ(i)|), for some
k ∈ {1, . . . , |Σ(i)

∗ |}, where we used the (generalized) Cauchy–Schwarz inequality, and the fact that
‖xk‖1 = O(|Σ(i)|). Moreover, for Lt = (xt ⊗ `t)[ and ‖xt‖∞ ≤ 1 it follows that DL ≤ D`,
and the claimed bound follows directly from Lemma B.2. Finally, for each regret minimizerRσ̂ the
multiplicative-stability bound can only be a factor of D(i) from the derived bound in Theorem A.4,
concluding the proof.

Next, we focus on the proof of Theorem 3.10. In particular, let us first introduce some important
tools that we will require. Our approach is based on the techniques of Kruckman et al. (2010),
who provided an alternative proof of the classic Markov chain tree theorem using linear-algebraic
techniques. We commence by stating some elementary properties of the determinant.

Fact B.3. The following properties hold:

• The determinant is a multilinear function with respect to the rows and columns of the matrix.
That is,

det(u1, . . . , αuk+βu′k, . . . ,um) = α det(u1, . . . ,uk, . . . ,um)+β det(u1, . . . ,u
′
k, . . . ,um),

for any u1, . . . ,um ∈ Rm, u′k ∈ Rm, and α, β ∈ R;
• If any two rows or columns of a square matrix A are equal, then det(A) = 0;
• The determinant remains invariant under permutations.
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Given a matrix A, the minor mn(i,j)(A) is the matrix formed from A after deleting the i-th row and
the j-th column. Then, the cofactor is defined as co(i,j)(A) = (−1)i+j det

(
mn(i,j)(A)

)
, while the

adjugate (or adjoint) matrix adj(A)> is the matrix with entries the corresponding cofactors of A.
With this notation at hand, we are ready to state the following characterization due to (Kruckman
et al., 2010, Theorem 3.4):
Theorem B.4 (Kruckman et al. (2010)). Consider an ergodic m-state Markov chain with transition
matrix M. If x ∈ Rm is such that xi := adj(L)[(i, i)], where L := M− Im is the Laplacian of the
system, x is an eigenvector ofM with corresponding eigenvalue of 1. That is, Mx = x.

An key ingredient of our proof for Theorem 3.10 relies on this theorem in order to characterize the
stationary distribution of a certain (ergodic) Markov chain. Incidentally, an alternative characteriza-
tion can be provided using the classic Markov chain tree theorem. In particular, a central component
of this theorem is the notion of a directed tree:
Definition B.5 (Directed Tree). A graph G = (V,E) is said to be a directed tree rooted at u ∈ V
if (i) it does not contain any cycles, and (ii) u has no outgoing edges, while every other node has
exactly one outgoing edge.

We will represent with Di the set of all graphs which have property (ii) with respect to a node
i ∈ [m]. Moreover, we will use Ti to represent the subset of Di which also has property (i) of
Definition B.5. For a matrix D ∈ Di, we define a matrix mp(D) so that mp(D)(j,k) = 1 if (k, j) ∈
E(D), and 0 otherwise. The following lemma will be of particular use for our purposes:
Lemma B.6 (Kruckman et al. (2010)). Consider some m ×m matrix D ∈ Di, and let Ri be the
determinant of the Laplacian matrix L := mp(D) − I after replacing the i-th column with the i-th
standard unit vector ei. Then, Ri = (−1)m−1 if D ∈ Ti, i.e. D contains no (directed) cycles.
Otherwise, Ri = 0.

Before we proceed with the main technical proof, we also state another useful elementary fact.
Fact B.7. The adjugate matrix at (i, i) is equal to the determinant of A after we replace the i-th
column with the vector ei.
Lemma B.8. Let M be the transition matrix of anm-state Markov chain such that M := v1>+C,
where C is a matrix with strictly positive entries and columns summing to 1 − λ, and v is a vector
with strictly positive entries summing to λ. Then, if π is the stationary distribution of M, there
exists, for each i ∈ [m], a (non-empty) finite set Fi and F =

⋃
i Fi, and corresponding parameters

bj ∈ {0, 1}, 0 ≤ pj ≤ m− 2, |Sj | = m− pj − bj − 1, for each j ∈ Fi, such that

πi =

∑
j∈Fi λ

pj+1(v[qj ])
bj
∏

(s,w)∈Sj C[(s, w)]∑
j∈F Cjλ

pj+bj
∏

(s,w)∈Sj C[(s, w)]
, (36)

where Cj = Cj(m) is a positive constant.

Before we proceed with the proof, let us stress that the main takeaway of this lemma is that the sta-
tionary distribution has an affine dependence on the vector v, which will be of particular importance
in order to obtain polynomial bounds in terms of stability.

Proof of Lemma B.8. Let us consider the Laplacian matrix L = M − Im, and the quantities Σi :=
adj(L)[(i, i)]. Our first goal is to characterize the behavior of Σi’s. In particular, we can focus
without loss of generality on the term Σ1. We know from Fact B.7 that Σ1 can be expressed as

Σ1 = det(e1,v + c2 − e2, . . . ,v + cm − em), (37)

where cj represents the j-th column of C. Now if ej,k := ej−ek, given that M is column-stochastic
we can observe that

ej − v − cj =

m∑
k=1

(ej − ek)v[k] +

m∑
k=1

(ej − ek)cj [k] =

m∑
k=1

ej,kv[k] +

m∑
k=1

ej,kcj [k].

Next, if we plug-in this expansion to Equation (37) it follows that

Σ1 = det

(
e1,

m∑
k=1

ek,2v[k] +

m∑
k=1

ek,2c2[k], . . . ,

m∑
k=1

ek,mv[k] +

m∑
k=1

ek,mcm[k]

)
. (38)
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By multilinearity of the determinant (Fact B.3), Σ1 can be expressed as the sum of terms, with a
single term of the form

det

(
e1,

m∑
k=1

ek,2c2[k], . . . ,

m∑
k=1

ek,mcm[k]

)
, (39)

independent on v, while any other term can be expressed in the form

det

(
e1, z2, . . . ,

m∑
k=1

ek,jv[k], . . . ,zm

)
, (40)

for some index j, where z` is either
∑m
k=1 ek,`v[k] or

∑m
k=1 ek,`c`[k]. Now let us focus on each

term of Equation (40). Specifically, we will show that it can be equivalently expressed so that the
vector v appears only in a single column. Indeed, consider any other column in the matrix involved
in the determinant of (40), expressed in the form

∑m
k=1 ek,`v[k], for some index ` 6= j, if such

column exists. Then, if we subtract the second column from that column it would take the form
m∑
k=1

ek,`v[k]−
m∑
k=1

ek,jv[k] =

m∑
k=1

(ej − e`)v[k] = λej,`,

where recall that λ is the sum of the entries of vector v, while this operation does not modify the
value of the underlying determinant. Thus, by multinearity the determinant of (40) is equal to

λp det

(
e1, z

′
2, . . . ,

m∑
k=1

ek,jv[k], . . . ,z′m

)
, (41)

where z′` is either
∑m
k=1 ek,`c`[k], or ej,`, and 0 ≤ p ≤ m− 2. Next, if we use again the multilin-

earity property, the term in (41) can be expressed as a sum of terms each of which has the formλpv[q]
∏

(s,w)∈S

C[(s, w)]

 det(e1, e·,2, . . . , e·,m),

where |S| = m − p − 2. In particular, the induced determinant det(e1, e·,2, . . . , e·,m) matches
after a suitable permutation the form of Lemma B.6, associated with some matrix D ∈ Di. Thus, it
can either be 0 or (−1)m−1, depending on whether the corresponding graph has a (directed) cycle.
Similar reasoning applies for the determinant in (39), which can be expressed as a sum of terms

(−1)m−1
∏

(s,w)∈S

C[(s, w)],

where |S| = m − 1. Overall, we have shown that each Σi (due to symmetry) can be expressed in
the form

(−1)m−1
∑
j∈Fi

λpj (v[qj ])
bj

∏
(s,w)∈Sj

C[(s, w)], (42)

where for all j it holds that bj ∈ {0, 1}, and |Sj | = m − pj − bj − 1. Next, we will focus on
characterizing Σ :=

∑m
i=1 Σi. In particular, the stationary distribution π of M is such that(

C + v1>
)
π = π ⇐⇒ Cπ + v = π ⇐⇒ (Im −C)π = v, (43)

where we used that 1>π = 1 since π ∈ ∆m. Moreover, we claim that the matrix Im − C is
invertible. Indeed, the sum of the columns of C is 1 − λ, and subsequently it follows that the
maximum eigenvalue of C is (1− λ). In turn, this implies that all the eigenvalues of Im −C are at
least λ > 0 As a result, we can use Cramer’s rule to obtain an explicit formula for the solution of
the linear system with respect to the first coordinate of π:

π1 =
det(v, e2 − c2, . . . , em − cm)

det(e1 − c1, e2 − c2, . . . , em − cm)
. (44)
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Moreover, it follows that

π1 = det(v, e2 − c2, . . . , em − cm)

= det(v, e2 − c2 − v, . . . , em − cm − v)

= det(v + (λe1 − v), e2 − c2 − v, . . . , em − cm − v) (45)
= λ det(e1, e2 − c2 − v, . . . , em − cm − v),

where in (45) we used the fact that det(λe1 − v, . . . , em − cm − v) = 0. Thus, if we use the
definition of Σ1, Fact B.7, and Equation (44), we arrive at the following conclusion:

π1 = λ
Σ1

det (Im −C)
.

But we can also infer from Theorem B.4 that π1 = Σ1/Σ, implying the following identity:

det(Im −C) = λ

m∑
i=1

Σi. (46)

In fact, we have shown this formula for any vector λp, where p is a probability distribution, and
λ > 0. Thus, it must also hold for v := λ

m1. That is,

det(Im −C) = λ(−1)m−1
∑
j∈F

Cjλ
pj+bj

∏
(s,w)∈Sj

C[(s, w)], (47)

where |Sj | ≤ m − 1 − pj , Cj = Cj(m) is a positive parameter independent on the entries of v
and C, and F =

⋃
i Fi. Finally, given that the vector π ∈ ∆m with πi = Σi/Σ is the (unique)

stationary distribution of M, the lemma follows directly from (42), (46), and (47).

Corollary B.9. Let M be the transition matrix of an m-state Markov chain such that M := v1> +
C, where C is a matrix with strictly positive entries and columns summing to 1−λ, and v is a vector
with strictly positive entries summing to λ. Moreover, let v = r/l, for some l > 0. Then, if π is the
stationary distribution of M, there exists a set Fi, for each i ∈ [m], a (non-empty) finite set Fi and
F =

⋃
i Fi, and corresponding parameters bj ∈ {0, 1}, 0 ≤ pj ≤ m− 2, |Sj | = m− pj − bj − 1,

for each j ∈ Fi, such that such that the i-th coordinate of the vector w := lπ can be expressed as

wi =

∑
j∈Fi λ

pj+1(r[qj ])
bj l1−bj

∏
(s,w)∈Sj C[(s, w)]∑

j∈F Cjλ
pj+bj

∏
(s,w)∈Sj C[(s, w)]

, (48)

where Cj = Cj(m) is a positive constant.

Proof. The proof follows directly from the formula derived in Lemma B.8.

This expression for the stationary distribution was derived specifically to characterize the multiplica-
tive stability of the fixed points associated with EFCE. In particular, this will be shown directly from
the following immediate corollary:
Corollary B.10. Let M be the transition matrix of an m-state Markov chain such that M = v1>+
C, where C is a matrix with strictly positive entries, and v is a vector with strictly positive entries
such that v = r/l, for some l > 0. If π is the stationary distribution of M, let w := lπ. Similarly,
let M′ be the transition matrix of another m-state Markov chain such that M′ = v′1>+ C′, where
C′ is a matrix with strictly positive entries, and v′ is a vector with strictly positive entries such that
v′ = r′/l′, for some l′ > 0. If π′ is the stationary distribution of M′, let w′ := l′π′. Finally, let
λ and λ′ be the sum of the entries of v and v′ respectively. Then, if (i) the matrices C and C′ are
κ-multiplicatively-close, (ii) the numbers λ and λ′ are κ-multiplicatively-close, (iii) the vectors r
and r′ are γ-multiplicatively-close, and (iv) the numbers l and l′ are also γ-multiplicatively-close,
then the vectors w and w′ are (γ +O(κm))-multiplicatively-close, assuming that κ = O(1/m).

Proof. Consider some coordinate i ∈ [m], and let

Vj := λpj+1(r[qj ])
bj l1−bj

∏
(s,w)∈Sj

C[(s, w)],
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for some j ∈ Fi. Also let V ′j be the corresponding quantity with respect to M′. Then, by assumption
we have that

V ′j ≤ (1 + κ)pj+1(1 + γ)(1 + κ)|Sj |Vj = (1 + γ)(1 + κ)mVj ,

where we used the fact that |Sj | + pj + 1 ≤ m by Corollary B.9. Moreover, for a sufficiently
small κ = O(1/m), we can infer that V ′j ≤ (1 + γ)(1 + O(κm))V ′j = (1 + (γ + O(κm)))Vj .
Thus, this implies that

∑
j∈Fi V

′
j ≤ (1 + (γ + O(κm)))

∑
j∈Fi V

′
j . Moreover, we can show that

the denominator of Equation (48) induces an extra additive factor of O(κm) in the multiplicative
stability, implying that w′i ≤ (1 + (γ + O(κm)))wi, for any i ∈ [m]. Similarly, it follows that
w′i ≥ (1− (γ +O(κm)))wi.

Next, we will use this statement to prove Proposition 3.9. We note that it is tacitly assumed that the
vectors λt, qtσ̂ , and x(j∈J), involved in Proposition 3.9, lie on the interior; this will be indeed the
case when OMWU is used to construct the individual regret minimizers.

Proof of Proposition 3.9. Let us focus on the stability analysis of Algorithm 3, as the rest of the
claim follows from (Farina et al., 2021a, Proposition 4.14). In particular, for consistency with the
terminology of Corollary B.10, let us define

C[(ar, ac)] := λ[(j∗, ac)]q(j∗,ac)[(j
∗, ar)] +

1−
∑

σ̂�(j∗,ac)

λ[σ̂]

1{ar = ac};

and l := x[σp]. We will show that the requirements of Corollary B.10 are satisfied:

(i) The entries of C are O(κ)-multiplicatively-stable. In particular, this follows from the fact that
1−

∑
σ̂�(j∗,ac)

λ[σ̂] =
∑
σ̃∈Σ̃ λ[σ̃], and the latter term is clearly κ-multiplicatively-stable;

(ii) The sum of the entries of vt := rt/lt is κ-multiplicatively-stable. To see this, note that the
sum of each column of C can be expressed as

∑
σ̃∈Σ̃ λ[σ̃], and as a result, since the matrix

C + 1
l r1
> is stochastic, we can infer that the sum of the entries of v can also be expressed as∑

σ̃∈Σ̃ λ[σ̃], sinceλ is a vector on the simplex. But the latter term is clearly κ-multiplicatively-
stable, as desired;

(iii) The sequence of vectors rt is γ +O(κ)-multiplicatively-stable. This assertion can be directly
verified from the definition of r in Algorithm 3;

(iv) The sequence of numbers of lt is γ-multiplicatively-stable. Indeed, this follows directly from
the assumption that the sequence of xt’s is γ-multiplicatively-stable.

As a result, we can apply Corollary B.10 to conclude the proof.

Proof of Theorem 3.10. Our argument proceeds inductively. For a root information set j ∈ J (i),
Proposition 3.9 implies O(κ|A|)-multiplicative-stability for any induced partial fixed point; this
follows given that the ∅-partial fixed point is trivially 0-multiplicatively-stable. Next, the theorem
follows inductively given that by Proposition 3.9 each sequence can only incur an additive factor of
O(κ|A|) in the multiplicative stability bound with respect to the preceding sequences.

More precisely, if F (i) := maxj1≺j2≺···≺jd
∑d
i=1 |A(ji)|, with j1, . . . , jd ∈ J (i), we can show that

the sequence of fixed points is O(κF (i))-multiplicatively-stable. Observe that F (i) can be trivially
upper bounded by |A(i)|D(i), as well as the number of sequences |Σ(i)|.

B.3 PUTTING EVERYTHING TOGETHER

First of all, if we combine Theorem A.4 with Theorem 3.4, instantiating the regret minimizer R(i)
∆

of Theorem 3.4 using OMWU with learning rate η, we can construct a regret minimizer for the set
co Ψ(i) with regret RTΨ bounded as

RTΨ ≤
P(i)

η
+ η3D4

`V(i)T + ηB(i)
T∑
t=2

‖Lt − Lt−1‖2∞, (49)
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Algorithm 3: EXTEND(φ, J, j∗,x); (Farina et al., 2021a)
Input:

• φ =
∑
σ̂∈Σ

(i)
∗
λ[σ̂]φ

(i)
σ̂→qσ̂ ∈ co Ψ(i)

• J ⊆ J (i) trunk for player i
• j∗ ∈ J (i) information set not in J with an immediate predecessor in J

• x ∈ R|Σ
(i)|

≥0 J-partial fixed point of φ

Output: x′ ∈ R|Σ
(i)|

≥0 (J ∪ {j∗})-partial fixed point of φ
1 σp ← σ(i)(j∗)

2 Let r ∈ R|A(j∗)|
≥0 be defined as

r[a] :=
∑
j′�σp

∑
a′∈A(j′) λ[(j′, a′)]q(j′,a′)[(j

∗, a)]x[(j′, a′)]

3 Let W ∈ x[σp]S|A(j∗)| be the matrix with entries W[ar, ac] defined, for ar, ac ∈ A(j∗), as

r[ar] +
(
λ[(j∗, ac)]q(j∗,ac)[(j

∗, ar)] +
(

1−
∑
σ̂�(j∗,ac)

λ[σ̂]
)

1{ar = ac}
)
x[σp]

4 if x[σp] = 0 then
5 w ← 0 ∈ R|A(j∗)|

≥0

6 else
7 b ∈ ∆|A(j∗)| ← stationary distribution of 1

x[σp]W

8 w → x[σp]b
9 x′ ← x

10 for a ∈ A(j∗) do
11 x′[(j∗, a)]← w[(j∗, a)]

Algorithm 4: FIXEDPOINT(φ); (Farina et al., 2021a)

Input: φ =
∑
σ̂∈Σ

(i)
∗
λ[σ̂]φ

(i)
σ̂→qσ̂ ∈ co Ψ(i)

Output: q∗ ∈ Q(i) such that q = φ(q∗)

1 q ← 0 ∈ R|Σ(i)|, q[∅]← ∅
2 J ← ∅
3 for j ∈ J (i) in top-down order do
4 q∗ ← EXTEND(φ, J, j, q∗)
5 J = J ∪ {j}
6 return q

where P(i),V(i), and B(i) are game-specific parameters polynomial on the size of the game, and
independent of T and η, and D` is an upper bound on the `∞ norm of the utility sequences. In
addition, this regret minimizer will be ηK(i)-stable, for a game-specific parameter K(i) polynomial
on the size of the game, and independent on η and T . Thus, this stable-predictive regret minimizer
for the set of transformations Ψ(i) realizes the first requirement of Theorem 3.2.

Moreover, let ηG(i) be the parameter associated with the stability of the fixed points, as predicted by
Corollary 3.11, for some game-specific parameter G(i) polynomial on the size of the game, and inde-
pendent on η and T . Now observe that this component realizes the STABLEFPORACLE; the second
requirement of Theorem 3.2. As a result, we can apply Theorem 3.2 to conclude the following:

Corollary B.11. Consider any player i ∈ [n]. There exists a learning algorithm such that under any
sequence of utility vectors `1, . . . , `T , with `∞ norm bounded by D`, the accumulated Ψ(i)-regret
RT can be bounded as

RT ≤ P
(i)

η
+ η3D4

`V(i)T + ηB(i)
T∑
t=2

‖`t − `t−1‖2∞. (50)
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In addition, the regret minimizer is ηG(i)-stable, for a sufficiently small learning rate η. All of the
parameters P(i),V(i),B(i), and G(i) are game-specific parameters, polynomial on the size of the
game, and independent on η and T .

We note that the parameters appearing in this corollary are in general different from the ones in
Equation (49), and we use the same symbols with an abuse of notation. So far we have focused
on bounding the regret of a player without any assumptions on the observed utility functions. A
crucial observation is that if all players employ a regularized (or smooth) learning algorithm, then
the observed utility functions change slowly over time. To formalize this observation, we start with
the following auxiliary claim:
Claim B.12. For any player i ∈ [n] the observed utilities satisfy

‖`(i),t − `(i),t−1‖∞ ≤ |Z|
n∑
k 6=i

‖q(k),t − q(k),t−1‖1. (51)

Proof. For a profile of mixed sequence-form strategies (q(1), . . . , q(n)), the utility of player i can
be expressed as

u(i)(q(1), . . . , q(n)) =
∑
z∈Z

p(c)(z)u(i)(z)

n∏
k=1

q(k)(σ(k)(z)).

As a result, given that |u(i)(z)| ≤ 1 for all z ∈ Z , it follows that

‖`(i),t − `(i),t−1‖∞ ≤
∑
z∈Z

∣∣∣∣∣∣
n∏
k 6=i

q(k),t(σ(k)(z))−
n∏
k 6=i

q(k),t−1(σ(k)(z))

∣∣∣∣∣∣
≤
∑
z∈Z

n∑
k 6=i

∣∣∣q(k),t(σ(k)(z))− q(k),t−1(σ(k)(z))
∣∣∣ , (52)

where in the last bound we used the inequality

|(a1a2 . . . am)− (b1b2 . . . bm)| ≤
m∑
i=1

|ai − bi|(a1 . . . ai−1)(bi+1 . . . bm) ≤
m∑
i=1

|ai − bi|,

for any a1, . . . , am, b1, . . . , bm ∈ [0, 1]. Finally, from (52) we can conclude that

‖`(i),t−`(i),t−1‖∞ ≤
n∑
k 6=i

∑
z∈Z

∣∣∣q(k),t(σ(k)(z))− q(k),t−1(σ(k)(z))
∣∣∣ ≤ |Z| n∑

k 6=i

‖q(k),t−q(k),t−1‖1,

as desired.

As a result, if all players employ a stable algorithm to update their strategies, the observed utilities
will also be stable. This leads to the following conclusion:
Corollary B.13. Assume that all agents play according to the dynamics associated with Corol-
lary B.11. Then, for learning rate η = O(T−1/4), the Ψ(i)-regret of every player i is bounded by
O(T 1/4), where theO(·) notation suppresses game-specific parameters polynomial in the size of the
game.

Proof. Let us use the notation P := maxi P(i),V := maxi V(i),B := maxi B(i), and G :=
maxi G(i). For any player i ∈ [n], Claim B.12 implies that ‖`(i),t − `(i),t−1‖∞ ≤ |Z|(n − 1)ηG,
since every player updates her strategy through an ηG-stable learning algorithm. Thus, by the guar-
antee of Corollary B.11 we can conclude that for any player i,

R(i),T ≤ P
η

+ η3VT + η3(n− 1)2B|Z|2G2T,

where we used the fact that D` ≤ 1, which follows from the normalization assumption on the
utilities. Finally, taking η = O(T−1/4) yields that R(i),T = O(T 1/4), as desired.
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Finally, we conclude with the proof of Theorem 1.1.

Proof of Theorem 1.1. The guarantee of Corollary B.13 along with Theorem 2.6 suffice in order to
establish Theorem 1.1. In particular, for a player i let µ(i),t be any probability distribution on the set
Π(i) such that Eπ∼µ(i),t [π] = q(i),t, where q(i),t is the output of the regret minimizer, on the mixed
sequence-form strategy polytope Q(i), realized with the dynamics of Corollary B.13. Moreover, let
µt := µ(1),t ⊗ · · · ⊗ µ(n),t be the joint probability distribution, and µ̄ := 1

T

∑T
t=1 µ

t. Then, it
follows by the linearity of expectation, as well as the linearity of the expression in Definition 2.5
(recall that the set of transformations Ψ(i) is linear) that µ̄ is an ε-EFCE, where ε := 1

T maxiR
(i),T ,

and R(i),T is the cumulative Ψ(i)-regret with respect to the set Q(i). Finally, the proof follows given
that by virtue of Corollary B.13, R(i),T = O(T 1/4) for all i ∈ [n].

We also remark that the complexity of each iteration of the described dynamics is analogous to that
in (Farina et al., 2021a).

C ACCELERATION FOR EXTENSIVE-FORM COARSE CORRELATED
EQUILIBRIUM

In this section we develop accelerated uncoupled no-regret dynamics converging to an extensive-
form coarse correlated equilibrium (EFCCE). In particular, we will provide a slightly better bound
compared to EFCE. At the heart of this improvement is an algorithm due to Farina et al. (2021b)
which circumvents the need of computing the stationary distribution of a Markov chain; this will
allow us to show more favorable stability properties. First, we introduce some basic concepts,
commencing with that of coarse trigger deviation functions:
Definition C.1 (Coarse Trigger Deviation Functions). Consider some player i ∈ [n], some in-
formation set j ∈ J (i), and a continuation strategy π̂ ∈ Π

(i)
j . A coarse trigger deviation func-

tion with respect to the information set j and the continuation strategy π̂ is any linear function
f : R|Σ(i)| → R|Σ(i)| with the following properties:

• f(π) = π for any π ∈ Π(i) such that π[σ(i)(j)] = 0;
• For any σ ∈ Σ(i) and π ∈ Π(i) such that π[σ(i)(j)] = 1,

f(π)[σ] =

{
π[σ] if σ 6� j;
π̂[σ] if σ � j. (53)

It will be convenient to instantiate a coarse trigger deviation function in the form of a linear mapping
φ

(i)
j→π̂ : R|Σ(i)| 3 x 7→M

(i)
j→π̂x, where M

(i)
j→π̂ is such that for any σr, σc ∈ Σ(i),

M
(i)
j→π̂[σr, σc] =


1 if σc 6� j & σr = σc;

π̂[σr] if σc = σ(i)(j) & σr � j;
0 otherwise.

(54)

We will also let Ψ̃(i) := {φ(i)
j→π̂ : j ∈ J (i), π̂ ∈ Π

(i)
j } be the set of all possible linear mappings

defining trigger deviations functions for player i.
Definition C.2 (Coarse Triger Regret Minimizer). A coarse trigger regret minimizer for a player
i ∈ [n] is any Ψ̃(i)-regret minimizer for the set of deterministic sequence-form strategies Π(i).

Similarly to EFCE, we can define extensive-form coarse correlated equilibria based on coarse trig-
ger deviation functions:

Definition C.3 (EFCCE). For ε ≥ 0, a probability distribution µ ∈ ∆|Π| is an ε-approximate
EFCCE if for every player i ∈ [n] and every coarse trigger deviation function φ(i)

j→π̂ ∈ Ψ̃(i), it
holds that

Eπ∼µ
[
u(i)

(
φ

(i)
j→π̂(π(i)),π(−i)

)
− u(i)(π)

]
≤ ε, (55)
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where π = (π1, . . . ,πn) ∈ Π. A probability distribution µ ∈ ∆|Π| is an EFCCE if it is a 0-
EFCCE.

In particular, this equilibrium concept requires that the expected utility of any trigger agent (j, π̂) is
never larger (by more than an amount of ε) than the expected utility of the player when the mediator’s
recommendations are followed.

Theorem C.4 (Farina et al. (2021b)). For every player i ∈ [n], let π(i),1, . . . ,π(i),T ∈ Π(i) be
a sequence of deterministic sequence-form strategies whose cumulative Ψ̃(i)-regret is R(i),T with
respect to the sequence of linear utility functions

`(i),t : Π(i) 3 π(i) 7→ u(i)
(
π(i),π(−i),t

)
. (56)

Then, the empirical frequency of play µ ∈ ∆|Π| is an ε-EFCCE, where ε := 1
T maxi∈[n]R

(i),T .

In this context, we can employ the general template we presented in Section 3, and in particular
Theorem 3.2, in order to obtain accelerated no-regret dynamics for EFCCE. In fact, observe that
a stable-predictive (external) regret minimizer for the set Ψ̃(i) can be directly obtained from The-
orem 3.4, given that Ψ̃(i) ⊆ Ψ(i). Thus, for the rest of the section we will focus on the second
necessary ingredient, namely characterizing the stability of the fixed points.

C.1 STABILITY OF THE FIXED POINTS

Unlike all known methods for computing fixed points related to EFCE, it was recently shown by
Farina et al. (2021b) (see also Morrill et al. (2021a)) that one can bypass the computation of a
stationary distribution of a Markov chain using a succinct closed-form solution. In particular, this
algorithm is presented in Algorithm 5.

Claim C.5 (Theorem 3, Farina et al. (2021b)). Algorithm 5 returns a fixed point of φ ∈ co Ψ̃(i), and
it runs in time O(|Σ|(i)D(i)).

Algorithm 5: FIXEDPOINT(φ) for φ ∈ co Ψ̃(i)

Input: φ =
∑
j∈J (i) λ[j]φj→qj ∈ co Ψ̃(i)

Output: q∗ ∈ Q(i) such that φ(q∗) = q∗

1 q∗ ← 0 ∈ R|Σ
(i)|

≥0 , q∗[∅]← 1

2 for σ = (j, a) ∈ Σ
(i)
∗ in top-down (≺) order do

3 dσ ←
∑
j′�j λ[j′]

4 if dσ = 0 then
5 q∗[σ]← q∗[σ(i)(j)]

|A(j)|
6 else
7 q∗[σ]← 1

dσ

∑
j′�j λ[j′]qj′ [σ]q∗[σ(i)(j′)]

8 return q∗

Proposition C.6. Under the conditions of Lemma 3.5, Algorithm 5 yields a sequence of O(κD(i))-
multiplicatively-stable strategies, where κ = O(ηD`(|Σ(i)|+D

(i)
x (D(i))2)) for a sufficiently small

κ = O(1/D(i)).

Proof. Observe that the sequence of λt’s and qtσ̂’s is κ-multiplicatively-stable (Lemma 3.5). More-
over, given that the sequence ofλt’s is updated using OMWU, it will always be the case that dσ > 0,
for any σ ∈ Σ(i); in other words, Algorithm 5 will never visit the first “if” branch. Now fix any
t ≥ 2. We will show by induction that q∗,t[σ] is such that q∗,t[σ] ≤ (1 + 2κ)3D[σ]−2q∗,t−1[σ] and
q∗,t[σ] ≥ (1−κ)3D(i)[σ]−2q∗,t−1[σ], where D(i)[σ] ≥ 1 is the depth of sequence σ ∈ Σ

(i)
∗ (consid-

ering only actions of player i). For the base case, let σ = (j, a) such that j ∈ J (i) corresponds to
a root information set for player i. Then, it follows that dσ = λ[j], and subsequently, q∗,t = qtj [σ].
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Thus, q∗,t is indeed κ-multiplicatively stable. Next, consider some sequence σ = (j, a) at depth
D(i)[σ] ≥ 2 such that all ancestor sequences—i.e. all σ(i)(j′) for j′ � j—satisfy the inductive
hypothesis. Then, it follows that

q∗,t[σ] =

∑
j′�j λ

t[j′]qtj′ [σ]q∗,t[σ(i)(j′)]∑
j′�j λ

t[j′]
(57)

≤ (1 + κ)2

1− κ

∑
j′�j λ

t−1[j′]qt−1
j′ [σ]q∗,t[σ(i)(j′)]∑

j′�j λ
t−1[j′]

(58)

≤ (1 + 2κ)3(1 + 2κ)3D(i)[σ]−5q∗,t−1[σ] (59)

≤ (1 + 2κ)3D(i)[σ]−2q∗,t−1[σ],

where (57) is derived from Algorithm 5, (58) uses the κ-multiplicative stability of λt’s and qt′j’s,
and (59) leverages the inductive hypothesis, as well as the fact that 1/(1 − κ)/ ≤ (1 + 2κ) for
κ ≤ 1/2. Similar reasoning yields:

q∗,t[σ] =

∑
j′�j λ

t[j′]qtj′ [σ]q∗,t[σ(i)(j′)]∑
j′�j λ

t[j′]

≥ (1− κ)2

1 + κ

∑
j′�j λ

t−1[j′]qt−1
j′ [σ]q∗,t[σ(i)(j′)]∑

j′�j λ
t−1[j′]

≥ (1− κ)3(1− κ)3D(i)[σ]−5q∗,t−1[σ]

≥ (1− κ)3D(i)[σ]−2q∗,t−1[σ].

As a result, if D(i) is the maximum depth of i’s sequences, we can conclude that q∗,t[σ] ≤
(1+2κ)3D(i)−2q∗,t−1[σ] ≤ e6D(i)κ−4κq∗,t−1[σ] ≤ (1+O(D(i)κ))q∗,t−1[σ], where we used the in-
equality ex ≤ 1 + 2x for x ∈ [0, 1/2]. Moreover, we have that q∗,t[σ] ≥ (1−κ)3D(i)−2q∗,t−1[σ] ≥
(1−O(D(i)κ))q∗,t−1[σ], by Bernoulli’s inequality.

Observe that the derived bound on stability is slightly better compared to that for EFCE (Corol-
lary 3.11). Consequently, having established the stability of the fixed points, we can apply Theo-
rem 3.2 to derive a Ψ̃(i) stable-predictive regret minimizer, for each player i ∈ [n]. Then, using the
same steps as in Appendix B.3 we arrive at the following conclusion:
Corollary C.7 (Accelerated Convergence to EFCCE). There exist uncoupled no-regret learning
dynamics so that after T iterations the correlated distribution of play converges to an extensive-
form coarse correlated equilibrium at a rate of O(T−3/4).

D DESCRIPTION OF GAME INSTANCES USED IN THE EXPERIMENTS

In this section we provide a description of the game instances used in our experiments. The param-
eters associated with each game are summarized in Table 2.

Kuhn poker. First, we experimented on a three-player variant of the popular benchmark game
known as Kuhn poker (Kuhn, 1950). In our version, a deck of three cards—a Jack, a Queen, and a
King—is employed. Players initially commit a single chip to the pot, and privately receive a single
card. The first player can either check or bet (i.e. place an extra chip). Then, the second player can
in turn check or bet if the first player checked, or fold/call in response to the first player’s bet. If
no betting occurred in the previous rounds, the third player can either check or bet. In the contrary
case, the player can either fold or call. Following a bet of the second player (or respectively the third
player), the first player (or respectively the first and the second players) has to decide whether to
fold or to call. At the showdown, the player with the highest card, who has not folded in a previous
round, gets to win all the chips committed in the pot.

Sheriff. Our second benchmark is a bargaining game inspired by the board game Sheriff of Not-
tingham, and introduced by Farina et al. (2019e). In particular, we used the baseline version of the
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game described. In particular, this game consists of two players: the Smuggler and the Sheriff. The
smuggler must originally come up with a number n ∈ {0, 1, 2, 3} which corresponds to the number
of illegal items to be loaded in the cargo. It is assumed that each illegal item has a fixed value of 1.
Subsequently, 2 rounds of bargaining between the two players follow. At each round, the Smuggler
decides on a bribe ranging from 0 to 3, and the Sheriff must decides whether or not the cargo will
be inspected, given the bribe amount. The Sheriff’s decision is binding only in the last round of
bargaining. In particular, if during the last round the Sheriff accepts the bribe, the game stops with
the Smuggler obtaining a utility of n minus the bribe amount b that was proposed in the last bar-
gaining round, while the Sheriff receives a utility equal to b. On the other hand, if the Sheriff does
not accept the bribe in last bargaining round and decides to inspect the cargo, there are two possible
alternatives. If the cargo has no illegal items (i.e. n = 0), the Smuggler receives the fixed amount
of 3, while the utility of the Sheriff is set to be −3. In the contrary case, the utility of the smuggler
is assumed to be −2n, while the utility of the Sheriff is 2n.

Liar’s dice. The final benchmark we experimented on is the game of Liar’s dice, introduced by
Lisý et al. (2015). In the three-player variant, the beginning of the game sees each of the three
players privately roll an unbiased 3-face die. Then, the players have to sequentially make claims
about their private information. In particular, the first player may announce any face value up to
3, as well as the minimum number of dice that the player claims are showing that value among the
dice of all players. Then, each player can either make a higher bid, or challenge the previous claim
by declaring the previous agent a “liar”. More precisely, it is assumed that a bid is higher than the
previous one if either the face value is higher, or if the claimed number of dice is greater. If the
current claim is challenged, all the dice must be revealed. If the claim was valid, the last bidder wins
and receives a reward of +1, while the challenger suffers a negative payoff of −1. Otherwise, the
utilities obtained are reversed. Any other player will receive 0 utility.

Game Players Decision points Sequences Leaves

Kuhn poker 3 36 75 78
Sheriff 2 73 222 256
Liar’s dice 3 1536 3069 13797

Table 2: The parameters associated with each game.
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