A Additional Experimental Results

The results for different settings of 5 for TOP-TD3 on Hopper and HalfCheetah are presented in
Figure 6]
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Figure 6: Results across 10 seeds for different sets of possible optimism settings. Shaded regions
denote one half standard deviation.

Reward curves for TOP-RAD and RAD on pixel-based tasks from the DM Control Suite are shown
in Figure[7]
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Figure 7: Results across 10 seeds for DM Control tasks. Shaded regions denote one half std.

B Further Experimental Details

All experiments were run on an internal cluster containing a mixture of GeForce GTX 1080, GeForce
2080, and Quadro P5000 GPUs. Each individual run was performed on a single GPU and lasted
between 3 and 18 hours, depending on the task and GPU model. The Mujoco OpenAI Gym tasks
licensing information is given at https://github.com/openai/gym/blob/master/LICENSE,
md, and the DM control tasks are licensed under Apache License 2.0.

Our baseline implementations for TD3 and SAC are the same as those from [7]. They can be found
at https://github.com/fiorenza2/TD3_PyTorch and https://github.com/fiorenza2/
SAC_PyTorch, We use the same base hyperparameters across all experiments, displayed in Ta-

ble[3
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Table 3: Mujoco hyperparameters, used for all experiments.

Hyperparameter TOP TD3 SAC
Collection Steps 1000 1000 1000
Random Action Steps 10000 10000 10000
Network Hidden Layers 256:256 256:256 256:256
Learning Rate 3x107%  3x107* 3x107*
Optimizer Adam Adam Adam
Replay Buffer Size 1 x 108 1 x 108 1 x 10°
Action Limit [—1,1] [—1,1] [—1,1]
Exponential Moving Avg. Parameters 5x 1073 5x 1073 5 x 1073
(Critic Update:Environment Step) Ratio 1 1 1
(Policy Update:Environment Step) Ratio 2 2 1
Has Target Policy? Yes Yes No
Expected Entropy Target N/A N/A  —dim(A)
Policy Log-Variance Limits N/A N/A [—20, 2]
Target Policy o 0.2 0.2 N/A
Target Policy Clip Range [-0.5,0.5] [-0.5,0.5] N/A
Rollout Policy o 0.1 0.1 N/A
Number of Quantiles 50 N/A N/A
Huber parameter s 1.0 N/A N/A
Bandit Learning Rate 0.1 N/A N/A
{3 Options {-1,0} N/A N/A

C Further Algorithm Details

The procedures for updating the critics and the actor for TOP-TD?3 are described in detail in Algo-
rithm [2]and Algorithm

Algorithm 2: UpdateCritics

1: Input: Transitions (s, a,r, s’ ),
¢1 and ¢o.
2: Set smoothed target action (see (EI))

optimism parameter (3, policy parameters 6, critic parameters

a=my(s')+e, €~ clipN(0,5%), —c,c)

Compute quantiles ¢*)(s’, @) and o*) (s, @) using .
Belief distribution: %) « (%) + (%)

Target y*) « 7 4 ~G(¥)

Update critics using A¢; from (9).

AR AN S

Algorithm 3: UpdateActor

1: Input: Transitions (s, a,r, s’ ),
eters 0.

Compute quantiles %) (s, a) and ¢(*) (s, a) using .
Belief distributions: %) < g(¥) + go(%)

Compute values: Q(s, a) « K131, G®)

Update 6:

optimism parameter [3, critic parameters ¢, ¢-, actor param-

Af x N~1 Z V. Q(s, a)‘azm(s)Vgﬂg(s).
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Table 4: DM Control hyperparameters for RAD and TOP-RAD; TOP-specific settings are in purple.

Hyperparameter Value
Augmentation Crop - walker, walk; Translate - otherwise
Observation rendering (100, 100)
Observation down/upsampling (84, 84) (crop); (108, 108) (translate)
Replay buffer size 100000
Initial steps 1000
Stacked frames 3
Action repeat 2 finger, spin; walker, walk

8 cartpole, swingup
4 otherwise

Hidden units (MLP) 1024
Evaluation episodes 10
Optimizer Adam
(51762) — (f@aﬂ-’tp7Q¢) (0970999
(B1, B2) — (a) (0.5,0.999
Learning rate (fp, 7y, Qo) 2e-4 cheetah, run

le-3 otherwise
Learning rate (a) le-4
Batch size 128
Q function EMA 7 0.01
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Nonlinearity ReLu
Encoder EMA 7 0.05
Latent dimension 50
Discount « 0.99
Initial Temperature 0.1
Number of Quantiles 50
Huber parameter s 1.0
Bandit Learning Rate 0.1
S Options {-1,0}

D Connection to Model Selection

In order to enable adaptation, we make use of an approach inspired by recent results in the model
selection for contextual bandits literature. As opposed to the traditional setting of Multi-Armed
Bandit problems, the ”arm” choices in the model selection setting are not stationary arms, but learning
algorithms. The objective is to choose in an online manner, the best algorithm for the task at hand.The
setting of model selection for contextual bandits is a much more challenging setting than selecting
among rewards generated from a set of arms with fixed means. Algorithms such as CORRAL |1} 44]]
or regret balancing [42] can be used to select among a collection of bandit algorithms designed to
solve a particular bandit instance, while guaranteeing to incur a regret that scales with the best choice
among them. Unfortunately, most of these techniques, perhaps as a result of their recent nature, have
not been used in real deep learning systems and particularly not in deep RL.

While it may be impossible to show a precise theoretical result for our setting due to the function
approximation regime we are working in, we do note that our approach is based on a framework that
under the right settings can provide a meaningful regret bound. In figure[5|we show that our approach
is able to adapt and compete against the best fixed optimistic choice in hindsight. These are precisely
the types of guarantees that can be found in theoretical model selection works such as [[1, 144} 42]].
What is more, beyond being able to compete against the best fixed choice, this flexibility may result
in the algorithm outperforming any of these. In figure 5] Ant-v2 we show this to be the case.
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E Proofs

Proof of Proposition[I] Let gz~ be the quantile function of Z™ (s, a) knowing € and o and ¢ be the
quantile function of Z. Since € and ¢ are known, the quantile gz~ is given by:

qz~(u) = qz(u) + eo(s,a).
Therefore, recalling that € has 0 means and is independent from o, it follows that
qz(u) = Ec gz~ (u)]
The second identity follows directly by definition of Z7 (s, a):
Z™(s,a) = Z(s,a) + eo(s, a).
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