
A Further Related Works on Semismooth Newton Method454

Semismooth Newton methods [58] are a modern class of remarkably powerful and versatile algo-455

rithms for solving constrained optimization problems with partial differential equations, variational456

inequalities, and related problems.457

The notion of semi-smoothness was originally introduced by Mifflin [37] for real-valued functions458

and later extended to vector-valued mappings by Qi and Sun [47]. A pioneering work on the459

semismooth Newton method was due to Solodov and Svaiter [54], in which the authors proposed a460

globally convergent Newton method by exploiting the structure of monotonicity and established a461

local superlinear convergence rate under the conditions that the generalized Jacobian is semismooth462

and nonsingular at the global optimal solution. The convergence rate guarantee was later extended463

in Zhou and Toh [69] to the setting where the generalized Jacobian is not necessarily nonsingular.464

Recently, the semismooth Newton method has received significant amount of attention due to its wide465

success in solving several structured convex problems to a high accuracy. In particular, such approach466

has been successfully applied to solving large-scale SDPs [68, 67], LASSO [30], nearest correlation467

matrix estimation [45], clustering [61], sparse inverse covariance selection [65] and composite convex468

minimization [64]. The closest works to ours is Liu et al. [33], who developed a fast semismooth469

Newton method to compute the plug-in optimal transport estimator by exploring the sparsity and470

multiscale structure of its linear programming formulation. To the best of our knowledge, this paper471

is the first to apply the semismooth Newton method to computing the kernel-based optimal transport472

estimator and prove the convergence rate guarantees.473

B Proof of Proposition 2.3474

We first prove that γ̂ is an optimal solution of Eq. (2.4) if ŵ = (γ̂, X̂) satisfies R(ŵ) = 0 for some475

X̂ � 0. Indeed, by the definition of R from Eq. (2.6), we have476

1
2λ2

Qγ̂ − 1
2λ2

z − Φ(X̂) = 0, (B.1)

and477

X̂ − projSn
+

(X̂ − (Φ?(γ̂) + λ1I)) = 0. (B.2)

By the definition of projSn
+

, we have478

〈X−projSn
+

(X̂−(Φ?(γ̂)+λ1I)), projSn
+

(X̂−(Φ?(γ̂)+λ1I))−X̂+(Φ?(γ̂)+λ1I)〉 ≥ 0 for all X � 0.

Plugging Eq. (B.2) into the above inequality yields that479

〈X − X̂,Φ?(γ̂) + λ1I〉 ≥ 0 for all X � 0.

By setting X = 0 and X = 2X̂ , we have 〈X̂,Φ?(γ̂) + λ1I〉 ≤ 0 and 〈X̂,Φ?(γ̂) + λ1I〉 ≥ 0. Thus,480

we have481

〈X̂,Φ?(γ̂) + λ1I〉 = 0, 〈X,Φ?(γ̂) + λ1I〉 ≥ 0 for all X � 0. (B.3)
Suppose that γ ∈ Rn satisfies that Φ?(γ) + λ1I � 0, we have482

0
(B.1)
= (γ − γ̂)>

(
1

2λ2
Qγ̂ − 1

2λ2
z − Φ(X̂)

)
=

(
1

4λ2
γ>Qγ − 1

2λ2
γ>z

)
−
(

1
4λ2

γ̂>Qγ̂ − 1
2λ2

γ̂>z
)
− 1

4λ2
(γ − γ̂)>Q(γ − γ̂)− (γ − γ̂)>Φ(X̂)

≤
(

1
4λ2

γ>Qγ − 1
2λ2

γ>z
)
−
(

1
4λ2

γ̂>Qγ̂ − 1
2λ2

γ̂>z
)
− (γ − γ̂)>Φ(X̂)

Since Φ? is the adjoint of Φ, we have (γ − γ̂)>Φ(X̂) = 〈X̂,Φ?(γ)− Φ?(γ̂)〉. By combining this483

equality with Φ?(γ) + λ1I � 0 and the first equality in Eq. (B.3), we have484

(γ − γ̂)>Φ(X̂) = 〈X̂,Φ?(γ) + λ1I〉 − 〈X̂,Φ?(γ̂) + λ1I〉 ≥ 0.

Thus, we have485

0 ≤
(

1
4λ2

γ>Qγ − 1
2λ2

γ>z + q2

4λ2

)
−
(

1
4λ2

γ̂>Qγ̂ − 1
2λ2

γ̂>z + q2

4λ2

)
.
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Combining the above inequality with the second inequality in Eq. (B.3) yields the desired result.486

It suffices to prove that satisfies R(ŵ) = 0 for some X̂ � 0 if γ̂ is an optimal solution of Eq. (2.4).487

Indeed, we follow Definition 2.1 and write that
∑n
i=1 γ̂iΦiΦ

>
i + λ1I � 0 and488

1
4λ2

γ̂>Qγ̂ − 1
2λ2

γ̂>z + q2

4λ2
≤ 1

4λ2
γ>Qγ − 1

2λ2
γ>z + q2

4λ2
,

for all γ ∈ Rn satisfying that
∑n
i=1 γiΦiΦ

>
i + λ1I � 0. Then, the KKT condition guarantees that489

there exists some X̂ � 0 satisfying that490 ∑n
i=1 γ̂iΦiΦ

>
i + λ1I � 0,

1
2λ2

Qγ̂ − 1
2λ2

z − Φ(X̂) = 0,

〈X̂,Φ?(γ̂) + λ1I〉 = 0.

(B.4)

The first and third inequalities guarantee that491

〈X − X̂,Φ?(γ̂) + λ1I〉 ≥ 0 for all X � 0.

By letting X = projSn
+

(X̂ − (Φ?(γ̂) + λ1I)), we have492

〈projSn
+

(X̂ − (Φ?(γ̂) + λ1I))− X̂,Φ?(γ̂) + λ1I〉 ≥ 0. (B.5)

Recall that the definition of projSn
+

implies that493

〈X−projSn
+

(X̂−(Φ?(γ̂)+λ1I)), projSn
+

(X̂−(Φ?(γ̂)+λ1I))−X̂+(Φ?(γ̂)+λ1I)〉 ≥ 0 for all X � 0.

By letting X = X̂ , we have494

‖projSn
+

(X̂ − (Φ?(γ̂) + λ1I))− X̂‖2 ≤ 〈X̂ − projSn
+

(X̂ − (Φ?(γ̂) + λ1I)),Φ?(γ̂) + λ1I〉
(B.5)
≤ 0.

Combining the above inequality with the second equality in Eq. (B.4) yields that495

1
2λ2

Qγ̂ − 1
2λ2

z − Φ(X̂) = 0, X̂ − projSn
+

(X̂ − (Φ?(γ̂) + λ1I)) = 0.

Combining these inequalities with the definition of R implies R(ŵ) = 0 and hence the desired result.496

C Proof of Proposition 3.1497

The strong semismoothness of R follows from the derivation given in Sun and Sun [56] to establish498

the semismoothness of projection operators. Indeed, the projection over a positive semidefinite cone499

is guaranteed to be strongly semismooth [56, Corollary 4.15]. Thus, we have that projSn
+

(·) is strongly500

semismooth. Since the strong semismoothness is closed under scalar multiplication, summation and501

composition, the residual map R is strongly semismooth.502

D Proof of Lemma 3.2503

As stated in Lemma 3.2, we compute Zk = Xk − (Φ?(γk) + λ1I) and the spectral decomposition of504

Zk (cf. Eq. (3.1)) to obtain Pk, Σk and the sets of the indices of positive and nonpositive eigenvalues505

αk and ᾱk. We then compute Ωk using Σk, αk and ᾱk and finally obtain that P̃k = Pk ⊗ Pk and506

Γk = diag(vec(Ωk)). Thus, we can write the matrix form of Jk + µkI as507

Jk + µkI =

( 1
2λ2

Q+ µkI −A
P̃kΓkP̃

>
k A
> P̃k((µk + 1)I − Γk)P̃>k

)
.

For simplicity, we let Wk = P̃kΓkP̃
>
k and Dk = P̃k((µk + 1)I − Γk)P̃>k . Then, the Schur508

complement trick implies that509

(Jk + µkI)−1 =

(
1

2λ2
Q+ µkI −A
WkA

> Dk

)−1

=

(
I 0

−D−1
k WkA

> I

)(
( 1

2λ2
Q+ µkI +AD−1

k WkA
>)−1 0

0 D−1
k

)(
I AD−1

k
0 I

)
.
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Define Tk = P̃kLkP̃
>
k where Lk is a diagonal matrix with (Lk)ii = (Γk)ii

µk+1−(Γk)ii
and (Γk)ii ∈ (0, 1]510

is the ith diagonal entry of Γk. By the definition of Wk and Dk, we have D−1
k = 1

µk+1 (I + Tk) and511

D−1
k W = Tk. Using these two identities, we can further obtain that512

(Jk + µkI)−1

=

(
I 0

−TkA> I

)(
( 1

2λ2
Q+ µkI +ATkA

>)−1 0

0 1
µk+1 (I + Tk)

)(
I 1

µk+1 (A+ATk)
0 I

)
.

This completes the proof.513

E Proof of Theorem 3.3514

We can see from the scheme of Algorithm 2 that515

‖R(wk)‖ ≤ ‖R(vk)‖ for all k ≥ 0,

where the iterates {vk}k≥0 are generated by applying the extragradient (EG) method for solving the516

min-max optimization problem in Eq. (2.5). We also have that Cai et al. [6, Theorem 3] guarantees517

that ‖R(vk)‖ = O(1/
√
k). Putting these pieces together yields that518

‖R(wk)‖ = O(1/
√
k).

This completes the proof.519

F Proof of Theorem 3.4520

We analyze the convergence property for one-step SSN step as follows,521

wk+1 = wk + ∆wk,

where µk = θk‖R(wk)‖ and522

‖(Jk + µkI)[∆wk] +R(wk)‖ ≤ τ min{1, κ‖R(wk)‖‖∆wk‖}. (F.1)
Since R is strongly smooth (cf. Proposition 3.1), we have523

‖R(w+∆w)−R(w)−J [∆w]‖
‖∆w‖2 ≤ C, as ∆w → 0.

Since w0 is sufficiently close to w? with R(w?) = 0 and the global convergence guarantee holds (cf.524

Theorem 3.3), we have525

‖R(wk + ∆wk)−R(wk)− Jk[∆wk]‖ ≤ 2C‖∆wk‖2.
which implies that526

‖R(wk+1)‖ = ‖R(wk + ∆wk)‖ ≤ ‖R(wk) + Jk[∆wk]‖+ 2C‖∆wk‖2. (F.2)
Plugging Eq. (F.1) into Eq. (F.2) yields that527

‖R(wk+1)‖ ≤ 2C‖∆wk‖2 + µk‖∆wk‖+ τκ‖R(wk)‖‖∆wk‖ (F.3)

≤ 2C‖∆wk‖2 + (θk + τκ)‖R(wk)‖‖∆wk‖.
Since w0 is sufficiently close to w? with R(w?) = 0 and every element of ∂R(w?) is invertible, we528

have that there exists some δ > 0 such that529

‖(Jk + µkI)[∆wk]‖ ≥ δ‖∆wk‖.
The above equation together with Eq. (F.1) yields that530

‖∆wk‖ ≤ 1
δ ‖(Jk + µkI)[∆wk]‖ ≤ 1

δ (1 + τκ‖∆wk‖) ‖R(wk)‖. (F.4)
Plugging Eq. (F.4) into Eq. (F.3) yields that531

‖R(wk+1)‖ ≤ ‖R(wk)‖2
(

2C
δ2 (1 + τκ‖∆wk‖)2

+ θk+τκ
δ (1 + τκ‖∆wk‖)

)
Note that ‖∆wk‖ → 0 and θk is bounded. Thus, we have ‖R(wk+1)‖ = O(‖R(wk)‖2).532

From the above arguments, we see that the quadratic convergence rate can be achieved if Algorithm 2533

performs the SSN step when the initial iterate x0 is sufficiently close to w? with R(w?) = 0. This534

implies that the safeguarding steps will never affect in local sense where Algorithm 2 generates535

{wk}k≥0 by performing the SSN steps only. So Algorithm 2 achieves the local quadratic convergence.536

This completes the proof.537
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G Additional Experimental Results538

We describe our setup for the experiment on the real-world 4i datasets from Bunne et al. [5]. Indeed,539

we draw the unperturbed/perturbed samples for training from 15 cell datasets as follows,540

x1, . . . , xnsample ∼ µunperturb, y1, . . . , ynsample ∼ νkperturb for 1 ≤ k ≤ 15.

where xi, yi ∈ R48 and µunperturb, ν
k
perturb represent the unperturbed cells and kth perturbed cells. For541

our algorithm, we generate 256 filling points and compare our method with the default implementation542

in OTT package [13]. Both our algorithm and OTT capture the OT map T from training samples. Then,543

we fix the number of test samples as m = 200 and use the OT distance to measure the differences544

between 1
m

∑m
j=1 δT (x̂j) and 1

m

∑m
j=1 δŷj , where x̂1, . . . , x̂m ∼ µunperturb and ŷ1, . . . , ŷm ∼ νkperturb545

are unperturbed/perturbed samples for testing. Figure 4 reports the results on 15 single-cell datasets.546
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Figure 4: Performance of OTT and kernel-based OT estimators computed by our algorithm on 15 drug
perturbation datasets. X-axis represent the number of training samples and Y -axis represents the
error induced by OT map T on test samples in terms of OT distance.
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