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Artificial intelligence (AI) has experienced tremendous prog-
ress in recent years and is increasingly deployed across 
domains including healthcare, e-commerce and media1–3. As 

AI matures, AI model building is becoming increasingly turn-key 
with technologies such as automated machine learning (AutoML), 
which automates model design and hyperparameter tuning, large 
public repositories of trained models, and industry-standard plat-
forms such as PyTorch, Tensorflow and so on4–6. Companies includ-
ing Amazon, Google and Microsoft all offer AutoML products, 
allowing users to build state-of-the-art AI models on their own data 
without writing any code7. For example, a study on three public 
medical image datasets found that models produced by commer-
cial AutoML demonstrated comparable or even higher perfor-
mance compared with published bespoke algorithms8. All of these 
resources make it much easier to develop models when the data  
are provided.

In contrast to the increasing ease of model building, creat-
ing datasets for AI remains a major pain point due to the cost of 
curation and annotation. Surveys report that 96% of enterprises 
encounter data challenges including data quality and labelling in AI 
projects9, and 40% of them lack confidence in ensuring data qual-
ity10. Data scientists spend nearly twice as much time on data load-
ing, cleansing and visualization than on model training, selection 
and deployment11. Data pipelines can also be very expensive; for 
example, Flatiron Health, a US data aggregator that employs a net-
work of clinicians to curate the medical records of patients with can-
cer, was acquired by Roche-Genentech for more than US$2 billion12.

There is also growing recognition that state-of-the-art AI models 
often pick up spurious correlations and biases in the development 
data13. Choices made in each step of the data pipeline can greatly 
affect the generalizability and reliability of the AI model trained on 
these data, sometimes more than the choice of model. For example, 
a systematic assessment of three computer-vision AI models for 
diagnosing malignant skin lesions demonstrated that the models all 
performed substantially worse on lesions appearing on dark skin 
compared with light skin—the area under the receiver operating  

curves (AUROC) dropped by 10–15% across skin tones14. The mod-
els’ poor performance can be attributed to data design—the train-
ing data had few dark-skin images—and data annotation errors 
(most of the training data were annotated for disease by a derma-
tologist’s visual inspection and dermatologists made more mistakes 
on dark skin). Changing the method of training the model on the 
original biased data did not reduce the model’s disparity across skin 
tones. However, improving annotation quality and skin tone repre-
sentations on a set of just a few hundred images effectively closed  
the performance gap and improved the overall reliability of these 
models14 (Fig. 1).

More attention needs to be placed on developing methods and 
standards to improve the data-for-AI pipeline. Much of the recent 
research in AI has focused on improving model performance on 
several standard benchmark datasets such as ImageNet, CIFAR100 
(Canadian Institute for Advanced Research, 100 classes), Adult 
Income, MIMIC (Medical Information Mart for Intensive Care) 
and so on15–17. In such model-centric development, the dataset is 
typically fixed and given, and the focus is on iterating the model 
architecture or training procedure to improve the benchmark per-
formance. This has led to substantial research progress in model-
ling, and now the incremental gains from improving models are 
diminishing in many tasks18. At the same time, as illustrated in the 
dermatology AI example, relatively small improvements in data 
can make AI models much more reliable. The data-centric per-
spective thus highlights the need for systematic methods to evalu-
ate, synthesize, clean and annotate the data used to train and test 
the AI model.

A data-centric focus is often lacking in current AI research19. 
Furthermore, the data used to train or evaluate AI are often sparsely 
discussed. For example, a recent survey of 70 dermatology AI 
papers found that 63 (90%) papers did not present information on 
the skin tones in their dataset20. A review of 130 Food and Drug 
Administration-approved medical AI devices found that a compari-
son of the AI’s performance on data from multiple locations was not 
reported for 93 devices21.
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As artificial intelligence (AI) transitions from research to deployment, creating the appropriate datasets and data pipelines to 
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often rely on bespoke manual work, and they critically affect the trustworthiness of the model. This Perspective discusses key 
considerations for each stage of the data-for-AI pipeline—starting from data design to data sculpting (for example, cleaning, 
valuation and annotation) and data evaluation—to make AI more reliable. We highlight technical advances that help to make 
the data-for-AI pipeline more scalable and rigorous. Furthermore, we discuss how recent data regulations and policies can 
impact AI.
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Data quality is often more emphasized in other disciplines, such 
as the social sciences and biomedicine, and there are many insights 
to borrow22–24. At the same time, AI’s use of large volumes of het-
erogeneous unstructured data (for example, videos, audio and free 
text), often requiring expensive annotations, and the surprising ways 
in which AI models pick up correlations in the data present new 
challenges and opportunities25. There is thus a tremendous need for 
new automated or human-in-the-loop approaches to improve AI 
data pipelines in a systematic and scalable way. In the next sections, 
we explore some of the critical questions that AI developers should 
consider and technologies that facilitate creating data pipelines for 
AI. We organize the discussions to mirror the main steps of the 
AI data pipeline: data design (the sourcing and documentation of 
data), data sculpting (data selection, cleaning and annotation), and 
data strategies for model testing and monitoring (Fig. 2). We also 
discuss how recent data regulations impact data for AI.

Data design for AI
Once an AI application has been identified, designing the data—
namely identifying and documenting the sources of data—to 
develop the AI model is often one of the first considerations. Data 
design is critical for mitigating bias and ensuring the generaliz-
ability and reliability of the AI model trained on this data25. Design 
should be an iterative process—it is often useful to have pilot data 
to develop an initial AI model and then collect additional data to 
patch the model’s limitations. A critical design criterion is to ensure 
that the data are appropriate for the task and have good coverage to 
represent diverse users and scenarios that the model can encoun-
ter in practice. Datasets currently used to develop AI often have 

limited or biased coverage. For example, commonly used datasets 
for training facial recognition models are overwhelmingly com-
posed of lighter-skinned subjects26. In medical AI, patient data used 
for developing algorithms were disproportionately collected from 
California, Massachusetts and New York, with little to no represen-
tation from other states or countries27. Such coverage gaps intro-
duce bias and limit the generalizability of the AI models to diverse 
populations28,29.

One promising approach to improve data coverage is to engage 
broader communities to participate in citizen-science data creation. 
As an example, the Common Voice project (https://commonvoice.
mozilla.org/) is the largest public dataset of 11,192 hours of speech 
transcription in 76 languages from more than 166,000 partici-
pants30. Participants upload short recordings of themselves reading 
pre-specified text, which are assessed by other participants for scal-
able and transparent data quality control. Through culturally aware 
interface design and gamification, Common Voice has substantial 
coverage from digitally disadvantaged languages and accents—its 
second-largest language, after English, is Kinyarwanda31.

When representative data are hard to access, synthetic data can 
potentially fill some of the coverage gaps. The collection of real 
human faces often involves privacy issues32 and sampling biases26. 
Synthetic faces created by deep generative models have been used 
to reduce data imbalance and reduce bias33,34. In healthcare, syn-
thetic medical records can be shared to facilitate knowledge dis-
covery without disclosing actual patient-level information35. In 
robotics, although real-world challenges provide the ultimate 
testbed, high-fidelity simulated environments are widely used to 
enable faster, safer learning on complex and long-horizon tasks36,37. 
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Fig. 1 | Comparison of model-centric versus data-centric approaches in AI. a, Model-centric research typically considers data as given and focuses on 
improving the model architecture or optimization on this data. Data-centric research focuses on scalable methods to systematically improve the data 
pipeline with data cleaning, selection, annotation and so on, and may use turn-key model builders. The airplane image indicates a noisy data point in the 
bird dataset that should be removed. MNIST, COCO and ImageNet are commonly used datasets in AI research. b, Skin disease diagnosis test performance 
on images of light and dark skin tones. Four state-of-the-art models trained on large, previously used dermatology data exhibit poor performance, 
especially on dark-skin images, due to training data errors. Model 1 trained on smaller higher-quality data is more reliable across skin tones. c, Object 
recognition test performance of different models compared with training a model (ResNet) on a cleaner subset of data after filtering by data Shapley value. 
The number in parentheses represents the number of training data points left after the filtering out noisy data. Results are aggregated over five random 
seeds. The shaded area represents the 95% confidence interval. ResNet, DenseNet and VGG are commonly used image classification models. Panel  
a reproduced from ref. 17, Springer Nature Ltd.
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However, synthetic data have important caveats. There is always a 
simulation-to-real gap between the synthetic data and reality, so 
there is often a performance drop when transferring the AI model 
trained on synthetic data to the real world38. Synthetic data can also 
exacerbate data disparity when digitally disadvantaged groups are 
not considered in simulator design39,40.

As an AI model’s performance is highly dependent on the con-
text of its training and evaluation data, it is important to document 
the data design context in standardized and transparent reports. 
Researchers have created various ‘data nutrition labels’ to capture 
metadata about the data design and annotation processes41–43. 
Useful metadata includes statistics on the sex, gender, ethnicity 
and geographical location of the participants in the dataset, which 
helps to surface potential issues of underrepresented subpopula-
tions44. Additional metadata include data provenance, which tracks 
where and when a piece of data comes from, and the processes and 
methodology by which it was produced41. It is important for data 
documentation to capture the lifecycle and sociotechnical context 
of the data where applicable45,46. Data design documentations can 
enhance trust by discussing how data privacy and ownership are 
respected during data collection. It is a good practice to upload 
these documentations to stable and centralized data repositories 
such as Zenodo (https://www.zenodo.org/).

Data sculpting through selection, cleaning and annotation
Once an initial dataset is collected, a substantial amount of work is 
needed to sculpt or refine the data to make it effective for AI devel-
opment. In particular, careful selection of a subset of data for train-
ing can substantially improve the reliability and generalizability 
of the model than if it is trained on the entire noisy dataset. As an 
example, three popular deep learning architectures trained to clas-
sify animals on a noisy image dataset47 all have similar suboptimal 
performances (Fig. 1). Filtering out poor-quality data using the data 
Shapley score (described below) and training the same model on the 
remaining data led to substantial improvements.

Examples like this motivate data valuation, which aims to quan-
tify the importance of different data and filter out data that may hurt 
the model performance because of poor quality or biases48,49. One 
promising class of methods for data valuation is to measure changes 
in the AI model’s behaviour when different data are removed from 
the training process (Fig. 3a). This can be done effectively using 
recent methods such as data Shapley scores or influence approxi-
mations48–51. Substantial progress has been made to efficiently com-
pute these valuations for large AI models49,52. A complementary data 
valuation approach is to leverage prediction uncertainty to detect 
poor-quality data points. By looking at data points whose human 
annotation systematically deviates from predictions made by AI 
models, the Confidence Learning algorithm identified over 3% of 

the test data in common benchmarks such as ImageNet that are 
misannotated53,54. Filtering out these mistakes can substantially alter 
the model’s performance. However, filtering can result in biases. For 
instance, a study on a commonly used web crawl corpus found that 
its keyword-based filtering mechanism disproportionately excludes 
minority identities (for example, lesbian, gay) and certain dialects 
(for example, Hispanic-aligned English), while a non-trivial fraction 
of those filtered out is non-offensive55. An alternative to filtering is 
to systematically clean dirty data to improve data quality. Methods 
such as ActiveClean improve cleaning efficiency by identifying the 
subset of the dirty data that are critical for the AI model and hence 
are important to clean56.

Data annotation is often a major bottleneck and a source of 
errors. Although AI models can tolerate some level of random label 
noise57, biased errors create biased models. Current annotations 
often rely on human manual labelling and can be expensive—for 
example, annotating a single LIDAR scan can cost more than US$30 
because the LIDAR scan is three-dimensional and annotators need 
to draw three-dimensional bounding boxes58,59. Labellers on crowd-
source platforms such as MTurk need to be carefully calibrated to 
provide consistent annotations, and the phrasing of the labelling 
tasks should be optimized to improve crowd response60. In medical 
settings, annotation may require domain expertise or involve sensi-
tive data that could not be crowd-sourced, making labelling even 
more challenging and expensive.

One approach to reduce annotation costs is data program-
ming61–63. In data programming, instead of hand-labelling data 
points, AI developers write programmatic labelling functions to 
automatically label the training set, usually based on rules, heuris-
tics or ontologies (Fig. 3b). As the labels are annotated automatically 
and can be noisy, additional algorithms are used to aggregate multi-
ple labelling functions to reduce noise. Another human-in-the-loop 
approach to reduce annotation costs is to prioritize the most valu-
able data for humans to annotate with active learning64–66. In active 
learning, which draws ideas from optimal experimental design23, 
an algorithm is given a pool of unlabelled data points and selects 
the most informative points—for example, points that have high 
information gain or where the model is uncertain—for humans to 
annotate. As the learning algorithm can choose the data from which 
it learns, the number of data needed can be much smaller than in 
standard supervised learning64.

Customized annotation interfaces such as eye-tracking can 
capture additional information during data annotation67,68. For 
instance, when examining chest X-rays, a radiologist’s eye move-
ments can contain rich information about parts of the image the 
expert is paying attention to. Such tracking can act as indirect 
annotations, also called weak supervision, to train the AI69. To 
ensure that data annotations are consistent and of high quality, 
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Fig. 2 | Roadmap for data-centric method development from data design to evaluation. Each box represents a major step of the data pipeline: data design 
for AI, data sculpting for AI, and data to evaluate and monitor AI. Several key methodologies and considerations for improving the data-for-AI pipeline are 
listed under each step. Data policies can affect each of the steps of developing trustworthy AI.
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with both real and high-confidence pseudo-labels76,77. Substantial 
empirical works have shown the effectiveness of data augmentation. 
Recent theoretical analyses demonstrate that data augmentation 
such as Mixup and pseudo-labelling smooths and regularizes AI 
models, thus improving model robustness and generalizability77,78.

Data to evaluate and monitor AI models
After a model has been trained, the goal of AI evaluation is to 
assess its generalizability and trustworthiness. To achieve this 
goal, the evaluation data should be carefully designed to capture 
the real-world settings where the model may be used while being 
sufficiently different from the model’s training data. In medical 
research, for example, AI models are often trained on data from a 
small number of hospitals. However, when deploying at new hos-
pitals, variations in data collection and processing can degrade 
model accuracy79. To evaluate model generalizability, the evalua-
tion data should be collected from different hospitals with different 
data-processing pipelines. In other applications, the evaluation data 
should be collected from different sources and ideally labelled by 
different annotators as the training data. High-quality, human labels 
remain paramount for evaluation.

researchers can use data assertions to define warnings that are trig-
gered when annotation errors may have occurred70. For example, a 
warning function could be triggered if the LIDAR sensor detects an 
object but there is no bounding box annotated in the video frame, 
or when the bounding box annotations are inconsistent across con-
secutive video frames70. It’s often useful to have a small dataset with 
gold-standard labels to evaluate and control the quality of human 
or algorithmically generated labels.

When the existing data are limited, data augmentation can be an 
effective approach to enhance the dataset and improve model reli-
ability. Computer vision data can be augmented by image rotations, 
flips and other digital transformations71, and text data can be aug-
mented by automated writing style changes72. Recent works have pro-
posed more sophisticated augmentation techniques suchas Mixup, 
which creates new training data by taking interpolations of pairs of 
training samples (Fig. 3c)73,74. Beyond hand-crafted data augmenta-
tion, researchers have also explored automating data augmentation 
pipelines for AI75. Furthermore, when unlabelled data are available, 
label augmentation can be performed by using an initial model to 
make predictions (these predictions are called pseudo-labels) and 
then training a potentially larger model on the combined data 
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In medicine, for example, biologically relevant parts of images can 
be masked to assess whether the AI learns from spurious back-
ground or image quality artefacts81.

AI evaluations are often limited to comparing the aggregate per-
formance metrics (for example, AUC) over the entire test dataset. 
Going forwards, we recommend putting more emphasis on under-
standing the model’s error modes on fine-grained subgroups of 
data. Even if the AI model works well at the aggregate data level, it 
may still exhibit systematic errors on specific subgroups of data, and 
characterizing such mistake clusters can provide deeper insights into 
the model’s limitations. When metadata are available, a fine-grained 
evaluation approach should slice the evaluation data by sex, gen-
der, ethnicity and geographical location of the participants in the 
dataset to the extent possible—for example, ‘elderly Asian man’ or 
‘Native American woman’—and quantify the model’s performance 
on each data subgroup82. Multi-accuracy auditing is an algorithmic 
approach that automates the search for data subgroups where the 
AI model performs poorly83. Here an auditor algorithm is trained 
to predict and cluster the original model’s errors using metadata, 
providing interpretable insights on where and why the AI model 

An important aspect of evaluation is to verify that the AI mod-
els do not use ‘shortcut’ strategies based on spurious correlations 
in the training data that may not generalize well. For example, in 
medical imaging, how the data are processed (for example cropping 
or image compression) can produce spurious correlations (that is, 
shortcuts) that the model picks up13. Though superficially helpful, 
these shortcuts can fail catastrophically when deployed in slightly 
different environments. Systematic data ablation is a good approach 
to check for potential model shortcuts. In data ablations, AI models 
are trained and tested on ablated inputs to surface signals of spuri-
ous correlations (Fig. 3d). For instance, a study on common natural 
language inference datasets found that AI models trained on only 
the first half of the text input achieved high accuracy in inferring the 
logical relationship between the first and the second half of the text, 
while humans cannot do better than a random guess on the same 
input80. This suggests that the AI models exploited spurious correla-
tions as a shortcut solution for this task. Indeed, the authors found 
that specific linguistic phenomena such as negation in the text  
were highly correlated with the labels, which were exploited by  
the AI models. Data ablation is broadly applicable across domains. 

Table 1 | Selected resources for data-centric AI

Resource type Name URL/reference Comment

Data documentation Data Nutrition Labels https://datanutrition.org/ Template for reporting datasets

Frictionless https://github.com/frictionlessdata/frictionless-py Open source framework for managing 
metadata

Data Version Control https://dvc.org/ Versioning tool for datasets and 
machine learning models

Data repositories Harvard Dataverse https://dataverse.harvard.edu Online platform to share, preserve and 
cite research data

Zenodo https://zenodo.org/ Visualization and analysis of image 
datasets

Data annotation Label Studio https://github.com/heartexlabs/label-studio Data labelling tool for images, text, time 
series and so on

Snorkel https://github.com/snorkel-team/snorkel Method to translate domain knowledge 
into labelling functions

Modular Active 
Learning

https://github.com/modAL-python/modAL Suite of active learning tools

Data-quality assurance Tensorflow Data 
Validation

https://www.tensorflow.org/tfx/data_validation/ 
get_started

Framework to monitor statistics of data 
and detect anomalies

Cleanlab https://github.com/cleanlab/cleanlab Tool for finding mislabelled data

Know Your Data http://knowyourdata.withgoogle.com/ Visualization and analysis of  
image datasets

Data selection and 
improvement

Data Shapley Value https://github.com/amiratag/DataShapley Method to quantify the impact of 
different data points

EaseML https://ease.ml/ Toolkit for improving data quality

Data augmentation Augmentor https://augmentor.readthedocs.io/en/master/ Suite of data augmentation tools  
for images

Education resources nlpaug https://pypi.org/project/nlpaug Data augmentation tools for NLP

Data-centric benchmarks DCBench https://www.datacentricai.cc/benchmark/ Suite of puzzles for different steps of the 
data-for-AI pipeline

CATS4ML https://cats4ml.humancomputation.com/ Crowdsourcing to curate challenging 
test data for  
AI models

Dynabench https://dynabench.org/ Dynamic data collection to evaluate  
NLP models

Education resources Data-centric AI 
workshop

https://hai.stanford.edu/ 
agenda-data-centric-ai-workshop

Talks on addressing data-centric 
challenges in AI

NeurIPS workshop https://datacentricai.org Links to recent research
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standardized templates91. A promising path lies in regulatory 
requirements that foster data portability98,99, which may enable an 
ecosystem of data intermediaries to improve, streamline, and tailor 
data sharing and control. Nevertheless, much technical and imple-
mentation work remains to be done to realize this potential100.

In addition, much more work is needed to harmonize aspira-
tional regulatory goals with concrete implementation. As an initial 
step, VDE (a standards development organization in Europe) has 
recently released guidance101,102 aiming to aid compliance with the 
European Union AI Act through the usage of datasheets and model 
cards103. Algorithmic approaches to protect privacy, for instance, 
can have important trade-offs and limitations: differential privacy 
(which adds noise to datasets to prevent leakage of private informa-
tion) can degrade the ability to assess bias by subgroup104; federated 
learning may still leak private information when model updates are 
shared across devices105. Similarly, data erasure can be challenging 
to implement, as large AI models memorize user information106, 
and selective erasure can magnify coverage gaps in the data107. 
Technologies for cleaning data pipelines can help to adjust for such 
trade-offs. Machine learning can, for instance, improve record link-
age and inferences when sensitive attributes are lacking29,108,109.

Discussion
As AI model-building matures, creating appropriate data pipelines 
is often the biggest bottleneck for developing trustworthy algo-
rithms, that is, algorithms that work reliably well across diverse 
users and settings. Especially because AI applications often involve 
large-scale and unstructured data, automated or technology-assisted 
human-in-the-loop methods are needed to systematically address 
the data challenges. The regulatory landscape will also be critical 
to enabling trustworthy, data-centric AI and the trade-offs must 
be artfully managed. This Perspective highlights several promis-
ing approaches and relevant considerations at different steps of the 
data pipeline. It is not scoped to be a comprehensive review because 
data-centric AI methodology is in its early stages and much more 
research is needed.

In particular, evaluation of AI datasets is still ad hoc and not 
often done. For example, the ImageNet dataset has been one of 
the most popular and impactful benchmark datasets for AI since 
2009. It was created by querying image search engines followed by 
manual curation and annotation110. An evaluation of ImageNet, 
only conducted in 2019, revealed significant limitations in the data-
set—annotator biases are prevalent. In particular, 56% of the people 
categories in ImageNet contained potentially offensive labels and 
needed to be removed111. Important progress is being made to clean 
ImageNet, but it is less clear how decisions on filtering or rebal-
ancing categories affect representation learning or the downstream 
performance of models trained on the updated ImageNet. While 
efforts such as Know Your Data (https://knowyourdata.withgoogle.
com) help users to visually inspect image data, how to make data 
evaluation scalable and systematic is an open challenge. In addition, 
AI has been mostly built around static datasets such as ImageNet, 
which do not capture the constantly changing data that models face 
in deployment. Data streams that are continuously updated, along 
with methods for evaluating such streams, would be important new 
resources for AI development.

One approach to make dataset creation, cleaning and evalua-
tion more rigorous is to create benchmarks for each of these tasks. 
The recently released Data-centric AI Benchmarks, which is a suite 
of hundreds of self-contained data puzzles, is a step in this direc-
tion. Each puzzle contains a dataset, a particular data-pipeline task 
(for example, data cleaning or data selection) and the ground-truth 
solution112. Researchers are encouraged to compete and submit 
their methods to tackle these data tasks, which are then automati-
cally tested on a collection of hidden data puzzles. For example, one 
set of puzzles involves datasets that are intentionally corrupted with 

makes mistakes. When metadata are not available, methods such 
as Domino automatically identify clusters of evaluation data where 
the model is mistake prone and use text generation to create natural 
language explanations of these model errors84.

The above sections have distinguished between data design and 
data sculpting, as most current AI research projects develop a data-
set only once. But real-world AI users generally need to update data-
sets and models continuously85. For example, autonomous-vehicle 
companies such as Tesla collect millions of hours of data per day, 
some of which are then annotated by humans and used for training 
and evaluation of iterations of Tesla’s models86.

Continuous data development poses several challenges. First, 
both the data and the AI task can change over time: for example, 
perhaps a new model of vehicle appears on the road (that is, domain 
shift), or perhaps the AI developer wants to recognize a new class 
of objects (for example, school buses as distinct from regular buses), 
which changes the taxonomy of labels. It is wasteful to throw away 
the millions of hours of old labelled data. In addition, training and 
evaluation metrics should be carefully designed to weigh the new 
data and to use the appropriate data for each subtask87. Second, to 
acquire and use data continuously, users will need to automate much 
of the data-centric AI process. Such automation includes using algo-
rithms to select which data to send to annotators and how to use it 
to retrain models, and only alerting the model developer if the pro-
cess appears to be going wrong (for example, when accuracy metrics 
have dropped). Companies are starting to use tools to automate the 
machine learning lifecycle as part of the ‘MLOps’ trend. Example 
tools include open-source packages such as TFX and MLflow88,89. 
These packages include features to specify expectations about data 
(for example, rough distribution of classes) and automatically raise 
alerts if new data fail these expectations or if the evaluation metrics 
for new models are poor.

Data regulation and policies
Government regulation and data policy will play an important role 
in promoting, constraining and shaping data-centric and trustwor-
thy AI. New data regulatory requirements support a shift towards 
the kinds of approaches we have discussed here. Europe’s draft AI 
regulation, for instance, requires that “[t]raining, validation and 
testing data sets shall be relevant, representative, free of errors and 
complete” for high-risk AI systems90. Developers must conduct 
‘conformity assessments’ of AI products. Although such compliance 
mandates can add substantial overhead, they could improve data 
design, sculpting and evaluation.

Some data regulatory requirements may in fact impede develop-
ing trustworthy AI. Privacy concerns can impede the curation of 
representative data with access to sensitive attributes91,92. As a conse-
quence, many AI algorithms, especially in the biomedical sciences, 
are developed using data from only one or a small number of sites, 
which limits generalizability21, and evaluation of subgroup perfor-
mance can be challenging92. Privacy’s typical reliance on consent 
and opt-outs can itself contribute to data bias93. And companies can 
hoard expensive private datasets under restrictive licenses94, leaving 
academic researchers to scrape the Internet for lower-quality and 
potentially biased data95.

AI and data regulation will need to balance privacy and access 
interests. A promising direction is to focus on data agency to reduce 
the transaction costs of controlling one’s own data and increase the 
transparency of how the data are used. Public willingness to share 
de-identified medical data can be high with appropriate design 
and agency96. The UK Biobank, wherein 500,000 volunteers shared 
genomic and health record data for science, is an exemplar for 
granting such agency to volunteers, who retain control rights to 
their medical information97. Similarly, researchers need improved 
mechanisms for securely sharing data, collaboratively curating 
data and navigating the thicket of data-use agreements via more 
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Nat. Methods 15, 559–560 (2018).

	24.	 Fan, W. & Geerts, F. Foundations of data quality management. Synth. Lect. 
Data Manag. 4, 1–217 (2012).

	25.	 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A.  
A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 
1–35 (2021).

	26.	 Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy 
disparities in commercial gender classification. In Proc. 1st Conference on 
Fairness, Accountability and Transparency 77–91 (PMLR, 2018).

	27.	 Kaushal, A., Altman, R. & Langlotz, C. Geographic distribution of US 
cohorts used to train deep learning algorithms. J. Am. Med. Assoc. 324, 
1212–1213 (2020).

	28.	 Zou, J. & Schiebinger, L. AI can be sexist and racist—it’s time to make it 
fair. Nature 559, 324–326 (2018).

	29.	 Coston, A. et al. Leveraging administrative data for bias audits: assessing 
disparate coverage with mobility data for COVID-19 policy. In Proc. 2021 
ACM Conference on Fairness, Accountability, and Transparency 173–184 
(ACM, 2021); https://doi.org/10.1145/3442188.3445881

	30.	 Mozilla. Mozilla Common Voice receives $3.4 million investment to 
democratize and diversify voice tech in East Africa. Mozilla Foundation 
https://foundation.mozilla.org/en/blog/mozilla-common-voice-receives- 
34-million-investment-to-democratize-and-diversify-voice-tech-in- 
east-africa/ (2021).

	31.	 Reid, K. Community partnerships and technical excellence unlock  
open voice technology success in Rwanda. Mozilla Foundation https:// 
foundation.mozilla.org/en/blog/open-voice-success-in-rwanda/ (2021).

	32.	 Van Noorden, R. The ethical questions that haunt facial-recognition 
research. Nature 587, 354–358 (2020).

	33.	 Build more ethical AI. Synthesis AI https://synthesis.ai/use-cases/bias- 
reduction/ (2022).

	34.	 Kortylewski, A. et al. Analyzing and reducing the damage of dataset bias to 
face recognition with synthetic data. In IEEE Conference on Computer 
Vision and Pattern Recognition Workshops 2261–2268 (IEEE, 2019).

	35.	 Nikolenko, S. I. Synthetic Data for Deep Learning Vol. 174 (Springer, 2021).

noise or with spurious correlations, where researchers can evaluate 
their methods for removing such artefacts. They can then be used 
to systematically evaluate methods for cleaning and identifying 
biases in data. The goal of Data-centric AI Benchmarks is to foster 
the development of new scalable tools for improving data quality 
by making it easier to compare the conformance of these tools. 
While such benchmarks can provide useful quantitative feedback, 
they currently cover only a fraction of the data-centric challenges, 
mostly focused on data cleaning, selection and annotation for natu-
ral images. More benchmarks need to be developed for other data 
pipeline tasks, data types and different application domains (for 
example, clinical data). Expanding data-centric benchmarks is an 
important direction of new research.

The data-centric challenges discussed here are especially salient 
in developing regions due to resource limitations and greater 
data heterogeneity. While this Perspective discusses algorithms to 
improve the quality and diversity of data, it is important to recog-
nize that there are socio-technical challenges in dataset creation 
that require broader participation to address19,45,113. For example, 
AI researchers in Africa are starting to extend common AI datas-
ets for their local context. Inspired by the computer vision COCO 
(Common Object in Context) dataset, COCO-Africa is an object 
detection, segmentation and captioning dataset containing scenes 
and objects that are more likely to be observed in Africa114. In natural 
language processing (NLP), MasakhaNER provides a large curated 
dataset of ten African languages with named-entity annotations115. 
Similarly, Knowledge-for-all and AI for Development led projects 
developing datasets for under-represented African languages116. 
There is still a large gap in public datasets that require more expert 
curation in the African context—for example, healthcare images 
such as computed-tomography scans are largely unavailable117. 
These data-centric efforts will be critical to ensure that advances in 
AI models generalize to and benefit broader populations.

Topics on how to create high-quality and responsible data pipe-
lines should be incorporated into the AI curriculum. References 
like the ones listed in Table 1 can be useful teaching resources. It 
is important for students to appreciate potential pitfalls in the data 
used to develop their AI models and to understand how to use 
systematic techniques to improve the data. Improvements in data 
pipelines and AI models form a positive feedback loop. More reli-
able and scalable frameworks to sculpt and evaluate datasets and 
data streams enhance the reliability of the models developed on this 
data. At the same time, better calibrated AI models can facilitate the 
detection of anomalies, errors and biases in its development data 
(for example, by associating greater uncertainty to poor-quality 
points). A data-centric focus will be integral to the next stage of AI 
development, especially as we translate models from research sand-
box to real-world deployment.
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