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Abstract—Data quality assessment is vital for many infor-
mation services ranging from sensor networks to smart city
systems. The current data quality assessments, however, are often
derived from intrinsic data characteristics, disconnected from
specific application contexts, or are not applicable or efficient
for large datasets. In this work, we propose a novel task-oriented
data quality assessment framework, which balances between the
intrinsic and contextual quality. We carefully craft the assessment
metrics, quantify them, and fuse them to rank candidate datasets
by quality given specific tasks. To improve the system efficiency,
two fast calculation algorithms are designed to quantify the
relationship between datasets and the task, and the distribution of
data items. We conduct extensive evaluations on six public image
datasets (with 460, 247 images in total) and four text document
datasets (with 37, 372 documents in total) to evaluate the efficacy
and efficiency of our design. Experimental results show that
our algorithms can save about 90% computing time with little
accuracy loss which validates the feasibility and effectiveness of
our framework for large datasets.

Index Terms—Data Quality Assessment; Sampling; Locality
Sensitive Hashing; Rank Aggregation

I. INTRODUCTION

The rapid development of networking technologies, such as
mobile networks, sensor networks and crowdsensing technolo-
gies, has made it possible to aggregate massive diverse data.
Recently, there is a significantly growing trend to improve
quality of various information services by taking advantages
of large amounts of data. The quality of data, therefore, plays
a vital role in those information systems from the following
aspects. 1) High-quality data provides adequate and accurate
information to fulfill a specific task, such as training a high-
quality machine learning model and making wise decisions in
a smart city system. 2) A large number of services provide data
itself as the product on demand to the user, e.g., crowdsensing
services. For those services, the quality of data determines
user satisfaction. 3) Measuring quality of data also helps
to optimize system resources utilization. Limited resources
(e.g., bandwidth, storage and computing resources) should be
allocated to high quality data first to guarantee the system
performance and service quality. Taking a crowdsensing appli-
cation [1] as an example, where a large number of participants
upload images collected by their mobile phones, effective data
quality assessment, especially efficient quality assessment of
large sets of images, can significantly facilitate the selection
of uploaded images and even save bandwidth by avoiding
transmission of low-quality data.

Data quality assessment has gained much attention from
researchers [2], [3], [4], [5], [6]. Existing methods towards data
quality assessment, however, have several limitations facing
diversified tasks and large-scale datasets. First, most previous
attempts focus on assessing inherent quality of data, while
few consider contextual factors such as the target tasks or
services, which requires the data content should be relevant
to the task. Contextual factors have been shown to strongly
influence perceptions of data quality [4]. Second, existing
works mainly measure quality of an individual data piece [5]
other than that of a collection of data pieces, while the latter is
more commonly used by present services, e.g., crowdsensing
services. As an example, 1000 high-quality images with the
same content dont necessarily make a high-quality dataset,
which requires the content of the dataset to be diverse. Third,
though various dimensions of data quality have been proposed,
given a task, how to fuse those dimensions to yield a quality-
based ranking of different datasets remains a challenge.

In this work, we aim to enable data consumers to select
high-quality datasets for a given task in an efficient and
interpretable way. To achieve this goal, we propose a novel
framework named Task-Oriented Data Quality Assessment
model (TODQA), which comprehensively and efficiently mea-
sures quality of datasets for a given task (e.g., image clas-
sification or sentiment analysis [6]) and ranks datasets by
quality. The framework design supports datasets composed
of a large number of unstructured data, e.g., image, text or
video. Specifically, we design TODQA to answer the following
challenging questions. 1) How to comprehensively quantify
the quality of a dataset, especially adaptively quantify the
task-oriented quality for various tasks? Based on the quality
assessment of each data piece, the framework should not only
characterize the relationship among data pieces but also the
relationship between a dataset and a given task. 2) How to
efficiently and accurately measure the quality of a large-scale
dataset? Nowadays, it is common that there are millions of data
pieces in one dataset. Considering the large computational cost
of assessing a single unstructured data item [5], it will cause
unacceptable overhead to measure quality of every data piece
and the relationship of all data pairs. 3) How to reasonably fuse
multiple dimensions of data quality and obtain an interpretable
ranking of datasets? Measurements of different dimensions are
not comparable, which makes methods like weighted average
inapplicable here.

By conquering the aforementioned challenges, contributions
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Fig. 1. System overview.

of this work can be summarized as follows.
• We propose a novel framework TODQA, which to the

best of our knowledge is so far the most comprehensive
large-scale datasets quality assessment framework incor-
porating both task-independent intrinsic quality and task-
dependent contextual quality.

• We propose two novel dimensions “task relevancy” and
“content diversity” to assess quality of a large-scale
dataset by respectively characterizing its relevancy to a
given task and the relationship among data pieces. To
achieve highly efficient and accurate assessments of these
two dimensions, we design two fast calculation algo-
rithms based on sampling and locality sensitive hashing
(LSH). A rank aggregation algorithm is also designed to
fuse multiple disparate quality dimensions, so as to rank
datasets by comprehensive quality.

• To validate our design, we conducted extensive evalua-
tions on 6 popular image datasets (with 460, 247 images
in total) and 4 popular text datasets (with 37, 372 docu-
ments in total) to thoroughly investigate their quality and
rank them for different tasks. Experimental results show
that our two fast calculation algorithms can save about
90% runtime with little accuracy loss.

The rest of this paper is organized as follows. We present
an overview of our system in Section II. Section III gives
detailed definitions and quantification methods of intrinsic and
contextual quality dimensions. In Section III-C, we present the
concrete rank aggregation method. Comprehensive evaluations
are introduced in Section IV. We review related work in
Section V and conclude this work in Section VI.

II. SYSTEM OVERVIEW.

A. Problem Formulation

The aggregation of high-quality datasets is important for
many applications. In this work, we aim to design a task-
oriented data quality assessment framework, which measures
multi-dimensional quality of different datasets for a given task
and ranks these datasets by quality. We consider three roles
involved in the quality assessment process: data owners, data
consumers, and the data evaluator (e.g., the cloud). Data
owners provide the data evaluator with a collection of m
datasets D = {D1,D2, . . . ,Dm}. A data consumer desires
to find the high-quality dataset to fulfill a target task T . The
task-oriented data requirement of the data consumer can be

TABLE I
SOME IMPORTANT NOTATIONS.

Notation Description
D a set of datasets. Each D ∈ D is a dataset;
di the i-th data piece in dataset D;
T a target task;
S a set of sample data pieces;
Q a collection of quality dimensions. Each q ∈ Q is

one specific quality dimension;
τi the ranking list of all datasets in D on quality

dimension qi;
qDc , qDp the quantified value of dimension correctness and

precision;
qDtr , qDcd, qDco,
qDa , qDt

the quantified value of dimension task relevancy,
content diversity, completeness, appropriate amount
and timeliness.

expressed by a set of sample data pieces S = {s1, s2, . . . , sl},
which are known to be very suitable for the task T . The
presentation of the sample set is necessary for measuring the
relevancy between the task T and datasets in D. The sample set
can be provided by the data consumer or the data evaluator. For
each dataset in D, the data evaluator quantifies a collection of
quality dimensions Q = {q1, q2, . . . , qn}, including both task-
independent intrinsic quality and task-dependent contextual
quality with respect to T . In the end, the evaluator returns
a ranking σ of m datasets. The higher the ranking of a dataset
is, the higher quality it has for the task T .

B. Design goals

We design our task-oriented data quality assessment frame-
work TODQA (see in Figure 1) to achieve the following three
nontrivial goals:

• Rationality: According to the assessment of TODQA, a
dataset with higher task-oriented quality should empower
the task T to achieve better performance (e.g., higher
accuracy and efficiency) with high probability than a
lower quality dataset.

• Interpretability: When different datasets perform quite
diversely on the same task, the assessment results should
explain what differences of their quality dimensions result
in the performance/rank differences.

• Efficiency and accuracy: TODQA should be efficient
enough to assess the quality of large-scale datasets, while
guarantee the accuracy of assessment.

III. TASK-ORIENTED DATASET QUALITY ASSESSMENT.

For a specific task, a high-quality dataset should be not only
intrinsically good, but also contextually appropriate for the
task [2]. In this section, we present the concrete definitions and
quantification methods for each dimension of intrinsic quality
and contextual quality. We also propose two fast computation
algorithms for large-scale datasets measurements. For better
illustration, some notations are summarized in Table I.

A. Intrinsic Quality Assessment

Intrinsic quality evaluates task-independent internal char-
acteristics of data. Based on an extensive review of existing
work, generally, intrinsic quality can be defined in multiple
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dimensions including correctness, precision [2], [3]. For a
dataset D, let the quantified value of these two dimensions be
qDc , qDp . The minimum quality requirements for two dimen-
sions are θc, θp. D must fulfill the minimum intrinsic quality
requirement R, where

R = (qDc ≥ θc) ∧ (qDp ≥ θp). (1)

Poor-quality datasets failing to meed R will be put in the
bottom of the output rank, needing no further assessment.
Correctness evaluates the extent to which data is correct
and reliable [2]. For example, the grammatical correctness of
text documents [7], and the correctness of labels for images.
The correctness of a dataset D is denoted by qDc , which is
quantified as qDc = 1

|D|
∑

di∈D qdi
c . Precision refers to the

accuracy of data acquisition and storage, such as the accuracy
of sensor readings, the sharpness or the compression ratio of
images and videos, etc. We quantify the dataset precision by
qDp = 1

|D|
∑

di∈D qdi
p , where qdi

p can be obtained by existing
quality assessments [5], [8].

B. Contextual Quality Assessment.

Contextual data quality highlights the demand that data
quality must be considered within the context of the data usage
[2]. Few works study the quantification method of contex-
tual quality, not to mention the contextual quality of large
datasets. In this work, we propose a series of novel contextual
quality dimensions including task relevancy, content diversity,
appropriate amount and design efficient methods to quantify
these proposed dimensions and two existing dimensions, e.g.,
completeness and timeliness.

1) Task relevancy: Task relevancy measures the extent to
which the data content is relevant to the requirement of the
task. Since the requirement can be expressed by a collection
of sample data pieces S = {s1, s2, . . . , sl}, we can quantify
the similarity between a dataset D and the sample dataset
to indicate the task relevancy [9]. For example, if the data
consumer wants to train a scene classifier, the sample set S
should be several images of different scenes. The choice of the
sample set (e.g., its size and content distribution) will affect
the evaluation of task relevancy. We will explore the impact
of the sample set by detailed experiments in Section IV. Note
that, the size of D is usually much larger than the size of S .

Definition 1 (Task relevancy.). Given a dataset D = {d1, d2,
. . . , d|D|} to be assessed and a sample dataset S =
{s1, s2, . . . , sl} of a specific task T , the task relevancy of the
dataset D to the task T is

q
D|S
tr =

X(D,S)
|D| (2)

X(·, ·) evaluates the size of intersection of two sets, which
is defined as follows:

X(D,S) =
∑
di∈D

I(min
sj∈S

Dis(di, sj), δ) (3)

Dis(·, ·) measures the distance of two data content, and

I(min
sj∈S

Dis(di, sj), δ) =

⎧⎨
⎩

1, min
sj∈S

Dis(di, sj) ≤ δ

0, min
sj∈S

Dis(di, sj) > δ
(4)

For the sake of generality, Dis(·, ·) is an abstract function
measuring content dissimilarity between two pieces, e.g., cal-
culating Euclidean distance or cosine distance of two extracted
feature vectors (see in Section II). δ is a empirical value.
The larger value of Equation (2), the greater relevancy of the
dataset to the task.

The time complexity of assessing the task relevancy is
O(L · l · |D|), where L is the dimension of the feature vector.
Therefore, when the size of D is large and the dimension
L is high, there will be a large computational overhead for
assessment. It is desired to significantly reduce the compu-
tational cost while retain the assessment accuracy. We notice
that we only care the most similar pairs whose distances are
below a threshold δ. Based on this observation, our basic
idea is to efficiently filter pairs that are very likely to be
similar and ignore other pairs. Specifically, we design a fast
calculation method based on sampling and locality-sensitive
hashing (LSH) to reduce a large portion of computation with
little accuracy loss. Before we present detailed design of
our algorithm, we simply review the (r1, r2, p1, p2)-sensitive
property of LSH [10].

Algorithm 1 Fast calculation method for Task Relevancy.
Input: A dataset D, a sample dataset S, and a hash function h(·) of a LSH

family.
Output: q

D|S
tr : relevancy quality of dataset D for the task.

1: Partition the feature space using k random hyperplanes parametrized
by w1, w2, . . . , wk , thus obtaining the set of k hash functions H =
{h1, h2, · · · , hk}.

2: for A ∈ (D ∪ {S}) do
3: for a ∈ A do
4: for i = 1, 2, . . . , k do

5: hi(a) =

{
1, wT

i a ≥ 0

0, wT
i a < 0

6: end for
7: Place a in a bucket using H(a) as its key/index.
8: end for
9: end for

10: The set of buckets is denoted as B[H(D ∪ {S})].
11: Count = 0.
12: for each bucket B[v] in B[H(D ∪ {S})] do
13: D′ = {d|d ∈ D, H(d) = v}.
14: S′ = {s|s ∈ S, H(s) = v}.
15: Calculate X(D′,S′).
16: Count = Count+X(D′,S′).
17: end for
18: Calculate q

D|S
tr = Count

|D| .

19: return q
D|S
tr .

Definition 2 ((r1, r2, p1, p2)-sensitive). A LSH family H of
functions is defined for a metric space X , four thresholds
r1, r2, p1 ∈ [0, 1] and p2 ∈ [0, 1], which satisfy r1 < r2
and p1 > p2. H is a family of functions h : X → B which
maps elements from the metric space to a bucket b ∈ B. H is
called (r1, r2, p1, p2)-sensitive for metric Dis(·, ·) if for any
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pair p, q ∈ X , using a function h ∈ H which is chosen at
random, we have
if Dis(p, q) ≤ r1, then PrH[h(p) = h(q)] ≥ p1,
if Dis(p, q) ≥ r2, then PrH[h(p) = h(q)] ≤ p2.

We use k functions H = {h1, h2, · · · , hk} of a LSH
family H to hash input feature vectors of data pieces, so that
similar data pieces will be mapped to the same bucket while
dissimilar data pieces will be mapped to different buckets with
high probability. Here, the threshold r1 is set to the distance
threshold δ in Equation (4). In this way, to obtain X(D,S), we
only need to calculate the distance Dis(di, sj) (di ∈ D and
sj ∈ S) when feature vectors of di and si are mapped to the
same bucket (H(di) = H(sj)). The algorithm is illustrated in
Algorithm 1 with the error bound (1−p1) and time complexity
O(L · |S| · log |D|). When the dimension L of feature vectors
is large, e.g., L = 1000 for image feature vectors extracted
by a VGG-16 network [11], we further cut down the time
complexity to O( 16ε2 · |S| · log |D|) by reducing the dimension
of feature vectors to l∗ (l∗ > 8 log |D|

ε2 ) with an additional error
0 < ε < 1. At this time, the error bound is (1− p1 + ε).

Lemma 1. The fast calculation method with dimensionality
reduction of feature vectors for task relevancy has the time
complexity O( 16ε2 · |S| · log |D|).
Proof. In Algorithm 1, line 4-6 costs L ·k, line 7 costs |D|/2k
in expectation (because there are |D| points in dataset D and
2k regions in our partitioned space). Thus, the total cost is
Lk + log |D|/2k. When k is taken to be about log |D|, we
get the desired O(L · log |D|). Thus for points in S , the total
expectation cost is O(L · |S| · log |D|). Given 0 < ε < 1 , a
dataset D whose data pieces have feature vectors in RL and
a number l∗ > 8 log |D|

ε2 , according to Johnson-Lindenstrauss
lemma, there is a linear projection f : RL → Rl∗ such
that,(1−ε)||di−dj ||2 ≤ ||f(di)−f(dj)||2 ≤ (1+ε)||di−dj ||2,
for all di, dj ∈ D. By reducing the dimension of feature
vectors from L to l∗, the total cost for calculating task
relevancy is O( 16ε2 · |S| · log |D|).

2) Content diversity: Here, we want to answer the ques-
tion that does a dataset with high intrinsic quality and task
relevancy necessarily make a high-quality data for the task?
The answer depends on the nature of different tasks. As an
example, in a task of training a face recognition model, images
of many different persons’ faces are more preferred than
images of one person’s face, although they may have the same
relevancy quality. Images of one person’s face, however, could
be more preferred by a task of training face unlock model for
his/her phone. Various tasks have divergent requirements for
data content diversity. For tasks like training machine learning
models, proper data diversity can mitigate overfitting and
improve the generalization ability of models. Therefore, we
consider content diversity as an influential contextual quality
dimension. A data consumer can express his/her requirement
by setting the range of diversity or simply provide a sample
dataset to imply his/her preferred diversity.

There are various ways to define diversity of a set [12].
Here, we employ the average pairwise distance among feature
vectors of data pieces in a dataset [12]. Formally, the content
diversity qDcd of a dataset D is

qDcd =
1

|D|
∑
di∈D

∑
dj∈D

Dis(di, dj), (5)

where Dis(·, ·) is the same function as that in Equation (4).
The time complexity of Equation (5) is O(|D|2). When the

dataset D is large, e.g., millions of images, the quadratic time
cost is very expensive. To improve the efficiency, we need a
fast calculation algorithm. The existing algorithm achieves an
approximation of the average distance with a multiplicative
error (1 + η) in time O(|D|/η7/2) with high probability
[13]. In this work, we propose a sampling based algorithm
to achieve comparable average distance approximations while
with smaller time cost (see evaluation in Section IV). Assum-
ing that the pairwise distances satisfy a certain distribution,
our basic idea is to sample a small number of pairwise
distances following this distribution. We leverage LSH to
characterize the implicit distribution. Using k hash functions
H = {h1, h2, · · · , hk} of a LSH family H, data pieces can
be mapped to buckets. So that, the numbers of data pairs in
different buckets imply the distribution of pairwise distances of
this dataset. By randomly sampling a certain proportion (e.g.,
the sampling rate r) of data pairs from each bucket, we can
obtain the sampling set G, whose average pairwise distance
qGcd is the approximation of qDcd. The details are presented in
Algorithm 2. The time complexity of Algorithm 2 is O(|G|2).
As the sampling rate increases, the approximation error gets
smaller. According to Lemma 2, in practice, we can set a
proper sampling rate to keep |G|2 < |D| while retain a good
approximation.

Algorithm 2 Fast calculation method for Content Diversity.
Input: A dataset D, k hash function H = {h1, h2, · · · , hk} of a LSH

family, and the sampling rate r ∈ (0, 1).
Output: pGcd: diversity approximation.
1: G ← ∅.
2: for each di ∈ D do
3: Calculate H(di) using the equation defined in Algorithm line 4-6.
4: Add di to the bucket B[h(di)].
5: end for
6: for each B[j] in B[H(D)] do
7: G ← randomly selected �r · |B[j]|	 data pairs in B[j].
8: end for
9: pGcd = 1

|G|
∑

di,dj∈G,i �=j Dis(di, dj).

10: return pGcd.

Lemma 2. Pr(|qGcd−qDcd| ≥ θ) ≤ 2exp(−2M · θ2) for θ > 0,
here M = |G|2, which is the number of sampled distances.

Proof. The sampled M distances are independent random
variables bounded by the interval [ai, bi], : ai ≤ li ≤ bi. With-
out loss of generality, we assume the interval is [0, 1]. qGcd is the
mean of these variables. According to the Hoeffding’s inequal-
ity, we can obtain Pr(|qGcd− qDcd| ≥ θ) ≤ 2exp(−2M · θ2) for
θ > 0.
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3) Completeness denotes the extent to which data is of suffi-
cient breadth, depth, and scope for the task at hand [2], e.g.,
if the image dataset D has one label for an classification task,
it is complete for the task with qDco being 1.0. Appropriate
amount. In most cases (e.g., deep learning), the more data
pieces, the higher the performance (e.g., performance on vision
tasks increases logarithmically based on volume of training
data) [14]. However, it has been found in practice that when the
size of dataset exceeds a certain optimal point, it will not only
cause unnecessary computational and storage resources waste
but also decreases the decision making performance [15]. The
appropriate amount of a dataset (denoted as qDa ) for a task
should be adequate but do not cause extra overhead. Timeless
(denoted as qDt ) evaluates the extent to which the age of the
data is suitable for the task, which can be quantified as the
maximum of two terms: 0 and 1− currency/volatility [16].

C. Rank aggregation.

Given a task, for dataset Di ∈ D, now we can obtain
the value of each quality dimension qDi

j ∈ Q introduced in
Section III. Since quality values of different dimensions are
incomparable, we propose a rank aggregation method to obtain
the overall ranking based on their ranks in quality dimensions.

Specifically, for each quality dimension qj , a ranking τj
can be obtained by ordering all datasets by their quality in this
dimension in descending order. Then we have a set of rankings
τ = {τ1, τ2, . . . , τn}, n = |Q|, where each |τj | = |D| = m.
Let τj(Di) denote the position of Di in the ranking τj .
We address the optimal rank aggregation problem by finding
the optimal overall ranking σ that minimizes the extent of
disagreement among rankings τ1, τ2, . . . , τn. The optimization
objective function is

minF (σ, τ1, τ2, . . . , τn) = (1/n)
n∑

i=1

μiK(σ, τi), (6)

K(σ, τi) = |{(j, k)|j �= k, σ(Dj) < σ(Dk), τ(Dj) > τ(Dk)}|.
Here, K(σ, τi) is the Kendall tau distance, which counts the
number of pairwise disagreements between two lists. The
weight μi represents the influence of the quality dimension
qi on the overall quality, which can be determined by the
data consumer. This problem is NP-hard, and there exists a
2-approximation algorithm [17]. It demonstrates that, Kendall
tau distance can be approximated via the Spearman footrule
distance, which can be computed in polynomial time via a
minimum cost matching [17]. We adopted and modified this
2-approximation algorithm to efficiently obtain the overall
ranking of n quality dimensions.

IV. EVALUATION

TODQA evaluates task-oriented data quality from two as-
pects, intrinsic quality and contextual quality. Given a specific
task, a sample set, and some candidate datasets, TODQA
ranks candidate data-sets by quality in descending order.
In this section, we validate the feasibility and efficiency of
TODQA on two types of data, images and text documents.

A. Experiment Configuration

We acquired image and text datasets from publicly available
sources. Table II gives the details of our datasets.

Image datasets. We adopted six popular image datasets Ima-
geNet [18], COCO test [19], VOC2012 [20], COIL-100 [21],
Labeled Faces in the Wild (LFW) [22] and Large Logo Dataset
(LLD) [23], which are denoted by DI = {DI1 ,DI2 , . . . ,DI6}.

Text datasets. We adopted four popular text datasets MR [24],
SST-1 [25], Subj [26] and CR [27], which are denoted by DT =
{DT1

,DT2
,DT3

,DT4}.

Tasks. For image data, the task TI in our experiments is to
train a 10-category image classification model. The sample
set SI for this task is composed of images randomly chosen
from 10 categories with 100 images for each from ImageNet.
For text data, the task TT in our experiments is sentiment
analysis for text documents. The sample set ST for this task is
composed of 500 positive and 500 negative reviews randomly
chosen from these four datasets (See Section IV-C for detailed
analyses of the impact of sample sets on evaluations). The
image classification and text sentiment analysis models are
trained with TensorFlow 1.10.1. All evaluation experiments
are conducted on a server equipped with a 12-core i7 Intel
CPU, 64G of RAM and 4 Titan X GPUs.

TABLE II
OVERVIEW OF OUR DATASETS.

Dataset type Notations Dataset name Size Total Size

Image

DI1 ImageNet 200,000

460,247
DI2 COCO test 100,000
DI3 VOC2012 17,125
DI4 COIL-100 7202
DI5 LFW 13,000
DI6 LLD 122,920

Text
DT1 MR 10,662

37,372DT2 SST-1 10,605
DT3

Subj 5500
DT4

CR 10,605

B. Data Feature Extraction

To measure the contextual quality of datasets (e.g., task
relevancy and content diversity), we need to extract feature of
each image and text document to represent the data content.
For images, we adopt the well-known VGG-16 [11] model to
extract feature vectors and classify images. Studies have shown
that the feature activations of the eighth fully-connected layer
of VGG-16 can serve as a good abstract of image content [18].
For text datasets, we adopt the state-of-the-art Bidirectional
Encoder Representations from Transformers (BERT) [28] to
extract feature representations.

C. Data Quality Assessment

1) Correctness. For each image dataset DIi , we randomly
sample items from it to calculate the correctness quality
q
DIi
c . All sampled items are labeled correctly, thus we set
q
DIi
c = 1, i ∈ [1, 6] and put all datasets in the same

position of the ranking τ Ic . For text datasets, we evaluate the
correctness of spelling and grammar using the exiting method
[7]. The result is shown in Figure 2. Precision. For images, we
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Fig. 2. Correctness & Precision
scores for text datasets.

Fig. 3. The cumulative distribution
of DMOS for image datasets.

Fig. 4. Average DMOS for image
datasets.
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adopted a CNN model [5] to indicate the precision of image
datasets by the Differential Mean Opinion Score (DMOS)
ranging in [0, 100]. The larger the DMOS, the lower the
precision. For each image dataset, the cumulative distribution
of DMOS is shown in Figure 3 and the average DMOS is
shown in Figure 4. The ranking of datasets by precision is
τ Ip = {DI3 ,DI2 ,DI1 ,DI5 ,DI6 ,DI4}. For text datasets, we
quantify precision by their readability [8]. The result is shown
in Figure 2. The ranking of datasets in terms of precision is
τTp = {DT1 ,DT2 ,DT4 ,DT3}.
2) Task relevancy. After obtaining feature vectors for items
in all datasets, we calculate the task relevancy using the
proposed sampling based algorithm (Algorithm 1). For the
sample dataset SI /ST and each dataset DIi /DTi , we leverage
k hash functions to hash all high-dimensional feature vectors
(e.g., 1000 dimensions for images and 768 dimensions for
text) to k-dimensional (e.g., k = 7) Hamming vectors. Then,
we only calculate the distance between items from DIi /DTi

and items from SI /ST in the same bucket, and finally obtain
the task relevancy. We validate the accuracy and efficiency of
our sampling based algorithm first, then use this algorithm to
evaluate task relevancy of datasets.

•Algorithm accuracy. We measure the accuracy loss of
our sampling based algorithm from two aspects: the accuracy
of the LSH function and the accuracy of the estimate dataset
relevancy quality. Two parameters determine the accuracy of
the LSH function: the distance threshold δ in Eq. (4) and
the dimension k of the hash space. Specifically, we use three
indicators to characterize the accuracy of the LSH function:
(1) precision: the ratio of the number of distances smaller than
δ in all buckets to the total number of distances smaller than
δ; (2) recall: the ratio of the number of distances smaller than
δ in all buckets to the total number of distances in all buckets;
(3) F-score: 2·precision·recall

precision+recall . Taking images as an example,
we calculate the maximum distance of images within each

category (with 100 categories, 500 images for each one). The
distribution of 100 maximum distances is presented in Figure
5. The precision, recall and F-score against to different δ and
k are illustrated in Figure 6-8. The results suggest that the
LSH function achieves the highest accuracy when δ = 130
and k = 7, and the precision is 84.09%, recall is 78.86%
and F-score is 81.39%. Further, we investigate the estimation
error and time cost of task relevancy using sample sets with
different sizes (shown in Figure 9). We set the sample size of
each category to be 100 to achieve both low evaluation error
and low time cost. Now we compare the true relevancy quality
directly calculated according to the Definition 1 with the result
estimated by our sampling based algorithm. Here, we consider
two types of datasets to be evaluated, which are composed of
images from the same categories and different categories with
the sample dataset (results are shown in Figure 10(a), 11(a)).
Obliviously, the relevancy of datasets composed of images of
the same categories as SI is much higher than that of datasets
composed of images of different categories with SI . More
importantly, the estimated relevancy using our algorithm is
very close to the true relevancy, especially when images are
from same categories as SI . The average estimation error for
two types of datasets is only 0.034 when the relevancy score
is with the range [0, 1]. For text documents, we hash 768-
dimensional feature vectors to 7-dimension Hamming vectors.
The results are similar and the average estimation error is
only 0.0019.

•Algorithm Efficiency. For the aforementioned experi-
ments, we compare the runtime of our sampling based al-
gorithm with that of the original method. As shown in Fig-
ure 10(b) and Figure 11(b), our algorithm significantly reduce
the runtime. As an example, when the size of the dataset to be
evaluated is 100, 000, the average runtime the original method
is 320.767s, while the average runtime of our method is only
24.169s, saving 92.5% runtime.
•Task relevancy of datasets. With high accuracy and effi-

ciency guarantees, we use our proposed algorithm to measure
the task relevancy of each dataset to the sample dataset. The
relevancy scores of 6 image datasets are 0.863, 0.121, 0.194,
0.205, 0.185 and 0.049 respectively, Thus the ranking by
task relevancy is τ Itr = {DI1 ,DI4 ,DI3 ,DI5 ,DI2 ,DI6}. The
relevancy scores of four text datasets are 0.9995, 0.9984,
0.9957 and 0.9994 respectively. Thus the ranking by task
relevancy is τTtr = {D1,D4,D2,D3}.

3) Content diversity. Here we first measure the accuracy and
efficiency of Algorithm 2 and then evaluate content diversity
of all datasets using our algorithm.

•Accuracy. The accuracy of estimated content diversity is
also affected by the accuracy of the adopted LSH functions,
which has already been analyzed in the above subsection.
Therefore, we directly compare the true content diversity
obtained by the original method and the estimated value using
our sampling based algorithm (Algorithm 2) and a random
sampling method [13]. For image datasets, as the results
depicted in Figure 12(a), the estimated diversity using our
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Fig. 6. Precision of LSH with dif-
ferent k and δ. k is the dimension
of the hash vector.

Fig. 7. Recall of LSH with differ-
ent k and δ. k is the dimension of
the hash vector.

Fig. 8. F-score of LSH with differ-
ent k and δ. k is the dimension of
the hash vector.

Fig. 9. The effect of the sample set SI ’s
size on the task relevancy evaluation.

algorithm is very close to the true value with a only 0.35%
average relative error. For text datasets, the average relative
error is only 0.113%. Although the random sampling method
achieves slightly better accuracy, our method is much more
efficient as presented below.

•Efficiency. We also compare the total runtime of our
algorithm with that of the original method and the random
sampling method [13], and our algorithm costs much less
time (see Figure 12(b)). When the size of the image dataset
is 40, 000, the runtime of the original method and random
sampling method are 4, 254s and 429s. The runtime of our
algorithm is only 69s, which saves 98.4% runtime compared
to the original method and saves 84% runtime compared to
the existing method.

•Content diversity of datasets. Using our algorithm, the
content diversity of 6 image datasets are 150.23, 128.02,
102.84, 61.27, 51.65 and 54.63 respectively. For the task
training an image classification model, a dataset with higher
diversity is preferred to increase the generalization ability
of model. So the ranking by content diversity is τ Icd =
{DI1 ,DI2 ,DI3 ,DI4 ,DI6 ,DI5}. For 4 text datasets, content
diversity are 8.571, 8.379, 7.531 and 8.826, with the average
deviation 0.113. Similarly, a dataset with higher diversity is
better to train a robust sentiment classification model, thus
ranking of these datasets is τTcd = {DT4

,DT1
,DT2

,DT3
}.

3) Completeness. Since the ImageNet dataset has category
labels, other datasets do not, so it is at the first position
of the ranking τ Ico, and the other five datasets are after
it. For text datasets, all text reviews have corresponding
sentiment labels, so they are all at the same position in
the ranking τTco. Appropriate amount. The size of each
dataset DIi ∈ DI , DTi ∈ DT does not exceed the op-
timal size of data that is appropriate for image classifica-
tion/sentiment analysis [14], [27], thus we rank them by
their sizes. That are τ Ia = {DI1 ,DI6 ,DI2 ,DI3 ,DI5 ,DI4}
and τTa = {DT1 ,DT2 ,DT4 ,DT3}. Timeliness. The tasks in
our experiments (e.g., classification tasks for images and text
documents) are insensitive to the two factors (currency and
volatility), so every dataset’s timeliness is 1 and it is a tie in
terms of timeliness.
D. Rank Aggregation

After obtaining rankings τ I1 , τ
I
2 , . . . , τ

I
n of image datasets

and rankings τT1 , τT2 , . . . , τTn of text datasets for every quality
dimension, we use the rank aggregation algorithm to find

(a) Task relevancy. (b) Runtime.

Fig. 10. The task relevancy and its runtime for datasets composed of images
from same categories with the sample dataset.

(a) Task relevancy. (b) Runtime.

Fig. 11. The task relevancy and its runtime for datasets composed of images
from same categories with the sample dataset.

(a) Content diversity. (b) Runtime.

Fig. 12. The content diversity and its runtime of calculating content diversity
for images.

the optimal rankings σI and σT , given the tasks of training
classification models for images and sentiment analysis for
texts. When the weights of all quality dimensions are set to
be the same (e.g., μi = 1.0, i ∈ [1, n]), the optimal ranking
for image datasets is σI = {DI1 ,DI2 ,DI3 ,DI5 ,DI4 ,DI6},
and for text datasets is σT = {DT4

,DT1
,DT2

,DT3
}.

Rationality and interpretability analysis. For image
datasets, the result ranking σI is consistent with the experience
recognition, in that ImageNet is most suitable for the task of
image classification. For text datasets, we trained and tested
a convolutional neural network [6] for sentiment classification
using all 4 datasets. The accuracies of four datasets are
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{80.09%, 47.35%, 93.16%, 84.61%} respectively. Comparing
the model accuracy ranking with dataset quality ranking, we
can conclude that datasets with higher task-oriented quality
can achieve better performances on the task with high prob-
ability. We further analyze that the inconsistence between the
model accuracy ranking and dataset quality ranking is caused
by equal weights wi of all quality dimensions in Eq. (6). Since
text sentiment classification requires high spelling and gram-
mar correctness, we increase the weight of correctness quality
to 2.0 and get the ranking σT = {DT3 ,DT4 ,DT1 ,DT2}, which
is consistent with the model accuracy ranking.

V. RELATED WORK.

Data quality has long been a critical part of information sys-
tem management. The literature on data quality management
(DQM) has defined and characterized different perspectives
of data quality and its management. The concept of “fitness
for use” is commonly adopted as the informal definition of
data quality. Empirical studies have shown that data quality is
perceived as a multi-dimensional concept [1], [2], [3], [4], [5],
[6]. Wang et al. [2] pointed out that high-quality data should be
intrinsically good, contextually appropriate for the task, clearly
represented, and accessible to data consumers. Existing efforts,
however, often focus on inherent quality of data, neglect
important contextual factors such as the target tasks or services
which have been shown to strongly influence perceptions
of data quality [4]. Most quality assessment methods pro-
pose various measurements, e.g., correctness and timeliness,
for structured data. Few works consider the general quality
measurements for unstructured data. Other works however
mainly measure quality of an individual data piece [5] other
than the quality of a collection of data pieces, while the
latter is more commonly used by present services. Besides,
simply averaging measurements of data pieces and neglecting
relationship among them fail to capture the characteristics of
a dataset. Finally, though various dimensions of data quality
have been proposed [1], few works attempt to fuse those
dimensions to get a comprehensive data quality assessment.

VI. CONCLUSION

In this work, we propose TODQA, a task-oriented data
quality assessment system that assesses and ranks datasets
by their overall quality. Both intrinsic and contextual quality
metrics are incorporated in the system. We improve efficiency
by proposing two fast calculation algorithms for two quality
dimensions, task relevancy and content diversity. Our exper-
iments on real datasets validate the feasibility and efficiency
of TODQA.
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