Under review as a conference paper at ICLR 2026

APPENDICES

In this supplementary material, we present additional details and clarifications that are omitted in
the main text due to space constraints.

* [Appendix A|Use of Large Language Models (LLMs).
* [Appendix B|Limitations.

* [Appendix C|Dataset Details.

. Implementation Details.

* [Appendix E|More Results.

A USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in limited ways during this work. Specifically, we used
LLM-based assistants to (i) improve sentence structure, paragraph organization, and grammar in
the writing process, and (ii) provide coding assistance such as debugging and suggesting alterna-
tive implementations. LLMs were not used for research ideation, experimental design, or analysis.
All scientific contributions, including problem formulation, methodology, experiments, and conclu-
sions, are solely the work of the authors.

B LIMITATIONS

While our framework demonstrates strong performance, there remain several opportunities for ex-
tension. First, our inverse dynamics model (IDM) currently focuses on a core set of primitive ac-
tions such as click, type, move, and scroll. More complex actions like drag-and-drop are not yet
supported, largely due to the absence of sufficient training data. Similarly, while our IDM predicts
scroll actions, we were unable to curate a large-scale, diverse dataset of scrolling behaviors from
web interactions, which limits its robustness in this dimension. Expanding the action space with
richer interaction types and collecting more representative scroll data are promising directions.

Second, our retrieval framework retrieves demonstrations at the granularity of full tasks. While
effective, this may not always align with the granularity needed by an agent during execution. Fu-
ture work could explore mechanisms to automatically merge shorter tasks into longer workflows,
or split lengthy tutorials into more targeted sub-trajectories. Such advances would enable finer-
grained retrieval and more flexible trajectory construction, ultimately improving the adaptability of
our approach.

We view these limitations not as fundamental barriers but as natural opportunities to further enhance
the scalability and generality of our framework.

C DATASET DETAILS

C.1 APPLICATIONS BY CATEGORY

We selected seven categories: Productivity, Programming, Design, Screen Editing, Audio Pro-
duction, System Ultilities, and Science & Data. These categories span a broad range of realistic
computer use. Productivity tools (e.g., Microsoft Office, Google Workspace) cover everyday doc-
ument and collaboration tasks, while Programming environments (e.g., VS Code, Jupyter) capture
software development workflows. Design (e.g., Photoshop, Figma), Screen Editing (e.g., Premiere
Pro, OBS Studio), and Audio Production (e.g., Audacity, FL Studio) extend to creative domains
with specialized interfaces. System Ultilities (e.g., Task Manager, Finder, Docker) test low-level sys-
tem interaction, and Science & Data tools (e.g., MATLAB, Tableau, SPSS) represent analytical and
visualization tasks.

Applications within each category were chosen for their widespread adoption, abundant tutorial
availability on YouTube, and ability to showcase the diverse interaction challenges agents must
master. While we focused on these applications, our method is not restricted to them: additional data

13

Under review as a conference paper at ICLR 2026

Category Applications

Productivity Microsoft Office, Google Workspace, Notion, Evernote, OneNote,
Trello, Asana, ClickUp, Monday.com, Slack, Microsoft Teams

Programming VS Code, PyCharm, IntelliJ IDEA, Eclipse, Android Studio, Xcode,
Jupyter Notebook, Google Colab, RStudio, Sublime Text, Atom,
GitHub Desktop

Design Adobe Photoshop, Adobe Illustrator, Adobe XD, Figma, Sketch, Canva,

CorelDRAW, Inkscape, Affinity Designer

Screen Editing Adobe Premiere Pro, Final Cut Pro, DaVinci Resolve, Camtasia, OBS
Studio, ScreenFlow, Filmora, iMovie

Audio Production Audacity, Adobe Audition, FL Studio, Logic Pro X, Ableton Live, Pro
Tools, Cubase, GarageBand

System Utilities Windows Task Manager, PowerShell, macOS Finder, Activity Monitor,
Disk Utility, Linux Terminal, Docker, VirtualBox, CCleaner, WinRAR,
7-Zip

Science & Data MATLAB, Mathematica, SPSS, SAS, Tableau, Power BI, Google Co-
lab, Jupyter Notebook, Stata, RapidMiner

Table 6: Applications grouped by category.

can be generated from any new tutorial videos available on the web. The distribution of applications
is in Table

D IMPLEMENTATION DETAILS

D.1 VIDEO RETRIEVAL

To build a large-scale dataset of application demonstrations, we require a method to identify rele-
vant tutorial videos from the web. YouTube is a natural source since it contains abundant tutorials
across productivity, programming, design, and other domains. However, naively searching by task
description may yield irrelevant or entertainment-focused videos. To address this, we designed a
dedicated prompt for generating targeted search queries.

The prompt (shown below) instructs a language model to act as an expert in YouTube search, taking
as input a task description and a list of related applications. It outputs a short and effective query
that emphasizes tutorials, how-to videos, and instructional content. By constraining queries to be
concise and domain-specific, this approach improves retrieval precision and reduces noise from
unrelated videos.

Prompt for Video Retreival Query Generation

You are an expert at creating YouTube search queries. Given a task instruction and related applications,
create a concise, effective search query that will find relevant tutorial videos.

Task: {instruction}
Related Applications: {related_apps}
Create a search query that would find helpful tutorial videos for this task. Focus on tutorial, how-to, or

instructional content. Keep it concise (under 10 words).
Search query:

D.2 VIDEO FILTERING

After retrieving candidate tutorials, many videos still contain irrelevant or low-quality content such
as talking-head introductions, presentation slides, or animated transitions. To ensure that our dataset
is composed of high-quality screen recordings that clearly demonstrate application use, we apply a
filtering step.

14

Under review as a conference paper at ICLR 2026

We design a prompt that instructs a language model to act as a visual classifier. Given a single frame
from a video, the model assigns both a categorical label (e.g., clean screencast, zoomed screencast,
talking head) and a quality score between 0.0 and 1.0. We retain only those videos where the average
frame score exceeds 0.8, which empirically yields a reliable set of clean tutorial screencasts. This
threshold balances recall and precision: it removes noisy or non-screencast content while retaining
a broad coverage of genuine tutorials.

Prompt for Video Filtering

You are a visual classifier helping to filter video tutorial frames for clean screencast content.
Your task is to classify an input image (a single frame from a video) and provide a quality score.

Classify the image into one of these categories:
1. Clean Screencast: Full desktop screen showing software interface, application window, code editor,
browser, or terminal. Clear, unzoomed view of the entire screen or application window.

2. Zoomed Screencast: Screenshot that has been zoomed in or cropped, showing only part of the
screen or interface elements.

3. Animated/Transition: Frames with animations, transitions, intro/outro effects, or visual effects that
are not static screencast content.

4. Talking Head: Person’s face or upper body from webcam, typically in corner or overlay.

5. Slide/Presentation: Static presentation slide, diagram, or text-heavy content.

6. Other: Content that doesn’t fit the above categories.

For each classification, also provide a quality score from 0.0 to 1.0: - 1.0: Perfect clean screencast -

0.8-0.9: Good screencast with minor issues - 0.6-0.7: Acceptable screencast - 0.4-0.5: Poor quality or
partially zoomed - 0.0-0.3: Very poor or not screencast

Return your response in this format: Category: [category name] Quality: [score] Reason: [brief expla-
nation]

D.3 MODELS

For in-context learning evaluations we query API-based models using their latest public versions:
Google Gemini 2.5 Flash (gemini-2.5-flash), OpenAl 03 (03-2025-04-16), and An-
thropic Claude 4 Sonnet (claude-4-sonnet-20250514). We use deterministic decoding with
temperature set to 0.0.

For IDM training, we use the AdamW optimizer with a learning rate of 3e—4, batch size 256, and
cosine learning rate decay. Training is run for 15 epochs on 8 X A100 GPUs (80GB) with gradient
clipping at 1.0 and mixed-precision (bfloat16). For supervised fine-tuning of CUAs, we follow the
official training recipes from UI-TARS-1.5 and Qwen 2.5-VL, adapting batch size to fit the same
hardware setup.

E MORE RESULTS

E.1 WHAT IS THE EFFECT OF DATA SCALE FOR SUPERVISED FINE-TUNING?

Model Base 10k 25k Full
Qwen 2.5-VL 1.9 33 49 13.0

Table 7: Data scaling results on OSWorld with Qwen 2.5-VL. Performance improves as training
data increases from 10k to 25k and the full dataset.

We study how scaling the number of training trajectories affects the performance of Qwen 2.5-VL on
OSWorld. As shown in Table[7] success rates increase from 1.9% with the base model to 3.3% with
10k trajectories, 4.9% with 25k trajectories, and 13.0% with the full dataset. The improvement is
closer to exponential than linear, suggesting that a minimum critical mass of data is required before
substantial gains emerge.

15

Under review as a conference paper at ICLR 2026

We hypothesize that this behavior arises because Qwen must learn both grounding and planning
from the video-derived trajectories. With limited data, the model struggles to acquire either capabil-
ity robustly, leading to only small improvements. Once enough trajectories are available, however,
Qwen begins to effectively integrate grounding of UI states with coherent planning patterns, produc-
ing sharper gains. This indicates that further scaling of high-quality trajectories could unlock even
larger benefits.

E.2 WHICH APPLICATION DOMAINS BENEFIT MOST FROM OUR DATA?

Setting Category Model chrome gimp lo_calc lo_impress lo_writer —multi_apps os thunderbird vilc vs_code Total
Gemini 2.5 Flash 8 8 4 3 5 9 10 6 5 12 70
+ W&L 10(+3) 10 (+2) 4 5 5 9 10 8 (+2) 8(+3) 12 81 (+11)
General 03 6 10 5 5 7 15 15 4 7 9 83
IcL Models +W&L 9(+3) 13(+2) 7(+D 7 7 18 (+1) 15 4 9 (+2) 9 98 (+9)
Claude 4 Sonnet 25 13 15 22 14 27 11 11 7 14 159
+W&L 27 (+2) 15(+2) 15 22 14 27 11 11 9 (+2) 14 169 (+6)
Agentic Jedi 26 21 19 21 15 32 13 12 10 13 182
Framework — + W&L 29 (+3) 23(+2) 19 23 (+2) 15 32 13 12 12 (+2) 13 191 (+9)
UI-TARS-7B 11 15 6 14 9 5 8 4 6 15 93
SFT Open-Weight + W&L 13(+2) 17(+2) 8(+2) 16 (+2) 9 7 (+2) 8 4 (+2) 7 (+2) 15 104 (+14)
Models Qwen 2.5-VL 7B 4 1 0 0 2 0 0 2 2 0 7
+W&L 12(+8) 10(+9) 3(+3) 1(+1) 2 1(+D 5(+5) 4(+2) 6(+4) 4(+4) 48 (+41)

Table 8: Detailed OSWorld category-wise task successes. W&L provides the strongest improve-
ments in domains with abundant specialized tutorials (e.g., Chrome, Gimp, VLC), while gains are
smaller in domains requiring heavy text entry, rare actions, or fine-grained control.

To better understand the strengths and limitations of our approach, we break down results by appli-
cation domain on OSWorld. Table([8|reports task successes for general-purpose models (03, Claude 4
Sonnet), the Jedi agentic framework, and the open-source model UI-TARS-7B, both with and with-
out W&L exemplars or training data.

The largest improvements are observed in chrome, gimp, and vlc. These domains benefit
strongly from specialized procedural knowledge that is well covered by online tutorials, such as
configuring browser settings, editing images, or adjusting media player preferences. The presence
of abundant, step-by-step demonstrations in these categories enables our pipeline to extract high-
quality trajectories that transfer effectively to downstream agents.

By contrast, the gains are smaller in domains such as vscode and os, which often require extensive
text entry or code manipulation—capabilities that are less easily captured by our current action
set. Improvements are also limited in thunderbird and LibreOffice applications (1o.calc,
lo.writer, lo.impress), where high-quality tutorials are scarce and tasks sometimes involve
fine-grained interactions such as dragging objects or manipulating small interface elements. These
are challenging for our IDM that does not yet support drag-and-drop actions.

Overall, this breakdown highlights a key property of our approach: it yields the largest benefits in
domains where web tutorials are both plentiful and aligned with the action space of the agent, while
leaving room for future extensions in text-heavy or fine-grained interaction domains.

16

	Introduction
	Related Work
	Data Synthesis for Computer Use Agents
	In-context Learning for Agents

	Method
	Inverse Dynamics Model
	Data Generation from Videos
	Applications of Trajectories
	In-Context Learning
	Supervised Fine-Tuning

	Experiments
	Setup
	Models
	Datasets

	Results and Analysis
	How much do labeled trajectories help in in-context learning?
	How does label accuracy impact performance?
	What is the effect of retrieval quality for in-context learning?

	Conclusion and Future Work
	Use of Large Language Models (LLMs)
	Limitations
	Dataset Details
	Applications by Category

	Implementation Details
	Video Retrieval
	Video Filtering
	Models

	More Results
	What is the effect of data scale for supervised fine-tuning?
	Which application domains benefit most from our data?

