Supplementary Material Codec Avatar Studio: Paired Human Captures for Complete, Driveable, and Generalizable Avatars

Julieta Martinez¹, Emily Kim², Javier Romero¹, Timur Bagautdinov¹, Shunsuke Saito¹, Shoou-I Yu¹, Stuart Anderson¹, Michael Zollhöfer¹, Te-Li Wang¹, Shaojie Bai¹, Shih-En Wei¹, Rohan Joshi¹, Wyatt Borsos¹, Tomas Simon¹, Jason Saragih¹, Paul Theodosis¹, Alexander Greene¹, Anjani Josyula¹, Silvio Mano Maeta¹, Andrew I. Jewett¹, Simon Venshtain¹, Christopher Heilman¹, Yueh-Tung Chen¹, Sidi Fu¹, Mohamed Ezzeldin A. Elshaer¹, Tingfang Du¹, Longhua Wu¹, Shen-Chi Chen¹, Kai Kang¹, Michael Wu¹, Youssef Emad¹, Steven Longay¹, Ashley Brewer¹, Hitesh Shah¹, James Booth¹, Taylor Koska¹, Kayla Haidle¹, Matt Andromalos¹, Joanna Hsu¹, Thomas Dauer¹, Peter Selednik¹, Tim Godisart¹, Scott Ardisson¹, Matthew Cipperly¹, Ben Humberston¹, Lon Farr¹, Bob Hansen¹, Peihong Guo¹, Dave Braun¹, Steven Krenn¹, He Wen¹, Lucas Evans¹, Natalia Fadeeva¹, Matthew Stewart¹, Gabriel Schwartz¹, Divam Gupta¹, Gyeongsik Moon¹, Kaiwen Guo¹, Yuan Dong¹, Yichen Xu¹, Takaaki Shiratori¹, Fabian Prada¹, Bernardo R. Pires¹, Bo Peng¹, Julia Buffalini¹, Autumn Trimble¹, Kevyn McPhail¹, Melissa Schoeller¹, Yaser Sheikh¹

> ¹Codec Avatars Team, Meta Reality Labs Research ² Robotics Institute, Carnegie Mellon University

In this Supplementary Material we provide more details on our dataset and open source releases. We start with Ava-256, and continue with Goliath-4.

1 Ava-256

As promised in the main submission, we provide a comprehensive list of previous datasets compared with the Ava-256 in Table 1. We include smaller scale datasets first—those with fewer than 60 ids or less than 20 views, then larger-scale datasets, finally ours for comparison.

Dataset name	IDs	Views	Sentences + expressions	Images	Resolution	Size	Headset captures
D3DFACS ⁶ [2]	10	6	19-97	-	1280×1024	-	x
CMU Multi-PIE [4]	337	15	6	750K	3072×2048	0.3 TB	Х
$4DFAB^{6}[1]$	180	7	15	-	1600×1200	-	Х
MEAD [8]	48	7	(8)	-	1920×1080	0.9 TB	Х
Interdigital Light-Field [7]	5	16	-	-	2048×1088	0.1 TB	Х
Multiface [9]	13	40/150	168	15M	2048×1334	65.0 TB	Х
NerSemble [5]	222	16	25	31.7M	3208×2200	1.0 TB	X
HUMBI Face [12]	617 ¹	68	20	17.3M	200×150^{5}	1.3 TB	,
Facescape [10]	359^{2}	68	20	400K	4344×2896	0.9 TB	,
<i>i3DMM</i> ⁴ [11]	64	137	10	-	-	-	,
RenderMe-360 [6]	500 ³	60	37/54	243M	2448×2048	5.8 TB)
Ava-256 Dome Captures (Ours)	256	80	35	217 M	2048 imes 1334	32.0 TB	~

Table 1: Summary of multi-view face datasets. Smaller scale dataset (fewer than 60 ids or 20 views) as shown first, then large-scale datasets, then ours.

We only found the data of 403 subjects available online. We have contacted the authors to clarify this discrepancy.

² Out of 847 total subjects captured, only 359 subjects are available with multi-view image data.

³ 500 captures are expected to be released later this year, but only 21 subjects are currently available online. 5.8 TB is the size of this smaller subset containing about 4.2 % of the data, so we expect the final release size to be well over 100 TB. ⁴ We requested access to the dataset on May 20th but have not heard back at the time of submission, and are thus unable to obtain

more data about this dataset.

The head images are cropped from the full-body 1920×1080 image, and are thus of low resolution.

⁶ Dataset was not available on the website.

Dataset documentation and intended uses. We provide a dataset datasheet in the format proposed by Gebru et al. [3] at https://github.com/facebookresearch/ava-256/blob/main/ DATASHEET.md.

Dataset and code URL. The URL for this dataset and associated code is https://github.com/ facebookresearch/ava-256. The README.md file has instructions on how to download the data. We provide a simple python script (download.py) to download the entire dataset. The script can be customized to download only certain assets, or a subset of the captures.

URL to Croissant metadata record. We have chosen not to provide a Croissant metadata record for our dataset.

Author statement. The authors confirm that they bear responsibility in case of violation of rights. The authors also confirm that the code and data are released under the CC-by-NC 4.0 License.

Hosting, licensing and maintenance plan. Our dataset is hosted in a public S3 bucket in AWS. Please refer to download.py, our script which downloads all our data. The data, code and model weights are available under the CC-by-NC 4.0 License. Maintenance is done by the Codec Avatars Team at Reality Labs Research within Meta.

2 **Goliath-4**

Dataset documentation and intended uses. We provide a dataset datasheet in the format proposed by Gebru et al. [3] at https://github.com/facebookresearch/goliath/blob/main/ DATASHEET.md.

Dataset and code URL. The URL for this dataset and associated code is https://github.com/ facebookresearch/goliath.

URL to Croissant. We have chosen not to provide a Croissant metadata record for our dataset.

Author statement. The authors confirm that they bear responsibility in case of violation of rights. The authors also confirm that the code and data are released under the CC-by-NC 4.0 License.

Hosting, licensing and maintenance plan. Due to the sensitive nature of the minimally-clothed captures, this dataset is hosted at the moment as zips protected by password, and users should email javierromero1@meta and julietamartinez@meta.com to obtain access to the password.

We have uploaded the links to the full 4 TB dataset at https://fb-baas-f32eacb9-8abb-11eb-b2b8-4857dd089e15.s3.amazonaws.com/goliath-for-review-full/index.html.

To ease the job of reviewers, we provide a small sample with 100 frames of each capture, which can be used to run the baselines that we provide. The size of each small sample is less than 5 GB, and the combined size of all samples is only 39 GB. The links to download the smaller samples are available at https://fb-baas-f32eacb9-8abb-11eb-b2b8-4857dd089e15.s3. amazonaws.com/goliath-for-review-100frames/index.html.

The password for all the zip files is RLR-2015-2024.

The data, code and model weights are available under the CC-by-NC 4.0 License. Maintenance is done by the Codec Avatars Team at Reality Labs Research within Meta.

References

- S. Cheng, I. Kotsia, M. Pantic, and S. Zafeiriou. 4DFAB: A large scale 4D database for facial expression analysis and biometric applications. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, June 2018.
- [2] D. Cosker, E. Krumhuber, and A. Hilton. A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 2296–2303, 11 2011. doi: 10.1109/ICCV. 2011.6126510.
- [3] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and K. Crawford. Datasheets for datasets. *Communications of the ACM*, 64(12):86–92, 2021.
- [4] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-PIE. In Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, pages 1–8, 2008. doi: 10.1109/AFGR.2008.4813399.
- [5] T. Kirschstein, S. Qian, S. Giebenhain, T. Walter, and M. Nießner. NeRSemble: Multi-view radiance field reconstruction of human heads. ACM Transactions on Graphics, 42(4), jul 2023. ISSN 0730-0301. doi: 10.1145/3592455. URL https://doi.org/10.1145/3592455.
- [6] D. Pan, L. Zhuo, J. Piao, H. Luo, W. Cheng, Y. Wang, S. Fan, S. Liu, L. Yang, B. Dai, Z. Liu, C. C. Loy, C. Qian, W. Wu, D. Lin, and K.-Y. Lin. RenderMe-360: Large digital asset library and benchmark towards high-fidelity head avatars. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023.
- [7] N. Sabater, G. Boisson, B. Vandame, P. Kerbiriou, F. Babon, M. Hog, T. Langlois, R. Gendrot, O. Bureller, A. Schubert, and V. Allie. Dataset and pipeline for multi-view light-field video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2017.
- [8] K. Wang, Q. Wu, L. Song, Z. Yang, W. Wu, C. Qian, R. He, Y. Qiao, and C. C. Loy. Mead: A large-scale audio-visual dataset for emotional talking-face generation. In *Proceedings of the European Conference on Computer Vision*, 2020.
- [9] C.-h. Wuu, N. Zheng, S. Ardisson, R. Bali, D. Belko, E. Brockmeyer, L. Evans, T. Godisart, H. Ha, X. Huang, A. Hypes, T. Koska, S. Krenn, S. Lombardi, X. Luo, K. McPhail, L. Millerschoen, M. Perdoch, M. Pitts, A. Richard, J. Saragih, J. Saragih, T. Shiratori, T. Simon, M. Stewart, A. Trimble, X. Weng, D. Whitewolf, C. Wu, S.-I. Yu, and Y. Sheikh. Multiface: A Dataset for Neural Face Rendering. In *arXiv*, 2022. doi: 10.48550/ARXIV.2207.11243. URL https://arxiv.org/abs/2207.11243.
- [10] H. Yang, H. Zhu, Y. Wang, M. Huang, Q. Shen, R. Yang, and X. Cao. FaceScape: A large-scale high quality 3D face dataset and detailed riggable 3D face prediction. In *Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition*, June 2020.

- [11] T. Yenamandra, A. Tewari, F. Bernard, H. Seidel, M. Elgharib, D. Cremers, and C. Theobalt. i3DMM: Deep implicit 3D morphable model of human heads. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, June 2021.
- [12] Z. Yu, J. S. Yoon, I. K. Lee, P. Venkatesh, J. Park, J. Yu, and H. S. Park. HUMBI: A large multiview dataset of human body expressions. In *Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition*, June 2020.