
Published in Transactions on Machine Learning Research (03/2025)

- Appendix -

FedDr+: Stabilizing Dot-regression with Global Feature Distillation
for Federated Learning

The notations and pseudo code of FedDr+ and FedDr+FT are organized in Appendix A. In Appendix B,
we provide a detailed explanation of the pulling and pushing gradients of the CE loss. In Appendix C,
we provide a theoretical analysis of dot-regression, focusing on the feature vector gradient of the loss and
its implications under the NTK framework, particularly for unobserved classes. The experimental setup is
described in Appendix D, which includes code implementation, dataset descriptions, model specifications,
optimizer settings, NIID partition, and the hyperparameter search process. Additional experimental results,
including further analysis on the synergy effect and PFL, as well as results on IID dataset performance,
scalability experiments, and stochastic client data settings, are presented in Appendix E.

A Notations, Pseudo Code of FedDr+ and FedDr+ FT

In this section, we first introduce the key notations used in our method and then present the pseudocode for
FedDr+ and FedDr+FT. The pseudocode provides a clear and concise implementation guide for both global
federated learning (GFL) with FedDr+ and personalized federated learning (PFL) with FedDr+FT.

A.1 Main Notations

To maintain clarity, Table 6 defines key indices, datasets, model parameters, and computations in alg and
FedDr+FT, forming the basis for our method and analysis.

Table 6: Notations used throughout the paper.

Indices
c ∈ [C] Index for a class
r ∈ [R] Index for FL round
i ∈ [N] Index for a client
Dataset
Di

train Training dataset for client i
Di

test Test dataset for client i
(x, y) ∈ Di

train,test ; (x, y) ∼ Di Data on client i sampled from distribution Di

(x: input data, y: class label)
Oi Dataset consists of observed classes in client i
U i Dataset consists of unobserved classes in client i

Parameters
θ Feature extractor weight parameters
V = [v1, . . . , vC] ∈ RC×d Classifier weight parameters (frozen during training)
vc, c ∈ [C] c-th row vector of V
Θ = (θ, V) All model parameters
Θg

r = (θg
r , V) Aggregated global model parameters at round r

Θi
r = (θi

r, V) Trained model parameters on client i at round r

Model Forward
p(x; θ) ∈ RC Softmax probability of input x
pc(x; θ), c ∈ [C] c-th element of p(x; θ)
LCE(x; θ) = − log py(x; θ) Cross-entropy loss of input x
f(x; θ) ∈ Rd Feature vector of input x
z(x; θ) = f(x; θ)V ⊤ ∈ RC Logit vector of input x
zc(x; θ), c ∈ [C] c-th element of z(x; θ)

18

Published in Transactions on Machine Learning Research (03/2025)

A.2 Pseudo Code of FedDr+ and FedDr+ FT

We now present the pseudocode for FedDr+ and FedDr+FT, outlining their key operations for global and
personalized federated learning. The algorithm consists of two main stages:

Algorithm 1 FedDr+, FedDr+FT
Input: Total rounds R, local epochs E, training dataset Di

train for client i, sampled client set N (r) ⊂ [N] at
round r, learning rate η(r) at round r

1 Initial Parameters: ETF Classifier V, Initial global model parameters Θg
0 = (θg

0 , V)

2 for i = 1, . . . , N do
3 Server broadcasts V to client i

4 /** STEP 1: Get a GFL Model Θg
R of FedDr+ **/

for r = 1, . . . , R do
5 Server samples clients N (r) and broadcasts θi

r ← θg
r−1 for each client i ∈ N (r) in parallel do

6 for Local Steps e = 1, . . . , E do
7 for Batches j = 1, . . . , B do
8 θi

r ← θi
r − η(r)∇LDr+([Di

train]j ; θi
r, θg

r−1, V) Using [Equation (1)]

9 Upload θi
r to server

10 Server Aggregation: θg
r ← 1

|N(r)|
∑

i∈N(r) θi
r

11 GFL output: Θg
R = (θg

r , V)

12 /** STEP 2: Get a PFL Models {Θi
R+1}N

i=1 of FedDr+FT **/
for i = 1, . . . , N do

13 Server broadcasts θi
R+1 ← θg

R to client i
for Local Steps e = 1, . . . , E do

14 for Batches j = 1, . . . , B do
15 θi

R+1 ← θi
R+1 − η(R)∇LDr+([Di

train]j ; θi
R, θg

R, V) Using [Equation (1)]

16 PFL outputs: {Θi
R+1 = (θi

R+1, V)}N
i=1

B Preliminaries: Pulling and Pushing Feature Gradients in CE

In this section, we first compute the classifier’s gradient with respect to the features. Next, we explain how
the cross-entropy loss draws the pulling and pushing effects.

B.1 Feature Gradient of LCE

We begin by presenting two lemmas that support Proposition 1 and clarify pulling and pushing feature
gradients in the cross-entropy (CE) loss.

Lemma 1. For all c, c′ ∈ [C], ∂pc′(x; θ)
∂zc(x; θ) =

{
pc(x; θ) · (1− pc(x; θ)) if c = c′

−pc(x; θ) · pc′(x; θ) otherwise
.

Proof. Note that p(x; θ) =
[

exp(zj(x; θ))∑C
i=1 exp(zi(x; θ))

]C

j=1
∈ RC . Then,

(i) c = c′ case:

∂pc(x; θ)
∂zc(x; θ) = ∂

∂zc(x; θ)

{
exp(zc(x; θ))∑C
i=1 exp(zi(x; θ))

}
=

exp(zc(x; θ))
(∑C

i=1 exp(zi(x; θ))
)
− exp(zc(x; θ))2(∑C

i=1 exp(zi(x; θ))
)2

= pc(x; θ)− pc(x; θ)2 = pc(x; θ)(1− pc(x; θ)).

19

Published in Transactions on Machine Learning Research (03/2025)

(ii) c ̸= c′ case:

∂pc′(x; θ)
∂zc(x; θ) = ∂

∂zc(x; θ)

{
exp(zc′(x; θ))∑C
i=1 exp(zi(x; θ))

}
= − exp(zc(x; θ)) exp(zc′(x; θ))(∑C

i=1 exp(zi(x; θ))
)2

= −pc(x; θ)pc′(x; θ).

Lemma 2. ∇z(x;θ)LCE(x, y; θ) = p(x; θ)− ey, where ey ∈ RC is the unit vector with its y-th element as 1.

Proof.
∂LCE(x, y; θ)

∂zc(x; θ) = − ∂

∂zc(x; θ) log py(x; θ) = − 1
py(x; θ)

∂py(x; θ)
∂zc(x; θ)

=
{

pc(x; θ)− 1 if c = y

pc(x; θ) else
= pc(x; θ)− 1{c = y}.

The last equality holds by Lemma 1. Therefore, the desired result is satisfied.

Proposition 1. Given (x, y), the gradient of the LCE with respect to f(x; θ) is given by:

∇f(x;θ)LCE(x, y; θ) = −(1− py(x; θ))vy +
∑

c∈[C]\{y}

pc(x; θ)vc (2)

Proof.
∇f(x;θ)LCE(x, y; θ)=

[
∇f(x;θ)z1(x; θ)

∣∣ · · · ∣∣∇f(x;θ)zC(x; θ)
]
∇z(x;θ)LCE(x, y; θ)

=
C∑

c=1

∂LCE(x, y; θ)
∂zc(x; θ) ∇f(x;θ)zc(x; θ)

= ∂LCE(x, y; θ)
∂zy(x; θ) ∇f(x;θ)zy(x; θ) +

∑
c∈[C]\{y}

∂LCE(x, y; θ)
∂zc(x; θ) ∇f(x;θ)zc(x; θ)

= ∂LCE(x, y; θ)
∂zy(x; θ) vy +

∑
c∈[C]\{y}

∂LCE(x, y; θ)
∂zc(x; θ) vc

= −(1− py(x; θ))vy +
∑

c∈[C]\{y}

pc(x; θ)vc.

Applying the chain rule for the second step and invoking Lemma 2 for the final equality confirms the result.

B.2 Physical Meaning of ∇f(x;θ)LCE(x, y; θ)

The gradient ∇f(x;θ)LCE(x, y; θ) consists of two components:

FPull =
(
1− py(x; θ)

)
vy,

FPush = −
∑

c∈[C]\{y}

pc(x; θ)vc.

FPull moves the feature vector towards the classifier vector vy of the true class, promoting alignment. In
contrast, FPush moves it away from the classifier vectors vc for c ∈ [C] \ {y}, inducing misalignment.

20

Published in Transactions on Machine Learning Research (03/2025)

C Theoretical Perspective of Dot-Regression (DR)

In this section, we provide a theoretical analysis of dot-regression (DR) loss in the context of feature-classifier
alignment. We first derive the feature gradient of LDR and analyze its effect on feature updates. We then
present an NTK-based perspective explaining why dot-regression struggles with unobserved classes in FL.
Finally, we compare DR with cross-entropy (CE) loss to highlight its limitations and the necessity of feature
distillation.

C.1 Feature Gradient of LDR

In this subsection, we derive the gradient of dot-regression loss with respect to the feature vector on the
observed classes.
Theorem C.1. Given (x, y), the gradient of the LDR with respect to f(x; θf) is given by:

∇f(x;θf)LDR(x, y; θ) = − 1− cos α

∥f(x; θf)∥2

{
Vy − cos α

f(x; θf)
∥f(x; θf)∥2

}
,

where cos α = f(x; θf)⊤

∥f(x; θf)∥2
Vy.

Proof.

∇f(x;θf)LDR(x, y; θ) = ∇f(x;θf)

{
1
2

(
f(x; θf)T

∥f(x; θf)∥2
Vy − 1

)2}

=
(

f(x; θf)T

∥f(x; θf)∥2
Vy − 1

)
∇f(x;θf)

f(x; θf)T

∥f(x; θf)∥2
Vy

=
(

f(x; θf)T

∥f(x; θf)∥2
Vy − 1

) [
1

∥f(x; θf)∥2

{
I − f(x; θf)f(x; θf)T

∥f(x; θf)∥2
2

}
Vy

]

= − 1− cos α

∥f(x; θf)∥2

{
Vy − cos α

f(x; θf)
∥f(x; θf)∥2

}
.

C.1.1 Physical Meaning of ∇f(x;θ)LDR(x, y; θ)

According to Theorem C.1, the change in the feature vector ∆f(x; θf) is given by:

∆f(x; θf) = η
1− cos α

∥f(x; θf)∥2

(
Vy − cos α

f(x; θf)
∥f(x; θf)∥2

)
,

where η is the learning rate and α is the angle between the feature vector f(x; θf) and the target vector Vy.

The term inside the parentheses, Vy − cos α
f(x;θf)

∥f(x;θf)∥2
, represents a component orthogonal to f(x; θf) that

points towards Vy. This component adjusts f(x; θf) to increase its cosine similarity with Vy while also
expanding its norm.

The scaling factor 1−cos α
∥f(x;θf)∥2

determines the update magnitude. As training progresses, f(x; θf) aligns more
closely with Vy, reducing 1−cos α and increasing ∥f(x; θf)∥2. Consequently, ∆f(x; θf) diminishes over time,
reflecting convergence as the cosine similarity with Vy approaches its maximum.

Figure 8 illustrates this process, showing how the orthogonal component drives both the rotation and scaling
of f(x; θf) toward alignment with Vy.

21

Published in Transactions on Machine Learning Research (03/2025)

Figure 8: Feature gradient of LDR. The gradient update rotates f(x; θf) toward Vy while increasing its norm.
As training progresses, the update magnitude decreases, leading to convergence.

C.2 NTK Perspective: Why Dot-Regression in FL Fails on Unobserved Classes

In this subsection, we analyze why dot-regression struggles with unobserved classes under the Neural Tangent
Kernel (NTK) regime (Jacot et al., 2018). In the NTK regime, the feature gradient of any input is a weighted
sum of the feature gradients from training samples. Assuming the network width is sufficiently wide, these
weights depend only on the pair of inputs, the initialization distribution, such as He initialization (Glorot &
Bengio, 2010b), and the activation functions.§ The NTK regime holds when the setting where every layer
in the neural network has infinite width, with parameters initialized i.i.d. This section explains how NTK-
based gradient updates fail to align feature vectors with unobserved class directions, which leads to poor
generalization in FL.

C.2.1 Gradient Flow in the NTK Regime

We treat gradient descent as a continuous process. P is the number of trainable parameters in the feature
extractor, and θp (p ∈ [P]) denote each parameter. We focus on a specific client, denoted by i.

During training, gradient descent updates the model parameters to minimize the loss function. As below, we
can see the evolution of the function f(x; θ(t)) can be analyzed using the kernel Θ(L)(t)(x, xi), which evolves
along the training process:

df(x; θ(t))
dt

=
P∑

p=1

(∂f(x; θ(t))
∂θp

)⊤ dθp

dt
(Chain Rule)

= −
P∑

p=1

(∂f(x; θ(t))
∂θp

)⊤ 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

∂f(x̃; θ(t))
∂θp

∇f(xi;θ)L(x̃, ỹ; θ) (Gradient Descent)

= − 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

(P∑
p=1

(∂f(x; θ(t))
∂θp

)⊤ ∂f(x̃; θ(t))
∂θp︸ ︷︷ ︸

Θ(L)(t)(x,x̃)∈Rd×d

)
∇f(x̃;θ)L(x̃, ỹ; θ)

= − 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

Θ(L)(t)(x, x̃)∇f(x̃;θ)L(x̃, ỹ; θ) .

§In practice, finite-width effects cause deviations from the ideal NTK behavior.

22

Published in Transactions on Machine Learning Research (03/2025)

In the NTK regime with infinitely large widths, the matrix Θ(L)(t)(x, x̃) converges to a scalar multiple of
the identity matrix, Θ(L)

∞ (x, x̃)I. Furthermore, with the same condition, this scalar kernel remains constant
throughout training (Jacot et al., 2018; Yang, 2020; Belfer et al., 2021), though finite-width effects may
introduce small variations. In the NTK regime, the gradient descent dynamics are given by:

df(x; θ(t))
dt

= − 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

Θ(L)
∞ (x, x̃)︸ ︷︷ ︸

∈ R

∇f(xi;θ)L(x̃, ỹ; θ) . (in NTK Regime)

Thus, Θ(L)
∞ (x, x̃) determines how each training sample x̃ influences an arbitrary input x, and in NTK regime,

this weight depends only on the initialization distribution.

In Federated Learning (FL), local models are independently updated on different clients before aggregation.
Under the NTK regime, each client follows the gradient flow during local training. FL aggregation then
combines feature representations learned from different data distributions, leading to shifts in the global
feature representation. By aggregating updates from multiple clients, FL integrates feature information from
clients that have observed missing classes, thereby improving feature alignment.

C.2.2 Limitations of Dot-Regression loss in FL under the NTK Regime

Dot-regression loss (Yang et al., 2022) speeds up the alignment of feature vectors f(x; θ) ∈ Rd (pre-classifier
layer outputs) with the true class direction vy by minimizing the cosine angle:

LDR(x, y; θ, V) = 1
2

(
cos

(
f(x; θ), vy

)
− 1

)2
.

This loss function is motivated by the decomposition of cross-entropy (CE) loss gradients into pulling and
pushing components. Prior work suggests that removing the pushing effect in CE can improve conver-
gence (Yang et al., 2022; Li & Zhan, 2021).

Let c be an unobserved class for a specific client i with the classifier vector vc. From Theorem C.1, it follows
that under the NTK regime, the gradient descent process on the client i is independent of vc for arbitrary
input x.

To analyze this, we first express the feature gradient under the dot-regression loss LDR in the local learning
stage. For simplicity, we omit the dependence on θ(t) in the feature notation and write cos(f(x̃; θ(t)), vy) as
cos(f(x̃), vy). The feature gradient is given by:

df(x)
dt

= 1
|Di

train|
∑

y∈Oi

∑
(x̃,y)∈Di

train

Θ(L)
∞ (x, x̃)1− cos(f(x̃),vy)

∥f(x̃)∥2

(
vy − cos(f(x̃),vy) f(x̃)

∥f(x̃)∥2

)
. (in NTK Regime)

Since c /∈ Oi, the feature gradient evaluated on training data does not depend on vc. Given that feature
gradients are a weighted sum over training data in the NTK regime, this implies that the learned feature
representation for an arbitrary input remains unaffected by vc during local training.

Therefore, dot-regression cannot align features with unobserved classes in local training. To examine this
effect more closely, consider two cases f1(x) and f2(x) with the same input x with label c, whose settings
and initialization at time t = 0 are identical except for the classifier vector vc of class c, fixed with w and
−w (∥w∥ = 1, ∀y ∈ Oi : w ⊥ vy). In the NTK regime under the dot-regression loss, we have:

d
dt
⟨f(x), vc⟩ = − 1

|Di
train|

∑
y∈Oi

∑
(x̃,y)∈Di

train

Θ(L)
∞ (x, x̃)cos(f(x̃),vy)(1− cos(f(x̃),vy))

∥f(x̃)∥2
2

⟨f(x̃), vc⟩.

(in NTK Regime)

Since every term in the update equation is identical for f1(x) and f2(x), except for ⟨f(x̃), vc⟩, which takes
opposite values in each case, it follows that ⟨f1(x), vc⟩ = −⟨f2(x), vc⟩ for all time t ≥ 0. This demonstrates

23

Published in Transactions on Machine Learning Research (03/2025)

that classifier initialization strongly determines alignment in the local learning stage. Consequently, the
global aggregation stage is the only way to generalize to classes that haven’t been observed yet. This slows
down the overall accuracy of the FL server.

C.2.3 Cross-Entropy Loss and Feature-Classifier Alignment

In contrast, cross-entropy (CE) loss explicitly guides feature gradients toward vc, weighted by the softmax
probability pc and the NTK weight. This ensures that even when class c is absent, local training still produces
meaningful updates. After each global aggregation, the refined pc further strengthens alignment, allowing
CE to maintain consistent feature-classifier alignment across all classes.

This observation aligns with our empirical findings: without feature distillation, dot-regression struggles
to generalize to unobserved classes, whereas CE enables continuous feature updates, leading to improved
generalization.

24

Published in Transactions on Machine Learning Research (03/2025)

D Experimental Setup

This section details the code implementation, dataset descriptions, model specifications, optimizer settings,
non-IID (NIID) partitioning, and hyperparameter search process used in our experiments.

D.1 Code Implementation

Our implementations are conducted using the PyTorch framework. Specifically, the experiments presented in
Table 3 and Table 4 are executed on a single NVIDIA RTX 3090 GPU, based on the code structure from the
following repository: https://github.com/Lee-Gihun/FedNTD. The other parts of our study are carried
out on a single NVIDIA A5000 GPU, utilizing the code framework from https://github.com/jhoon-oh/
FedBABU.

D.2 Datasets, Model, and Optimizer

To simulate a realistic FL scenario, we conduct extensive studies on three widely used datasets: CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-100 Deng et al. (2009).
For each dataset, appropriate models are employed: VGG11 (Simonyan & Zisserman, 2014) for CIFAR-
10, MobileNet (Howard et al., 2017) for CIFAR-100, and ResNet-18 (He et al., 2016) for ImageNet-100. A
momentum optimizer is utilized for all experiments. The data preprocessing pipeline for the training phase
includes RandomResizedCrop, RandomHorizontalFlip, and Normalize transformations for all datasets.
During testing, only the Normalize transformation is applied for CIFAR-10 and CIFAR-100, while for
ImageNet-100, Resize, CenterCrop, and Normalize are applied. Unless otherwise noted, the basic setting
of our experiments follows the dataset statistics, FL scenario specifications, and optimizer hyperparameters
summarized in Table 7.

Table 7: Summary of Dataset, Model, FL System, and Optimizer Specifications

Datasets C |Dtrain| |Dtest| N R r E B m λ

CIFAR-10 10 50000 10000 100 320 0.1 10 50 0.9 1e-5
CIFAR-100 100 50000 10000 100 320 0.1 3 50 0.9 1e-5
ImageNet-100 100 130000 5000 100 320 0.1 5 50 0.9 1e-5

Note: In terms of dataset information, C represents the number of classes in the dataset, with |Dtrain| and
|Dtest| indicating the total numbers of training and test data used, respectively. For the federated learning
(FL) system specifics, R indicates the total number of FL rounds, r is the ratio of clients selected for each
round, and E denotes the number of local epochs. Local model training utilizes a momentum optimizer
where B is the batch size, and m and λ represent the momentum and weight decay parameters, respectively.
The initial learning rate η is decayed by a factor of 0.1 at the 160th and 240th communication rounds. The
initial learning rate η and the number of local epochs E were determined via extensive grid search for each
algorithm, with details outlined in Appendix D.4.

D.3 Non-IID Partition Strategies

To induce heterogeneity in each client’s training and test data (Di
train, Di

test), we distribute the entire class-
balanced datasets, Dtrain and Dtest, among 100 clients using both sharding and Latent Dirichlet Allocation
(LDA) partitioning strategies:

• Sharding (McMahan et al., 2017; Oh et al., 2022): We organize the Dtrain and Dtest by label and divide
them into non-overlapping shards of equal size. Each shard encompasses |Dtrain|

100×s and |Dtest|
100×s samples of the

same class, where s denotes the number of shards per client. This sharding technique is used to create
Di

train and Di
test, which are then distributed to each client i, ensuring that each client has the same number

of training and test samples. The data for each client is disjoint. As a result, each client has access to a

25

https://github.com/Lee-Gihun/FedNTD
https://github.com/jhoon-oh/FedBABU
https://github.com/jhoon-oh/FedBABU

Published in Transactions on Machine Learning Research (03/2025)

maximum of s different classes. Decreasing the number of shards per user s increases the level of data
heterogeneity among clients.

• Latent Dirichlet Allocation (LDA) (Luo et al., 2021; Wang et al., 2020a): We utilize the LDA technique
to create Di

train from Dtrain. This involves sampling a probability vector pc = (pc,1, pc,2, · · · , pc,100) ∼
Dir(α) and allocating a proportion pc,k of instances of class c ∈ [C] to each client k ∈ [100]. Here, Dir(α)
represents the Dirichlet distribution with the concentration parameter α. The parameter α controls the
strength of data heterogeneity, with smaller values leading to stronger heterogeneity among clients. For
Di

test, we randomly sample from Dtest to match the class frequency of Di
train and distribute it to each

client i.

D.4 Hyperparameter Search for η and E

To optimize the initial learning rate (η) and the number of local epochs (E) for our algorithm, we conduct
a grid search on the CIFAR-10, CIFAR-100, and ImageNet-100 datasets. The process and reasoning are
outlined below.

D.4.1 Rationale for Varying Initial Learning Rate (η)

The algorithms used in our experiments differ in handling feature normalization within the loss function.
Some algorithms apply feature normalization, while others do not. When features f(x; θ) are normalized, the
resulting gradient is scaled by 1

∥f(x;θ)∥2
. This scaling effect necessitates a grid search across various learning

rates to account for the differences in learning behavior.

D.4.2 Rationale for Varying Local Epochs E

In FL, choosing the appropriate number of local epochs is crucial. Too few epochs can lead to underfitting,
while too many can cause client drift. Therefore, finding the optimal number of local epochs is essential by
exploring a range of values.

D.4.3 Grid Search Process and Results

Considering the above reasons, we perform grid search for η and E on CIFAR-10, CIFAR-100, and ImageNet-
100 datasets. The grid search for CIFAR-10 uses a shard size of 2, while for CIFAR-100, a shard size of 10
is used. Additionally, for ImageNet-100, a shard size of 20 is used. The detailed procedures for each dataset
are provided below. These optimal settings have also been confirmed to yield good performance in less
heterogeneous settings.

CIFAR-10. We examine η values from {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}. For
E, we consider {1, 3, 5, 10, 15}. A default initial learning rate of 0.01 is used unless specified otherwise. The
optimal learning rates vary by algorithm, and the results are summarized in Table 8. Table 8 also includes
the additional hyperparameters used for each algorithm. The notation for these additional hyperparameters
follows the conventions used throughout this paper (Li et al., 2020; Lee et al., 2022; Jhunjhunwala et al.,
2023; Li et al., 2023b; Lee et al., 2024). The optimal number of local epochs is found to be 10 for every
algorithm.

CIFAR-100. We examine η values from {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5,
7.0}. For E, we consider {1, 3, 5, 10}. A default initial learning rate of 0.1 is used unless specified otherwise.
The optimal learning rates differ by algorithm, and the results are listed in Table 9. Table 9 also includes
the additional hyperparameters used for each algorithm. The notation for these additional hyperparameters
follows the conventions used throughout this paper (Li et al., 2020; Lee et al., 2022; Jhunjhunwala et al.,
2023; Li et al., 2023b; Lee et al., 2024). The optimal number of local epochs is found to be 3 for every
algorithm.

ImageNet-100. We examine η values from {0.01, 0.1, 1.0, 10.0}, which are chosen to maintain a consistent
logarithmic scale difference. A default initial learning rate of 0.1 is used unless specified otherwise. The

26

Published in Transactions on Machine Learning Research (03/2025)

optimal learning rates differ by algorithm, and the results are listed in Table 10. Table 10 also includes
the additional hyperparameters used for each algorithm. The notation for these additional hyperparameters
follows the conventions used throughout this paper (Li et al., 2020; Lee et al., 2022; Jhunjhunwala et al.,
2023; Li et al., 2023b; Lee et al., 2024). The optimal number of local epochs is fixed at 5, following the setting
of (Lee et al., 2024).

Table 8: Hyperparameters for VGG11 training on CIFAR-10.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU FedProx SCAFFOLD MOON FedNTD FedExP FedSOL FedGELA FedETF SphereFed FedDr+ (Ours)
η 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.55 0.35

Additional None None µ=0.001 None (µ, τ)=(1,0.5) (β, τ)=(1,3) ϵ=0.001 ρ=2.0 None (β, τ)=(1,1) None β=0.9

Table 9: Hyperparameters for MobileNet training on CIFAR-100.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU FedProx SCAFFOLD MOON FedNTD FedExP FedSOL FedGELA FedETF SphereFed FedDr+ (Ours)
η 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 6.5 5.0

Additional None None µ=0.001 None (µ, τ)=(1,0.5) (β, τ)=(1,3) ϵ=0.001 ρ=2.0 None (β, τ)=(1,1) None β=0.9

Table 10: Hyperparameters for ResNet-18 training on ImageNet-100.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU FedProx SCAFFOLD MOON FedNTD FedExP FedSOL FedGELA FedETF SphereFed FedDr+ (Ours)
η 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 1.0 1.0

Additional None None µ=0.001 None (µ, τ)=(1,0.5) (β, τ)=(1,3) ϵ=0.001 ρ=2.0 None (β, τ)=(1,1) None β=0.9

27

Published in Transactions on Machine Learning Research (03/2025)

E Additional Experiment Results

This section provides additional experimental results, including analysis on the synergy effect, personalized
FL (PFL), IID dataset performance, stochastic client data settings, and scalability experiments.

E.1 Synergy Effect Details
Table 11: Synergy of various FL algorithms and regularizers. Baseline indicates training FL models without
a regularizer. FD denotes feature distillation, which is the regularizer we use in FedDr+.

Sharding (s = 10) LDA (α = 0.1)

Algorithm Baseline +Prox +MOON +KD +NTD +LD +FD Baseline +Prox +MOON +KD +NTD +LD +FD

FedAvg 37.22 36.87 37.43 36.25 37.71 37.17 37.82 42.52 43.22 44.79 44.21 43.39 43.43 43.76

FedBABU 46.20 46.03 46.49 46.37 47.22 46.71 46.95 47.37 46.62 46.27 47.60 46.48 45.78 46.49
SphereFed 43.90 41.96 43.13 44.94 43.47 43.95 45.21 46.98 43.77 46.81 47.76 47.25 47.01 49.74
FedETF 32.42 31.87 34.30 32.76 32.65 32.25 32.77 46.27 45.71 45.98 46.67 46.16 45.91 46.47
FedGELA 29.17 28.69 28.80 29.11 28.84 29.36 30.33 27.11 29.03 28.09 28.45 29.62 29.41 29.75

Dot-Regression 42.52 41.95 44.72 47.45 48.32 47.52 48.69 42.72 46.35 50.36 49.47 50.36 49.28 50.86

Table 12: Optimal β value selected through grid search to achieve the best synergy of various FL algorithms
and regularizers.

Sharding (s = 10) LDA (α = 0.1)

Algorithm Baseline +Prox +MOON +KD +NTD +LD +FD Baseline +Prox +MOON +KD +NTD +LD +FD

FedAvg None 0.999 0.5 0.9999 0.9999 0.999 0.9 None 0.999 0.99 0.999 0.99 0.999 0.9999

FedBABU None 0.9999 0.9 0.999 0.99 0.999 0.999 None 0.999 0.999 0.999 0.999 0.99 0.9999
SphereFed None 0.9999 0.9999 0.9999 0.9 0.99 0.9 None 0.9999 0.999 0.999 0.9999 0.999 0.99
FedETF None 0.999 0.3 0.5 0.999 0.9 0.9 None 0.9999 0.9999 0.5 0.999 0.99 0.99
FedGELA None 0.9999 0.7 0.5 0.7 0.5 0.7 None 0.99 0.9 0.5 0.5 0.5 0.3

Dot-Regression None 0.9999 0.9 0.5 0.5 0.5 0.9 None 0.9999 0.5 0.5 0.5 0.5 0.9

Table 13: Synergy of various FL algorithms and regularizers at β = 0.9.

Sharding (s = 10) LDA (α = 0.1)

Algorithm Baseline +Prox +MOON +KD +NTD +LD +FD Baseline +Prox +MOON +KD +NTD +LD +FD

FedAvg 37.22 30.27 36.67 35.14 35.56 34.83 37.82 42.52 36.09 42.09 41.48 41.34 43.36 43.10

FedBABU 46.20 36.71 46.49 45.50 45.09 45.81 45.31 47.37 39.04 45.92 45.58 45.56 46.46 44.77
SphereFed 43.90 1.36 1.89 41.01 43.47 41.73 45.21 46.98 1.46 2.21 45.22 46.25 43.84 48.61
FedETF 32.42 25.18 32.58 32.76 31.98 32.25 32.77 46.27 34.92 45.38 44.94 45.77 44.36 45.92
FedGELA 29.17 25.52 28.57 28.84 28.67 28.37 29.07 27.11 26.84 28.09 27.78 28.27 27.97 27.60

Dot-Regression 42.52 5.42 44.72 46.60 45.78 47.52 48.69 42.72 7.47 30.69 48.19 33.08 49.09 50.79

We evaluate the synergy effect of various FL algorithms by maintaining their original training loss while
incorporating specific regularizers, as detailed in Equation 1 of the main text. To manage the differing loss
scales between the baseline FL algorithms and the regularizers, we systematically tune the coefficient β across
a range of values (0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999, 0.9999). The resulting performance and optimal β values
are shown in Table 11 and Table 12. However, when we set β = 0.9 without addressing the issue of differing
loss scales, the performance results, presented in Table 13, reveal that several synergies are significantly
inferior due to this oversight.

28

Published in Transactions on Machine Learning Research (03/2025)

Table 14: PFL accuracy comparison with MobileNet on CIFAR-100. For PFL, we denote the entries in the
form of X±(Y), representing the mean and standard deviation of personalized accuracies across all clients
derived from a single seed.

Algorithm s=10 s=20 s=100 α=0.05 α=0.1 α=0.3

Dot-Regression 42.52 49.02 52.86 30.31±7.95 37.52±5.60 47.08±3.69

Dot-Regression FT (LDR) 80.84±(5.99) 74.18±(5.78) 56.84±(5.04) 72.02±(6.80) 66.96±(5.36) 60.34±(3.66)

Dot-Regression FT (LDr+) 80.82±(6.12) 73.73±(5.75) 56.69±(4.95) 71.85±(7.03) 66.59±(5.32) 59.87±(3.65)

FedDr+ (ours) 48.69 51.00 53.23 39.63±9.12 45.83±6.18 48.04±3.44

FedDr+ FT (LDR) (ours) 84.23±(5.44) 75.73±(4.79) 56.90±(4.85) 78.65±(6.17) 74.86±(4.77) 62.47±(3.72)

FedDr+ FT (LDr+) (ours) 84.10±(5.43) 75.42±(4.80) 56.76±(4.91) 78.55±(6.16) 74.75±(4.75) 62.16±(3.73)

E.2 Personalized Federated Learning Results

We introduce FedDr+ FT and dot-regression FT, inspired by prior work (Oh et al., 2022; Dong et al., 2022; Li
et al., 2023b; Kim et al., 2023). These methods enhance personalization by leveraging local data to fine-tune
the GFL model. We investigate the impact of fine-tuning using LDr+ and LDR loss for each GFL model to
assess their effectiveness on personalized accuracy. Performance metrics without standard deviations indicate
results on Dtest, obtained from the GFL model after the initial step in the 2-step method. Our experiments
involve heterogeneous settings with sharding and LDA non-IID environments, using MobileNet on CIFAR-
100 datasets. We set s as 10, 20, and 100, and the LDA concentration parameter (α) as 0.05, 0.1, and 0.3.
Table 14 provides detailed personalized accuracy results.

Our 2-step process involves first developing the GFL model either using dot-regression or FedDr+. In the
second step, we fine-tune this model to create the PFL model, again using LDR or LDr+. This results
in four combinations: Dot-Regression FT (LDR), Dot-Regression FT (LDr+), FedDr+ FT (LDR), and FedDr+
FT (LDr+). When the GFL model is fixed, using LDR for fine-tuning consistently outperforms LDr+ across
all settings, because dot-regression focuses on local alignment which advantages personalized fine-tuning.
Conversely, when the fine-tuning method is fixed, employing LDr+ for the GFL model consistently outper-
forms LDR across all settings. This aligns with previous research (Nguyen et al., 2022; Chen et al., 2023)
suggesting that fine-tuning from a well-initialized model yields better PFL performance.

E.3 IID Data Performance

To address the question regarding the performance of FedDr+ or dot-regression loss in Federated Learning
(FL) settings with IID data, we conducted experiments on CIFAR-100 with 100 clients, distributing data
IID and ensuring a fair number of samples per client. We evaluated FedAvg, FedBABU, Dot-regression, and
FedDr+ across 5 seeds, calculating the mean and standard deviation of the global model accuracy for each
algorithm.

Table 15: Global model accuracy (%) in IID data settings.

Algorithm Accuracy (mean ± std)
FedAvg 47.19 ± 1.06
FedBABU 45.18 ± 0.61
Dot-regression 51.48 ± 0.99
FedDr+ 51.10 ± 0.61

From the Table 15, it is evident that Dot-regression and FedDr+ achieve the highest performance, significantly
outperforming both FedAvg and FedBABU. The performance of Dot-regression and FedDr+ is nearly identical
under IID settings.

29

Published in Transactions on Machine Learning Research (03/2025)

This similarity arises because, in the IID scenario, there are no unobserved classes across clients. As a
result, the feature distillation mechanism in FedDr+, which is specifically designed to mitigate forgetting on
unobserved classes, does not provide additional benefits. Instead, both Dot-regression and FedDr+ excel in
improving local alignment across all classes, fully achieving the global model’s objective of enhancing local
alignment for all clients.

E.4 Performance in Stochastic Client Data Settings

While our original experiments on CIFAR-100 (s=10) with 100 clients assumed a static client dataset,
we conducted additional experiments where each client randomly removed one class from its dataset every
10 FL rounds. As expected, global model accuracy decreased for all methods, as shown in Table 16. However,
FedDr+ consistently outperformed CE and Dot-regression, demonstrating its robustness in handling dynamic
class distributions. The round-wise global test accuracy trends for CE, Dot-regression, and FedDr+ in the
stochastic setting are presented in Figure 9c, further confirming FedDr+ ’s stability and superior performance
across training rounds.

Table 16: Global model accuracy (%) in static and stochastic client data settings.

Algorithm Static Setting Stochastic Setting
CE 46.20 43.59
Dot-regression 42.52 38.13
FedDr+ 48.69 44.96

DR
Dr+
CE

Observed
Unobserved

0

0.2

0.4

0.6

Round
0 100 200 300

Local Alignment

(a) Local alignment

CE DR Dr+

0

0.1

0.2

0.3

0.4

Round
0 100 200 300

Local Alignment on Erased Class

(b) Local alignment on erased class

CE DR Dr+

0

20

40

60

Round
0 100 200 300

Global Accuracy

(c) Global test accuracy

Figure 9: Comparison of (a) feature-classifier alignment on the observed and unobserved classes test data,
(b) feature-classifier alignment on erased-class test data for θi

r, and (c) global test accuracy of θg
r on all

classes. Models are trained using LCE, LDR, and LDr+.

To further investigate why FedDr+ maintains superior global accuracy in the stochastic setting, we analyzed
the feature-classifier alignment for both observed/unobserved classes and erased classes.

• Local alignment for observed/unobserved classes (Fig 9a):

– FedDr+ maintains superior feature-classifier alignment for both observed and unobserved classes
compared to Dot-regression, consistently outperforming it across all rounds.

– During the final convergence phase, FedDr+ surpasses even CE in unobserved class alignment,
confirming its effectiveness in preserving global knowledge.

• Local alignment for erased class (Fig 9b):

– Even for erased class (those removed during training), FedDr+ retains stronger feature-classifier
alignment than Dot-regression.

– During the final convergence phase, FedDr+ also surpasses CE in erased class alignment, further
demonstrating its ability to mitigate forgetting of removed class knowledge.

30

Published in Transactions on Machine Learning Research (03/2025)

These results suggest that the feature distillation mechanism in FedDr+ effectively enhances global
knowledge preservation while also enabling effective learning of observed classes, even when
class distributions change dynamically.

E.5 Scaling to Larger Numbers of Clients and Training Rounds

We conducted experiments on CIFAR-100 (s=10) with 1,000 communication rounds, increasing the
number of clients to 100, 200, 500, and 1,000. All algorithms used previously grid-searched optimal hyperpa-
rameters, and results are averaged over three independent seeds. All algorithms used previously grid-searched
optimal hyperparameters, and results are averaged over three independent seeds.

Table 17: Global model accuracy (%) for different numbers of clients with 1,000 communication rounds.

Algorithm N=100 N=200 N=500 N=1,000
FedAvg 50.50 ± 0.57 42.51 ± 1.47 33.02 ± 0.74 26.63 ± 1.31
FedBABU 58.19 ± 1.07 48.75 ± 1.99 37.40 ± 0.41 25.10 ± 1.08
FedDr+ 64.21 ± 1.24 59.78 ± 0.71 43.27 ± 0.31 28.99 ± 0.98

Table 17 confirms that FedDr+ consistently outperforms FedAvg and FedBABU across all settings, demon-
strating robust scalability in large-scale FL.

31

	Notations, Pseudo Code of FedDr+ and FedDr+FT
	Main Notations
	Pseudo Code of FedDr+ and FedDr+FT

	Preliminaries: Pulling and Pushing Feature Gradients in CE
	Feature Gradient of LCE
	Physical Meaning of f(x;)LCE(x,y;)

	Theoretical Perspective of Dot-Regression (DR)
	Feature Gradient of LDR
	Physical Meaning of f(x;)LDR(x,y;)

	NTK Perspective: Why Dot-Regression in FL Fails on Unobserved Classes
	Gradient Flow in the NTK Regime
	Limitations of Dot-Regression loss in FL under the NTK Regime
	Cross-Entropy Loss and Feature-Classifier Alignment

	Experimental Setup
	Code Implementation
	Datasets, Model, and Optimizer
	Non-IID Partition Strategies
	Hyperparameter Search for and E
	Rationale for Varying Initial Learning Rate ()
	Rationale for Varying Local Epochs E
	Grid Search Process and Results

	Additional Experiment Results
	Synergy Effect Details
	Personalized Federated Learning Results
	IID Data Performance
	Performance in Stochastic Client Data Settings
	Scaling to Larger Numbers of Clients and Training Rounds

